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Introduction
I Preconditioning or regularization method often applied to a misfit

function

I to stabilize ill-posed inverse problems
I to retrieve and preserve desired features of model parameters

I If edges of the model or if the model is blocky, often an
edge-preserving regularization method is used:Total Variation (TV)

I TV regularization method provides high-resolution images of
the subsurface where edges and discontinuities are properly
preserved

I However, finding proper parameters that control nonlinearity of
the model that associated with its implementations is
cumbersome & is time-consuming to adapt for full waveform
inversion

J(m) = ||dobs − dcal (m)||2 + αR(m) (1)

R(m) =
1

h

nx,nz∑
i,j=1

√
(mi+1,j −mi,j )2 + (mi,j+1 −mi,j )2 + β (2)



Total Variation Regularization

I Total Variation Regularization

J(u) =
1

2
||Au − z||2 + αR(u), (3)

where u is true image, z is noisy image and A is forward modelling
operator.

R(u) =

∫
Ω
|∇u|dxdz =

∫
Ω

√
u2
x + u2

zdxdz. (4)

I Image restoration problem

min
u

∫
Ω

(α
√

u2
x + u2

z +
1

2
||Au − z||2)dxdz (5)

−α∇.
(
∇u
|∇u|

)
+ A∗(Au − z) = 0 (6)

I if |∇u| = 0, then the first-order condition cannot be satisfied, and
also the second-order (in the Newton’s method)



...

I We perturb the TV norm functional:- Primal problem

min
u

P(u) = min
u

∫
Ω
α
√

u2
x + u2

z + β dxdz +
1

2
||Au − z||2), (7)

where β is a small positive parameter.
I Then, image restoration can be performed using a time marching

scheme

−α∇.
(

∇u√
|∇u|2 + β

)
+ A∗(Au − z) = 0 (8)

ut = α∇.
(

∇u√
|∇u|2 + β

)
+ A∗(Au − z), u(x , 0) = z(x) (9)

Effect of β
I if β is too small, a solution to the image restoration with the

first- or second-order condition will yield a wrong solution or it
might fail

I if β is too large, it will smear the edges of u



Primal-Dual Total Variation

I The term, ∇.
(
∇u
|∇u|

)
is high nonlinear and is the source of

numerical problems

I In the Primal-Dual TV problem, a unitary vector w is introduced to
linearize the problem

w =

(
∇u
|∇u|

)
=

(
∇u√
|∇u|2 + β

)
. (10)

I Then, the image restoration problem yields the following system of
equations

−α∇.w + A∗(Au − z) = 0 (11)

w
√
|∇u|2 + β −∇u = 0, (12)

where solution to the above equations is solved with |w |2 ≤ 1
bound condition

w =

{ ∇u
|∇u| if ∇u

|∇u| 6= 0

1 or not unique if ∇u
|∇u| = 0

Solution often convergence even if β = 10−10 or small, and is stable



Primal-Dual Total Variation
I Then, the Primal-Dual problem is given by

min
u

max
|w|2≤1

∫
Ω
−u∇.w dxdz +

1

2
||Au − z||2. (13)

I For simple denoising problem if we set A = I , then u becomes

u(w) = z + α∇.w (14)

min
u

max
|w|2≤1

∫
Ω
−αu∇.w dxdz +

1

2
||u − z||2. (15)

I If we eliminate u in the Primal-Dual problem, we get the Dual
problem

max
|w|2≤1

D(w) = max
|w|2≤1

∫
Ω
−αz(∇.w)2 dxdz −

α2

2
||∇.w ||2 (16)

I The Dual problem can be written as in a simple form as

max
|w|2≤1

D(w) = max
|w|2≤1

1

2

[
||z||2 − ||α∇.w + z||2

]
(17)



Primal-Dual Total Variation

I The Dual problem can be written as in a simple form as

max
|w|2≤1

D(w) = max
|w|2≤1

1

2

[
||z||2 − ||α∇.w + z||2

]
(18)

I The above Dual problem is equivalent to solving

min
|w|2≤1

1

2
||∇.w +

1

α
z||2 (19)

I Once the Dual problem is solved, the solution to the Primal problem
is followed by updating u with

u(w) = z + α∇.w (20)

Note that w is the dual variable and u is the primal variable. Hence
the problem is viewed as a primal-dual problem.



Regularization by Denoising (RED)

I Elad et al 2016 proposed the following regularization term for image
denoising problem

ρ(m) =
1

2
mT [m− f (m)] , (21)

where f (.) is any arbitrary denoising engine of choice and m is
model parameter.

I Conditions and properties f (m)
I For small positive scaling parameter c , f (m) is local

homogeneous
f (cm) = cf (m) (22)

I The Jacobian ∇mf (m) of a denoising algorithm is stable and
satisfies the condition

||f (m)|| ≤ ||m|| (23)

I With the above conditions, the gradient of the regularization term
leads to the following simple equation

∇mρ(m) = m− f (m) (24)



Regularization by Denoising (RED) ...

I In the case of regularized FWI, we minimize J(m) using constrained
optimization

minimize
m

J(m)

subject to ρ(m) ≤ ε
(25)

I Then constrained optimization leads to the following

J(m) =
1

2
||dobs − d(m)cal ||

2 +
λ

2
mT [m− f (m)] (26)

J(m) = Jo(m) +
λ

2
mT [m− f (m)] (27)

I The gradient of the misift function becomes

∇mJ(m) = ∇mJo(m) + λm−
λ

2
[f (m) +∇mf (m)m] (28)

I From the second condition of RED, we have

∇mf (m)m = f (m) (29)



Regularization by Denoising (RED) ...

I Then, the gradient of misfit function of the regularized FWI
becomes

∇mJ(m) = ∇mJo(m) + λ(m− f (m)) (30)

I Then, model building via regularization by denoising is carried out
iterative as

mk+1 = mk − α∇mk
Jo(mk) + λ(mk − f (mk−1)) (31)

Newton’s Method!

I In the case of Newton’s method or second-order optimization
techniques, the model perturbation update will be

δm = −∇2
mJo(m) + λ(I− f (m)

m
) (32)

I Note, by linearized the Total Variation regularization, it satisfies the
conditions and properties of of the denoising engine for RED



Examples:- Image Denoising with TV & Primal-Dual TV
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Figure 1 : BP Velocity model
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Figure 2 : Model contaminated by noise



Image Denoising with TV
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Image Denoising with Primal-Dual TV
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Noisy BP Velocity Model
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FWI via RED scheme
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I Number of shots:- 100

I Number of receivers:- 298

I In order to introducing artifacts in the model, we used simultaneous source techniques via source-encoding

techniques

I 4 super-shots are created, where each super-shot contains 25 individual monochromatic sources

I Maximum number of iteration for each frequency group is 50



Reconstructed velocity model without regularization
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Reconstructed model via RED with Prime-Dual TV

0

2

3

4

D
e

p
th

 (
K

m
)

5 10 15
Lateral position (Km)

 
1500

2500

3500

4500

m
/s



Reconstructed model via RED with Prime-Dual TV
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Reconstructed velocity model without RED (a), with RED λ = 1.5 (b) and λ = 0.08 (c)



Vertical velocity profiles
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Comparison of vertical velocity profiles. The depth velocity profiles are extracted at (4.50 Km,0

Km) and (7.20 km,0 Km)



Misfit function
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Relative data misfit reduction curve with and without applying RED with the Primal-Dual Total

Variation denosing engine 6 Hz (a) and 12 Hz (b)



Summary

I The aim of this work is to feasibility and advantage of incorporating an
edge-preserving denoising algorithm via regularization by denoising (RED)
technique in full waveform inversion for velocity model buildings with strong
velocity contrasts and sharp discontinuities.

I One advantage of the regularization by denoising algorithm in FWI is the
easiness of implementation. The regularization by denoising technique only
requires an image denoising engine to handle the structure of the inverse
problems.

I For the regularization by denoising technique, we implement the Primal-Dual
Total Variation as our denoising engine.

I The primary objective of the Primal-Dual Total Variation denoising technique is
to remove some of the singularity caused by the non-differentiability of the L1
TV norm and is performed by applying a linearization technique.

I The known edge-preserving, for example, TV-norm constraint method requires a
cumbersome work in finding optimal parameters that control the nonlinearity
properties of the model to impose and retrieve desired features on subsurface
images.
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