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Random noise attenuation via randomized CP decom-

position

Wenlei Gao1 and Mauricio D Sacchi

Abstract

Tensor algebra provides a powerful framework for multidimensional seismic data pro-

cessing. A noise-free seismic volume can be represented by a low-rank tensor. Noise will

increase the rank of the tensor. Hence, random noise attenuation can be attained via low-

rank tensor filtering. Our filtering method adopts the CANDECOMP / PARAFAC (CP)

decomposition. It decomposes N-dimensional seismic data in rank-one N-dimensional

volumes. Alternating Least Squares (ALS) is adopted to compute the CP decomposi-

tion. In addition, we introduce a randomized CP decomposition to speed up the ALS

algorithm. Computational time is saved by avoiding unfolding and folding large tensors.

We examine the performance of the fast CP decomposition on synthetic data and two

3D field data sets.

1.1 Introduction

Random noise attenuation is a critical step in seismic data processing. Traditional methods for

random noise attenuation adopt prediction filters in f − x domain (Canales, 1984; Gulunay, 2005)

or in t− x domain (Abma and Claerbout, 1995). Incoherent noise removal can also be formulated

1Email: wgao1@ualberta.ca
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Randomized CP decomposition 3

as a matrix rank-reduction problem (Trickett, 2003) in the f − x− y domain. Similarly, random

noise reduction and seismic data interpolation can be implemented via rank-reduction methods that

operate on block Hankel matrices in frequency-space domain (Trickett et al., 2010; Oropeza and

Sacchi, 2011).

There is no ambiguity in the definition of the rank of a matrix. There is also no ambiguity in

a reduced rank decomposition of matrices (Strang et al., 1993). However, the decomposition of

tensors in terms of low-rank tensors requires some attention. First of all, there is no unique form in

which a tensor can be decomposed in terms of a tensors of lower rank because there is no unique

definition of tensor rank (Kolda and Bader, 2009). For instance, one can decompose a tensor in terms

of the superposition of matrices and a small tensor by adopting the high-order SVD (HO-SVD).

This approach was used for interpolation of 5D seismic volumes Kreimer and Sacchi (2011, 2012).

Similarly, one can adopt Parallel Matrix Factorization (PMF) to represent a tensor for one with

low-rank unfondings (Xu et al., 2013; Sacchi et al., 2015). Similarly, a tensor can be decomposed

via the CP decomposition (Carroll and Chang, 1970; Harshman, 1970; Battaglino et al., 2017). In

this particular decomposition, a rank-one tensor is a volume computed by multi-dimensional outer

product of vectors. This article investigated the performance of the CP decomposition on random

noise attenuation in the time-space domain.

1.2 Theory

We denote N -dimensional seismic data by D with element Di1,...,iN . The first dimension represents

time and the remaining dimensions indicate spatial coordinates. For instance, in a 5D seismic

dataset, spatial dimensions could represent x, y midpoint coordinates and x, y offsets. The size of

each dimension is indicated by {I1, · · · , IN}. Using the tensor CP decomposition (Kolda and Bader,

2009), noise-free seismic data can be approximated via the sum of R rank-one tensors

D ≈
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (1.1)

where, R is called the rank of the tensor. The factor vectors are given by a
(n)
r of length In, the

symbol ◦ represents outer product. The collection of all factor vectors for a given mode organized

as factor matrix

A(n) =
[
a

(n)
1 a

(n)
2 · · · a

(n)
R

]
∈ RIn×R.
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The mode-n unfolding of the tensor D can be represented by means of factor matrices as follows

D(n) = A(n)Z(n) (1.2)

where, D(n) is the mode-n unfolding or matricization of the tensor D, Z(n) is computed as

Z(n) = �
k 6=n

A(k) = A(N) � · · ·A(n+1) �A(n−1) · · · �A(1).

Where, � is used to indicate Khatri − Rao product, which is also known as the matching

columnwise Kronnecker product defined as

A(i) �A(j) =
[
a

(i)
1 ⊗ a

(j)
1 · · · a

(i)
R ⊗ a

(j)
R

]
,

where ⊗ represents kronnecker product. The standard algorithm for finding each factor matrix

adopts the alternating least squares (ALS) method (Harshman, 1970; Kolda and Bader, 2009;

Battaglino et al., 2017). This method loop over all the modes, fixing every factor matrix but A(n).

According to equation 2.2, the factor matrix A(n) is obtained by minimizing the following cost

function

argmin
A(n)

||D(n) −A(n)Z(n)T ||2F . (1.3)

The normal equations for equation 2.3 is given by

A(n)(Z(n)TZ(n)) = D(n)Z
(n), (1.4)

by taking advantage of the properties of Khatri−Rao product
(
A(i) �A(j)

)T (
A(i) �A(j)

)
= A(i)TA(i) ~ A(j)TA(j), (1.5)

where, ~ represents element-wise product of the matrices. We have

Z(n)TZ(n) = ~
k 6=n

A(k)TA(k) (1.6)

Algorithm 1 shows the application of ALS method to compute the CP decomposition. Phan et al.

(2013) propose a method to reorganize the computation of line7 and line9 in Algorithm 1. The

idea is to reduce the times of permuting N-dimensional array and the overall memory cost of the

ALS algorithm. The over-determined nature of equation 2.3 becomes clear when it is expressed in
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Algorithm 1.1 ALS

1: function {A(n)} = ALS(D, R)
2: Initialize factor matrices A(2), · · · ,A(N)

3: while termination criteria not met do
4: for n=1 : N do
5: X = ~

k 6=n
A(k)TA(k)

6:

7: Z(n) = �
k 6=n

A(k)

8:

9: Y = D(n)Z
(n)

10:

11: A(n) = Y/X
12: end for
13: end while
14: return factor matrices {A(n)}
15: end function

its transposed form

argmin
A(n)

||Z(n)A(n)T −DT
(n)||2F . (1.7)

The system is illustrated by figure 2.1. In general, the number of rows
∏
i 6=n Ii � R. To re-

duce the workload of the ALS algorithm drastically without sacrificing quality, we introduce a

randomized ALS algorithm. This algorithm uniformly samples rows from Z(n) and the correspond-

ing rows from DT
(n). The sampled rows can be formed without explicitly forming Z(n) and unfolding

the tensor D. The latter are the most time consuming step in the ALS algorithm. In fact, the jth

row of Z(n) is the element-wise product of the corresponding rows of the factor matrix

Zn[j, :] = A(N)[iN , :] ~ · · ·~ A(n+1)[in+1, :] ~ A(n−1)[in−1, :] ~ · · ·~ A(1)[i1, :], (1.8)

the mapping between j and [i1, · · · , in−1, in+1, · · · , iN ] is via the relation

j = 1 +

N∑

m=1
m 6=n

(im − 1)Jm, where Jm =

m−1∑

k=1
k 6=n

Ik.

Similarly, the fiber D[i1, · · · , in−1, :, in+1, · · · , iN ] corresponding to the jth row of DT
(n). Assuming

a desired number of sampled rows ns, which greater than max{I1, · · · , IN , R}. S is used to denote

the samples from the set {1, 2, · · · ,∏i 6=n Ii}. Battaglino et al. (2017) point out that the sample size

ns = 10Rlog(R) is sufficient for most applications. The randomized version of ALS algorithm in
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∏
i6=n

Ii

R

Z(n)

R

In

A(n)T

=

In

∏
i6=n

Ii

DT
(n)

j j

A(2)

A(3)

i2
i3

i2

i3

D

Figure 1.1: The resulted over-determined linear equations of Alternating Least Squares
method. Take 3rd order tensor as an example, sampled rows of Z(n) corresponding to rows of
factor matrices (dashed lines on factor matrices), Similarly sampled rows of DT

(n)corresponding

to fiber in D (solid line inside of cube), this sampling strategy can void explicitly forming
Z(n) and tensor unfolding.
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provided in algorithm 2. line 6 and line 7 represents extract sampled rows, which is specified by

the set S , from factor matrices {A(n)} and tensor D.

Algorithm 1.2 RandALS

1: function {A(n)} = RandALS(D, R, ns)
2: Initialize factor matrices A(2), · · · ,A(N)

3: while termination criteria not met do
4: for n=1 : N do
5: Define sample set S ∈ {1, . . . ,∏i 6=n Ii}
6: Zs ← (S,A(1), · · · ,A(n−1),A(n+1), · · · ,A(N))
7: DT

s ← (S,D)
8: A(n) = argmin

A(n)

||ZsA(n)T −DT
s ||2F

9: end for
10: end while
11: return factor matrices {A(n)}
12: end function

We compare the efficiency of ALS with that of RandALS by applying them to two synthetic tensors

designed to have rank 20 with 10% random noise, one is 3rd order size of 500× 300× 300, the other

is 200× 80× 80× 80. This experiment is run on JULIA 0.6 on an Intel i5 3.2 GHz machine with

8GB memory. The target rank is also chosen to be 20. The convergence curve is plotted in figure 2.2.

The curves represent relative fitting error versus running time, the relative fitting error is defined as

relativeerror =
||D −D′||F
||D||F

,

where D represents original synthetic tensor and D′ is the fitted low-rank tensor. In figure 2.2,

stars mark 5 iteration of ALS algorithm and triangles indicate the result of RandALS. Both of the

proposed algorithms can reach to 10% relative fitting error, which is consistent with the level of

added on random noise. we see that the relative speed up of randomized algorithm can increase as

much as 5× for 3rd order tensor to 15× for 4th-order tensor.

1.3 Examples

To demonstrate the performance of the proposed algorithms, we generated three synthetic 3D data

sets (t− CMPx − CMPy) with linear, hyperbolic and irregular seismic events, respectively. The
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Figure 1.2: The computation time comparison between ALS and RandALS, one marker
represent 5 iterations, stars is the result of ALS and triangles indicate RandALS. In this
test, we run the two algorithms with 50 iterations, both of them can reach to 10% relative
error, but the randomized one takes much less time. a) shows the convergence curve for
a 3rd order 500× 300× 300 tensors, the ALS algorithm takes 14.31s and RandALS only
taks 2.87s. b) shows the running time for a 4th order 200× 80× 80× 80 tensor. The ALS
algorithm takes 51.31s and RandALS only taks 3.39s.
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size of each data set is of 500× 200× 200. Band-limited random noise was added to make the SNR

of each data set equal to 0.5. In this report, the SNR is defined as

SNR =
||D − S||F
||S||F

, (1.9)

where D indicates noise-contaminated data, S is signal, F denotes the Frobenius norm of tensor.

The CP decomposition is performed within sliding windows size of 60times60times60 and the

overlap is 20 samples in each direction. We set the target rank for the data sets with linear or

hyperbolic events to be 30 and the data set with irregular events to be 40. The maximum number

of iterations is 50, We also stop iterating as the changes of relative error is less than 0.0001.

Figure 2.3 shows one frontal slice (CMPy = 130) of the processed data cube with linear events.

From left to right end, each panel shows original noisy data, de-noised one and the difference

between them, respectively. The data and the difference are plotted in the same scale and each

panel is separated by two empty traces. The data is plotted every 5 traces for visualization. Most

of the random noise is removed successfully by the proposed algorithm and the weak event, which

is hardly seen in the input data, is correctly recovered by CP decomposition. Similarly, Figure

2.4 shows the result for hyperbolic events, which demonstrates the effectiveness of the proposed

algorithm on curved seismic events.

Compared to traditional seismic data de-noising methods, like prediction error filter (PEF), Singular

spectrum analysis (SSA), one advantage of tensor decomposition is that the assumption of linear

events in local windows is avoided. To demonstrate this superiority, a synthetic data consisted of

five irregular events is generated for testing. We first made a data set with linear, parabolic and

hyperbolic events, on top of that, we introduced band-limited random time shifts to the trajectory

of each events to mimic the irregularity of field seismic data. The result is shown in Figure 2.5.

We also tested the introduced methods on a land 3D post-stack data which is acquired in central

Alberta, this data set shows abundant features of paleo-channel. Consider the complexity of real

field data, we perform low-rank CP decomposition on 3D overlapping sliding window with size of

60× 60× 60 samples, the overlapping of neighbouring windows is 20 samples. The rank R is set to

be 30 for all windows, same termination criteria as that for synthetic data is implemented. Figure

2.6a,b,c show the original data cube, the processed one and the difference between them. The time

slice and the lateral section indicated by the yellow lines are plotted in Figure 2.7 and 2.8. The

features of paleo-channel become more clear and continuous after processing.

The proposed algorithms are further tested on a marine data set with relatively complex structures.

The size of this data is 400× 600× 400 samples. Like the previous examples, the CP decomposition
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Figure 1.3: One slice of synthetic 3D data with linear events size of 500 × 200 × 200 ,
SNR = 0.5. From left to right end, each panel shows original noisy data, de-noised one and
the removed noise. The data is plotted every 5 traces for visualization.

Figure 1.4: One frontal slice of synthetic 3D data with hyperbolic events size of 500×200×200
, SNR = 0.5. From left to right end, each panel shows original noisy data, de-noised one
and the removed noise. The data is plotted every 5 traces for visualization.
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Figure 1.5: One slice of synthetic 3D data with irregular events with size of 500× 200× 200
, SNR = 0.5. From left to right end, each panel shows original noisy data, de-noised one
and the removed noise. The data is plotted every 5 traces for visualization.
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Figure 1.6: 3D land data set. a) shows the original data cube. b) is the processed result. c)
displays the difference between them.
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Figure 1.9: 3D migrated marine data set with size of 400times600time400 samples. a)
Original seismic data, b) processed result.

algorithm is performed in overlapping sliding windows. The size of the window is reduced to

30× 30× 30 to accommodate the structural complexities of the data and target rank is set to be

25. Figure 2.9a,b show the original, the processed data cube, respectively. To further examine the

results of de-noising, we amplify part of the horizontal and frontal slices which are indicated by the

yellow boxes. The results are shown in Figure 2.10, 2.11.

1.4 Conclusion

In this article, we have presented a random noise attenuation method for multidimensional seismic

data via low rank CP decomposition, a randomized version of Alternating Least squares algorithm

is also introduced to speed up the performance without a sacrifice in quality. The effectiveness of

the proposed algorithms are demonstrated on synthetic 3D data with linear, curve events and real

field data. Even thought our examples is given with 3D cases, the extension of proposed method for

5D seismic data noise attenuation is straightforward.
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Pre-stack multicomponent seismic data registration

Wenlei Gao1

Abstract

Mapping post-stack or time migrated PS-wave data to the PP-wave time domain is

a critical step before joint PP-wave and PS-wave data interpretation. Registration

techniques are often constrained by having access to a known Vp/Vs ratio. When

an accurate Vp/Vs ratio is not provided, one can solve the problem of seismic data

registration by minimizing the difference between the PP-wave and the warped PS-

wave data with a smoothing constraint applied on the warping function. For joint

pre-stack elastic inversion, it is required to extend the current registration algorithms

to the pre-stack domain. However, two main challenges are limiting the application

of pre-stack multi-component seismic data. At first, the signal-to-noise ratio (SNR) of

pre-stack seismic data is much worse than the one of post-stack data. Secondly, seismic

data registration is usually formulated as a highly non-linear optimization problem; an

acceptable solution can hardly be obtained by any gradient-based solver if the initial

guess is too far away from the global minima. To deal with these challenges, we propose

attenuating the noise of the pre-stack seismic data via 5D reconstruction, then applying

our registration method on the post-stack seismic data to obtain an estimation of the

warping function. Finally, using the warping function for post-stack data as an initial

guess, the registration algorithm is implemented on the regularized or raw pre-stack

multi-component seismic data.

1Email: wgao1@ualberta.ca
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2.1 Introduction

Multi-component seismic data registration is typically performed by cross-correlation methods. For

instance, Gaiser (1996) introduced a correlation-based method to determine the long wave-length

components of Vp/Vs ratios. Geis et al. (1990) used both P-wave and S-wave VSP information,

combined with a suite of well logs, for the proper correlation of seismic markers in both time and

depth. Van Dok et al. (2003) discussed different tools for obtaining and refining Vp/Vs ratios. These

authors also studied methods to include the seismic data registration in the processing work-flow

to improve the quality of seismic images. Fomel (2007) defined local correlation and applied this

local attribute to multi-component seismic image registration to a nine-component land survey. The

continuity and smoothness of the local correlation are controlled by changing a regularization term.

Hale (2009) described a method to calculate the local correlation between two time-lapse seismic

data sets and to estimate three components of displacement have been estimated.

Fomel et al. (2003) showed how one can warp PS-wave events to match PP-wave events by

minimizing the differences between PP-wave data and warped PS-wave data. The latter can improve

the correlation of seismic volumes obtained by manual interpretation and registration. Seismic data

registration by least-squares techniques is a highly non-linear problem. Nickel et al. (2004) also

reported applying similar method to multi-component seismic data to estimate high resolution Vp/V s

ratios. All the gradient-based algorithms may easily get trapped in a local minimum. In order to

alleviate this problem, Fomel et al. (2005) proposed a multi-step registration method which consists

of initial interpretation, amplitude and frequency balancing, registration scan, and least-squares

optimization. In some cases, only accounting for time shifts caused by velocity difference is not

enough in multi-component seismic data registration, lateral displacements are also need to be

handled, Hall (2006) described a 7D warping method for time-lapse seismic data, his method can be

extended to multi-component seismic data straight-forwardly.

As we mentioned above, local minima pose big challenges to optimization-based registration methods.

In order to avoid this problem, Liner and Clapp (2004) proposed a modified Needleman-Wunsch

algorithm, a global optimization method developed for aligning amino acid sequences in proteins, to

match PS-wave traces to their corresponding PP-wave traces. Yuan et al. (2008) used Simulated

Annealing to minimize the normalized cross-correlation between PP-wave data and PS-wave data.

They also account for frequency-domain differences by time-variant spectrum whitening. Compton

and Hale (2014) proposed to use dynamic warping to align PS-wave traces to its corresponding

PP-wave traces. The sequence of time shifts estimated by this method are a globally optimal

solution to the non-linear optimization problem.
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Figure 2.1: Normal move-out time corrected pre-stack seismic data. (a) Pre-stack PP-wave
data, (b) Pre-stack PS-wave data.

All the previous cited methods try to estimate a high resolution Vp/Vs ratios from time shifts, which

are evaluated by minimizing the difference between PP-wave and warped PS-wave data. However,

as Vp/Vs ratios are related to the derivative of time shifts, any non-smoothness in time shifts may

cause rapid changes in the estimated Vp/Vs ratios. we proposed a new method which inverts the

Vp/Vs ratios directly instead of estimating them from time shifts. To minimize the rapid changes

in the inverted Vp/Vs ratios, the cost function is constrained by a smoothing operator (Gao and

Sacchi, 2017).

The registration algorithm may fail if we simply extended it to pre-stack domain as the SNR of

the pre-stack multi-component seismic is far worse than the post-stack one. Figure 2.1a,b shows

the common-depth-gather (CDP ) of the normal move-out (NMO) corrected PP, PS-wave data,

respectively. Notice the difference of the time axis used for plotting the data. The data are
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Figure 2.2: Work-flow for pre-stack seismic data registration.

significantly contaminated by noise, which pose great challenges to any registration algorithm. To

deal with these challenges properly, we propose a workflow for pre-stack seismic data registration

and it is shown in Figure 2.2. The angle domain common image gathers (ADCIG) are computed

from the input pre-stack NMO-corrected multi-component seismic data. Instead of implementing

registration algorithm directly on those generated gathers, we detour by regularizing and attenuating

the noise of the pre-stack seismic data via 5D reconstruction. Then high-quality 3D post-stack

multi-component data can be prepared for our registration method. The estimated warping function

from the post-stack registration is later used as the initial guess for pre-stack seismic data registration.

We tested the proposed workflow on an field 3D − 3C seismic data acquired in central Alberta to

demonstrate the effectiveness of the algorithm.

2.2 Theory

In this section, we will briefly illustrate 5D seismic data reconstruction via low-rank tensor completion

and multi-component seismic data registration methods, for more details, people can refer to the
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Figure 2.3: Schematic diagram of 5D seismic data acquisition. (a) The geometry of field
recorded seismic traces, which depend on 5 variables includes source x coordinate (sx),
source y coordinate (sy), receiver x coordinate (rx), receiver y coordinate (sy) and time t.
(b) The domain where 5D reconstruction was performed, the recorded data is sorted and
binned to CDP gathers, the seismic traces are depending on inline number (il), crossline
number (cl), azimuth (α, offset h) and time (t).

works (Kreimer and Sacchi, 2012; Kreimer et al., 2013; Gao et al., 2015) and our Geophysics paper

(Gao and Sacchi, 2017).

2.2.1 5D reconstruction

Figure 2.3a shows an schematic diagram of the acquisition geometry of the field 3D seismic data. The

red star denotes source location S(x, y) and blue triangle is receiver location R(x, y), each of them

depends on two spatial variables (x, y), plus the dependency on time t, that is the definition of 5D

seismic data. Seismic data is usually sorted and binned into CMP/CDP gathers for NMO-corrections.

The processed seismic data now depend on the inline (il) and crossline number (cl) of the CDP

gather, azimuth (α), offset (h) and time (t), which are shown in Figure 2.3b. Moreover, the 5D data

is transformed to frequency domain and the seismic data is reformulated as a fourth-order tensor

for a particular frequency. In reality, 5D seismic data reconstruction is realized by fourth-order

low-rank tensor completion for each frequency. The cost function for tensor completion is given as

Φ = ||S ◦Z −D||2F + µ||G ×1 A(1) ×2 A(2) ×3 A(3) ×4 A(4) −D||2F , (2.1)

where S denotes sampling operator which depends on the acquisition geometry, Z is the estimated

low-rank tensor, D is one frequency of the observed data. The first term in the cost function is
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the data fitting term and the second term is the low-rank constraint, the low-rank tensor Z is

represented by Tucker model (Kolda and Bader, 2009), so G is called core tensor and A(i) are factor

matrix along each dimension. || ||F represents the Frobenious norm for tensors. It is worth noting

that the low-rank tensor completion algorithm is performed in overlap sliding windows.

2.2.2 Multi-component post-stack seismic data Registration

After the 5D reconstruction, the high-quality post-stack 3D cube can be obtained by stacking

the regularized pre-stack data. To estimate a proper initial guess for the pre-stack seismic data

registration, we first perform the registration method on the obtained post-stack data. The cost

function for the post-stack seismic data registration is

J =

∫∫∫
(dPP (t, x, y)− dPS(w(t, x, y), x, y))2 dt dx dy

+

∫∫∫
µt

(
∂2w(t, x, y)

∂t2

)2

+ µx

(
∂2w(t, x, y)

∂x2

)2

+ µy

(
∂2w(t, x, y)

∂y2

)2

dt dx dy.

(2.2)

Where dPP (t, x, y) is the scaled 3D post-stack PP-wave data, which depends PP-wave time t, inline

number x and crossline number y, dPS is the PS-wave data, w(t, x, y) is the warping function. The

first term of the cost function indicates that the registration process is performed via matching

the warped PS-wave to PP-wave data. The smoothness of the warping function is guaranteed by

damping the second order derivative of the warping function along each direction. To make the

warping function monotonic increasing and reduce the number of unknowns, we further proposed to

take advantage of the relationship between the warping function and the Vp/Vs ratio and represent

Vp/Vs ratio by cubic splines. For more details about this re-parameterization, please refer to our

paper (Gao and Sacchi, 2017).

2.2.3 Multi-component pre-stack seismic data registration

The main purpose of the post-stack registration in this workflow is to obtain an proper initial guess

for the pre-stack registration algorithm. The last step is to perform pre-stack registration and the

cost function is given as

J =

∫∫∫ (
d′PP (t, x′, y′)− d′PS(w(t, x′, y′), x′, y′)

)2
dt dx′ dy′

+ µ

∫∫∫ (
w(t, x′, y′)− w0(t, x′, y′)

)2
dt dx′ dy′.

(2.3)
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Where d′PP and d′PS are the pre-stack PP-wave and PS-wave data, x′, y′ denote the azimuth and

the incident angle. The constraint is a simple l2 norm which guarantees the solutions will not move

too far away from the warping function we estimated from post-stack registration.

Note that the rigorous way for pre-stack multi-component seismic data registration is to apply the

last step on common azimuth, common incident angle PP, PS-wave traces. However, at the time

of preparing this report, we have no access to the velocity model, which is required for generating

common incident angle gathers. Therefore, the last step of the workflow were implemented on

common azimuth, common-offset gathers, we deemed it is enough to demonstrate the concepts.

2.3 Examples

We used an 3D3C data to test the proposed workflow. The testing data is acquired in central

Alberta, 2014. The acquisition geometry is shown in Figure 2.4a, where orange lines denote receiver

lines and blue lines are source lines. The fold-map of binned PP-wave and PS-wave seismic data are

shown in Figure 2.4c,d. The average number of the folds for PP-wave is about 65 and the folds for

PS-wave is increased to 85. Limited by the computation power, we only take a swath of the data

for testing the algorithm and the location of the data are indicated by the black boxes in the fold

maps.

Figure 2.5a,b shows one inline section of the stacked raw PP-wave and PS-wave data, respectively.

The recording length is 6.1 s with 1 ms sampling interval. We can see that the raw stacked data is

contaminated with strong amplitude noise, especially for PP-wave data from 0.5 s to 1.4 s. It is

hardly to see any coherent seismic events. As our main research is about PP-PS wave registration

and there is almost no signal after 4.5 s in PS-wave data, so we cut part of the data for registration,

the time range of the selected PP and PS-wave data is indicated by the red box in Figure 2.5a,b.

The 5D reconstruction method is performed in overlap sliding windows, The size of the window

is 128 time samples, azimuth interval is set as 45 degrees and the offset interval is 180 m when

organizing the seismic data into tensors and all the traces in one CDP gather are included. The size

of the window is 16 in both inline and crossline directions. For each frequency, the target rank is

set as (4, 8, 8, 8) for the PP-wave data. For the PS-wave data, same window size is implemented but

the target rank is set as (3, 5, 5, 5) considering the lower SNR of PS-wave data. Figure 2.6 shows the

results of the PP-wave reconstruction, the raw PP-wave data with missing traces is shown in Figure
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a) b)

c) d)

Figure 2.4: Washout-creek seismic data. (a) Acquisition geometry of the 3D seismic data
set, orange lines denote receiver lines and blue lines indicate source lines. (b) Location of
the seismic survey. (c) The fold-map for PP-wave data, (4) the fold-map for PS-wave data.
The black box indicates the area of the data used for testing the proposed algorithm.
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Figure 2.5: Post-stack inline sections and the recording length is 6.1 s. (a) Post-stack
PP-wave section. (b) Post-stack PS-wave section. The red boxes denote the time range of
the selected data used for testing.
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Figure 2.6: The result of 5D reconstruction for the PP-wave data. (a) Raw pre-stack
PP-wave data with missing traces. (b) The corresponding reconstructed PP-wave data.
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2.6a and the corresponding reconstruction result is shown in Figure 2.6b. After reconstruction, we

can see the coherency of PP-wave data are improved significantly.

Similarly, the reconstruction result for the PS-wave is shown in Figure 2.7a,b. Please pay attention

to reconstructed near-offset of PS-wave data. The weak reflection features are preserved by our

reconstruction algorithm.

Figure 2.8 shows the comparison between the stack sections of the raw PP-wave data and the

counterpart obtained after 5D reconstruction. The difference is apparent, not only the coherency are

improved, The signal in the time range from 0.4 s to 1.4s are shown up in the processed post-stack

cube.

Figure 2.9 shows the results for PS-wave data, the amplitude of the post-stack sections after

processing are more balanced than the raw stack one. After 5D reconstruction, the SNR of

the post-stack data are improved greatly and it is crucial for the convergence of the post-stack

registration algorithm. To examine the result of the post-stack registration, we will compare the

time slice, inline sections and crossline sections of the post-stack PP-wave and warped PS-wave

cube. Figure 2.10 shows the time slices of PP-wave data and warped PS-wave data at time about

1.9 s. The main pattern of the amplitude of PP-wave time slice is very similar to the one of the

warped PS-wave data.

Figure 2.11a,b shows the inline sections of post-stack PP-wave and warped PS-wave data, respectively.

All the main events in the PP-wave and the warped PS-wave data are aligned, we can that even the

minor events between 0.6 s and 1.0 s are matched as well if we compared closely.

FIgure 2.12a,b shows the crossline sections of the post-stack PP-wave and the warped PS-wave

data, respectively. After post-stack registration and carefully examining the registration result, the

obtained warping function is qualified as the initial guess for the pre-stack registration. This step is

firstly performed on the processed pre-stack seismic as it is easier to quality-control the registration

result, which is shown in Figure 2.13 and 2.14. In Figure 2.13, The first four azimuth sections is

displayed and remaining azimuth is shown in Figure 2.14. In each panel, the left half shows the

reconstructed pre-stack PP-wave data and right half shows the warped PS-wave data. The main

events are aligned by registration.

Finally, the estimated warping function is also applied to raw pre-stack seismic data and the result

is shown in Figure 2.15. We did not run the registration algorithm on the raw seismic data, the

registration process is realized by using the warping function obtained from the reconstructed data.

This is because we have not figured out a good way to evaluate the registration result of the noisy

raw seismic data.
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Figure 2.7: The result of 5D reconstruction for the PS-wave data. (a) the raw pre-stack
PS-wave data with missing traces. (b) The corresponding reconstructed PS-wave data.
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Figure 2.8: Post-stack PP-wave data. (a)The stacking of raw PP-wave data. (b) The
stacking of PP-wave data after 5D reconstruction.
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Figure 2.9: Post-stack PS-wave data. (a) Stacking of raw PS-wave data. (b) Stacking of
PS-wave data after 5D reconstruction.
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Figure 2.10: The results of 3D post-stack multi-component seismic data registration. (a)
The time slice of post-stack PP-wave data at tiem of 2.2 s. (b) The corresponding time slice
of the warped PS-wave data.
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Figure 2.11: The results of 3D post-stack multi-component seismic data registration. (a)
The inline sections of post-stack PP-wave data , (b) the corresponding inline section of the
warped PS-wave data.
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Figure 2.12: The results of 3D post-stack multi-component seismic data registration. (a)
cross-line section of post-stack PP-wave data with in-line number 128 (b) The corresponding
cross-line section of the warped PS-wave data.
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Figure 2.13: The result of the pre-stack registration. In each panel, the left half shows the
regularized pre-stack PP-wave data and right half shows the warped pre-stack PS-wave data.
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Figure 2.14: The result of pre-stack registration implemented on regularized seismic data. In
each panel, the left half shows the regularized pre-stack PP-wave data and right half shows
the warped pre-stack PS-wave data.
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Figure 2.15: The results of pre-stack registration implemented on raw pre-stack seismic data.
In each panel, the left half shows the raw pre-stack PP-wave data and right half shows the
warped pre-stack PS-wave data.
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2.4 Conclusion

We have presented a new workflow for multicomponent pre-stack seismic data registration. This

workflow mainly consists of three steps: 5D reconstruction is implemented separately to PP-wave and

PS-wave data to regularize the pre-stack seismic data and improve the SNR, then the registration

algorithm is performed on the post-stack data to obtain a proper initial estimation of the warping

function. Finally, a constrained registration is applied to the reconstructed pre-stack seismic data.

The proposed algorithm was tested on a field 3D−3C data sets and the effectiveness of the workflow

is demonstrated.
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Robust 5D tensor completion via randomized QR de-

composition

F. Carozzi1 and M.D. Sacchi

Abstract

5D seismic reconstruction entails the denoising and recovery of missing elements of a

multilinear array. Much effort has been done in the past few years in developing these

techniques for pre-stack data because they enhance the input image to other techniques

as FWI, migration and AVO analysis. We propose a new SVD-free tensor completion

method that expands the suite of 5D tensor completion techniques. The technique solves

an optimization problem constrained by a low-rank approximation to the different tensor

unfoldings. Such approximation is calculated via randomized QR decomposition. We

explain the method and analyze results on synthetic and real seismic data including

non-gaussian noise.

3.1 INTRODUCTION

Tensors have been studied since the nineteenth century but it was not until the beginning of the

twentieth century that their benefits were acknowledged (Cichocki et al., 2015). This change in

paradigm can be attributed to the development of tensor decomposition techniques within different

fields of research.
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In the past few years, diverse areas have found applications to these techniques, such as social

sciences, telecommunications, biomedical engineering, data mining, food industry, computer vision,

neuroscience, and machine learning, among others. In particular, signal processing has undergone

major developments by adopting multi-linear algebra models (Sidiropoulos et al., 2017). In the field

of seismic data processing, simultaneous denoising, and reconstruction of seismic data there has

been notable progress in the application of tensor completion techniques.

Regularization of seismic data, that is denoising and reconstruction, can be beneficial for full waveform

inversion, migration, AVO and AVAz analysis, multiple suppression, and shear wave splitting analysis.

In addition, reconstruction can attenuate artifacts that arise from improper wavefield sampling. The

core concept related to seismic data reconstruction using tensor decomposition techniques is that

properly sampled, noise free, multidimensional data, can be algebraically represented by a low-rank

tensor (Kreimer et al., 2013; Gao et al., 2013). Therefore, missing data and noise increase the rank

of the multidimensional array. Therefore, it is possible to regularize real pre-stack seismic data by

iteratively finding low-rank data structures that honor the original observations. A similar principle

applies to methods based on Hankelization of the observed seismic data in the frequency-space

domain (Trickett et al., 2010; Oropeza and Sacchi, 2011).

Recently, many authors have contributed to the development of denoising seismic data methods

through tensor rank reduction techniques. In particular, Kreimer and Sacchi (2012) presented a

HOSVD method that operates in the frequency-space domain. Also, Kreimer et al. (2013) introduced

nuclear norm minimization to reconstruct prestack 5D seismic data. In addition, Gao et al. (2015)

adopted the Parallel Matrix Factorization (PMF) algorithm (Xu et al., 2015), which performs

low-rank matrix factorization to all the matrices in which one can unfold the tensor. Moreover, Ely

et al. (2015) showed the results of applying tensor Singular Value Decomposition (tSVD) (Kilmer

and Martin, 2011; Martin et al., 2013) on seismic data. Finally, it is worth mentioning that on the

field of matrix rank reduction, López et al. (2016) incorporated a regularization operator into the

nuclear norm minimization problem which allows off-the-grid data reconstruction.

In this article, the regularization method for pre-stack seismic volumes is posed as a convex

optimization problem, where the low-rank approximation is a constraint to the objective function.

The completion problem aims to find the fully sampled, noise-free tensor that best fits the data for

each temporal frequency slice. To achieve this goal, the proposed algorithm iteratively estimates

a low-rank tensor that simultaneously attenuates incoherent noise and reconstructs the original

data. More importantly, the low-rank approximation is based on randomization techniques, where

the size of the problem is severely decreased by randomly projecting the data into a subspace that
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properly preserves variability. For this technique, the determination of the rank of the tensor is no

longer an input parameter. This characteristic of the method alleviates a fundamental constraint of

SVD-based techniques where precise rank of the unkown data structure needs to be known.

In addition, field data contains many signals not related to the data of interest. Cultural noise,

recording and parity errors, uncorrected polarity reversals, isolated noise bursts, misfired shots,

scattered shot noise, poor surface conditions, disabled or poorly coupled geophones, to mention some

of the most relevant (Trickett et al., 2012). To model these events, erratic noise with non-Gaussian

distribution should be explicitly considered in the cost function, (Sternfels et al., 2015). Thus, we

propose to model the data using robust objective functions.

The paper is organized as follows. First, we establish the basics of multilinear algebra and the

notation that will be used throughout the article. Then, we describe the problem setup and present

the cost function to be minimized to solve the problem. Afterward, we present the method used to

achieve the low-rank approximation of the tensor and optimization of the cost function. Following,

we examine different robust penalty functions and solutions that properly handle erratic noise. Next,

we study the behavior of the algorithm with synthetic examples, as well as with field data. In order

to work with these examples, preprocessing, binning and patching of the data is necessary. Finally,

we present conclusions extracted from this work.

3.2 THEORY

Multilinear Algebra

A tensor is a multidimensional array (Kolda and Bader, 2009). Even though tensors can be

interpreted as high order generalizations of vectors and matrices, multilinear algebra presents

characteristics that span richer applications. As a consequence, tensor algebra has become a

developing field of mathematics since the early 20th century (Cichocki et al., 2015).

Tensor decomposition and models, that is decompositions applied to data arrays that can favor the

interpretation of their properties, have seen a major research development since their introduction.

In particular, Tucker (1964) and Carroll and Chang (1970), established the Tucker decomposition

and Canonical Polyadic Decomposition (CPD) in psychometrics, while Harshman (1970) introduced

the concept into linguistics.
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Prestack seismic data can naturally be embedded into a 5D structure or tensor. The signal component

from the input data presents low rank while the missing data and noise increase the rank of the

structure. By performing tensor decomposition to the non low-rank observed data, the complete,

noise-free volume can be reconstructed.

Notation and definitions

Tensors are indicated in this paper by calligraphic fonts (X ). The number of dimensions of the

array is named order, ways or modes. Special cases are tensors of order two or matrices, which are

symbolized with boldface capital letters (X). Finally, vectors (order one tensors) are denoted by

boldface lowercase letters (x). Scalars are written with lowercase italic letters (x)

The elements of an array are denoted by subscripts. The ith element of a vector is xi, the (i, j) of a

matrix is xij and the (i, j, k) element of a third order tensor is xijk.

Unfolding, matricization or flattening refer to the action of reordering the elements of a higher

order tensor into a matrix. The mode-k matricization of a Nth order tensor arranges its fibers

(higher-order analog of matrix rows and columns) into the columns of a Ik× (I1I2 . . . Ik−1Ik+1 . . . IN )

matrix (Kolda and Bader, 2009). This process is symbolized by X(n). A fourth order tensor can be

unfolded in four different matrices. Similarly, matrices can be folded into tensors. See Figure 3.1 for

a graphical explanation of this concept.

The Tensor Frobenius norm is defined as the square root of the sum of the squares of all its elements

(Kolda and Bader, 2009). This is analogue to the matrix Frobenius norm and can be mathematically

expressed as

‖X ‖F =

√√√√
I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

|x|2i1i2...iN , (3.1)

where i1, . . . , I1 indicate the range of the indices.

Finally, the concept of Tensor rank is essential to this work. The polyadic decomposition of the nth

order tensor X ∈ RI1x...xIN is any representation having the form

X =

R∑

r=1

λrb
(1)
r ◦ . . . ◦ b

(N)
r , (3.2)
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Figure 3.1: Tensor unfoldings.

where λr is a normalizing scalar, b(n) represents a vector ∈ RIn and ◦ is the standard outer product

of vectors. The rank of the tensor is given by the smallest integer R such that the decomposition

exists. In this way, the tensor rank concept is related to the minimal representation of a tensor.

It can be concluded from equation 3.2, that the most outstanding difference between linear and

multilinear algebra is the definition of rank and the properties related to it. In particular, for a

general tensor, the rank depends on the field it is defined, and it can exceed the smallest dimension

of the multilinear array.

3.2.1 Cost function and problem setup

Given the nature of the seismic acquisition method, data usually presents missing traces and noise.

In contrast, ideal data is regularly gridded, properly sampled and noise free. Such data can be

embedded into a low-rank block Hankel matrix (Trickett et al., 2010; Oropeza and Sacchi, 2011) or

into a low-rank tensor (Kreimer et al., 2013; Gao et al., 2013). In contrast, field data is represented

by a high-rank structure. Thus, pre-stack seismic data can be regularized by iteratively finding

low-rank data structures that honor the original observations.
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Seismic data is acquired in the source-receiver domain. That is, it can be represented as a function

of source and receivers coordinates, sx, sy, rx, ry. In addition, data has a fifth dimension given by

time or frequency. Likewise, spatial coordinates can be represented in the midpoint and offset

coordinate system. We denote seismic data in the midpoint-offset, frequency-space domain by

Dobs (ω, x, y, hx, hy), where x, y are the spatial coordinates of the inline and crossline midpoint,

and hx, hy are coordinates of the inline offset and crossline offset, respectively. Additionally,

Z (ω, x, y, hx, hy) represents the ideal, low rank, seismic field. Temporal frequency axis do not need

reconstruction or interpolation, then reconstruction of pre-stack seismic data in the f − x domain

bears a 4D problem. Therefore, for one particular frequency, the elements of a seismic volume can be

represented by Dobs
xi,yi,hix,h

i
y
, where xi, yi, hix, h

i
y are bins indices for the respective spatial coordinates.

The reconstruction has to be performed iteratively for each temporal frequency slice.

Omitting the coordinates dependency for clarity, the model for data reconstruction can be expressed

mathematically as

P ◦Z ≈ Dobs , (3.3)

where P is a sampling operator and ◦ is the Hadamard’s or elementwise product. Dobs, P and Z

are 4th order tensors. The problem is mathematically represented as a linear system of equations

where the aim is to estimate Z , the complete data volume. As the reconstruction is performed in

the f − x domain, Z and D ∈ C4

To solve for Z , we minimize the Tensor Frobenius norm (Equation 3.1) of the error

ΦM =
1

2
‖P ◦Z −Dobs‖2F . (3.4)

Equation 3.4 is an inverse ill-posed problem as there exist an infinite number of solutions that might

equally fit the data. To find a physical solution, we add a regularization term or constraint to the

objective function. For the reconstruction problem, the regularization term considers a low-rank

approximation to the unfoldings of the ideal tensor

ΦC =
1

2

K∑

k=1

‖Ẑ(k) − Z(k)‖2F . (3.5)

Therefore, we express the cost function that allows the calculation of the regularized volume as

Φ(Z ) = ΦM + µΦC

=
1

2
‖P ◦Z −Dobs‖2F +

µ

2

K∑

k=1

‖Ẑ(k) − Z(k)‖2F ,
(3.6)



44

where µ is a regularization parameter.

Hence, tensor completion is a multidimensional optimization problem where an objective function

conformed by the misfit between observed data and reconstructed volume, and a measure of the

rank of the tensor is minimized. The solution to such problem is the approximated full tensor, free

of incoherent noise, that best fits the observed data.

3.2.2 Low rank approximation

Various techniques have been developed for seismic reconstruction via low-rank approximation

in the last decades. In particular, Gao et al. (2015) have addressed this problem by proposing

a tensor completion method for 5D seismic data that adopts the Parallel Matrix Factorization

(PMF) algorithm (Xu et al., 2015). The technique reconstructs the seismic volume by optimizing

a cost function that combines a low-rank constraint and a data misfit term via the alternating

least-squares (ALS) algorithm (Gabay and Mercier, 1976; Wen et al., 2012; Xu et al., 2015). The

low-rank constraint is obtained through matrix factorization to all the matrices in which one can

unfold the 5D seismic volume.

Most of the rank-reduction based techniques for reconstruction of seismic data consider the need to

define the exact rank of the ideal array as an input parameter. This is a practical overburden for

these methods. In this paper, we overcome this constraint by proposing the use of randomized QR

decomposition (rQR) (Cheng and Sacchi, 2015; Halko et al., 2011), which does not require the rank

information.

Randomization techniques decrease the size of the problem by randomly sampling the data to a

subspace that captures most of the information provided. That is, drawing a set of n random vectors

{xi, i = 1, . . . , n}, and multiplying them by the kth unfolding of the tensor Z
(
Z(k), k = 1, . . . ,K

)
,

we obtain a set of vectors {yi, i = 1, . . . , n}. As the first set is random, it is likely that they form a

linearly independent set. As a result, the second set will also be linearly independent. Then, they

span the image subspace of the matrix. Halko et al. (2011) present a review of the algebraic theory

behind randomizing techniques.

To calculate the low rank approximation of the matrix Z(k) ∈ Cm×n, we begin projecting it to

M ∈ Cm×p

M = Z(k)Ω , (3.7)
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where Ω ∈ Cn×p. Ω is composed of a set of random and normalized column vectors [v1, . . . ,vp], such

that p < n. Each unfolding of the tensor can have a different p-value according to the complexity of

the subsurface structure. We refer to this set of K p-values as pK .

Following, we compute the orthonormal basis Q ∈ Cm×p with the economy-size QR decomposition

[Q,R] = M , (3.8)

where R ∈ Cp×p.

Finally, we calculate the approximation of Z(k) as

Ẑ(k) = QQHZ(k) , (3.9)

where the superindex H indicates the conjugate transpose or Hermitian transpose of the matrix.

Since the ideal data is low-rank, the projection spans the reconstructed seismic volume.

To conclude, the main input parameter needed to solve the rank-reduction approximation via

randomized QR decomposition is the number of random vectors pk needed for each unfolding of the

data tensor. As stated before, the rank of the method does not require the definition of the rank of

the ideal data as an input parameter. This is an important advantage from a practical point of view

for this technique in comparison with standard low-rank approximation techniques.

3.2.3 Robust penalty functions

Geophysical field data is usually plagued with noise. Seismic data are not the exception to this. In

order to solve for the sought model, Equation 3.4 considers a quadratic norm whose penalty and

influence functions are plotted on Figure 3.2 (a) and (b). From both graphs, it can be seen that

the greater the error, the bigger is the weight assigned to such value. This means that outliers,

which present large errors by definition, contribute more to the model. In this sense, in presence of

non-Gaussian or erratic noise, the quadratic norm can yield inaccurate and unstable estimates of

the solution.

This issue has been addressed in the past by pre-processing the data with an outlier rejection

method, or by applying damping least-squares inversion. These methods have not found many

applications as they do not achieve high-quality robust solutions.
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In contrast, the objective function can be designed considering smooth, robust solutions. This is

achieved through distributions with longer tails than those presented by a Gaussian distribution. In

this way, large errors are part of the model yielding a solution that is not heavily affected by them.

This characteristic can also be analyzed from Figure 3.2, where penalty functions for non-quadratic

norms assign smaller weights to larger errors. In addition, influence functions tend to zero when

errors grow to bigger absolute values.

Finally, we propose analyzing a new objective function given by

Φ(Z ) = φ (E ) +
µ

2

K∑

k=1

‖Ẑ(k) − Zk‖2F , (3.10)

where the data misfit is measured by a robust penalty function, φ (E ), and E = P ◦ Z − D .

Expressions for the φ (E ) can be found on Table 3.1. K refers to the order of the tensor which is

equal to 4 in our problem. µ is a regularization parameter, σ is a tunning parameter for the penalty

function, and E is the error, previously defined.

Minimizing the cost function

The cost function obtained in the previous section is non-linear and can be minimized using the

alternating- least squares algorithm. ALS consists in calculating the best reduced rank approximation

to the tensor in each iteration and a subsequent update of the reconstructed data.

In this way, we obtain the approximation to Z as

Z i+1 = (I −A ◦P) ◦ C + A ◦Dobs , (3.11)

where

C =
1

K

K∑

k=1

foldk

(
Ẑ(k)

)
.

Tensor I is a Kth order tensor with all coefficients equal to one. In our problem, K = 4 .

Equation 3.11 is a weighted combination of the mean of the rank-reduced foldings of the tensor

approximated in the previous iteration, and the observed seismic data. The initialization value for

Z is Dobs. Tensor A depends on the penalty function used in the model. Table 3.2 shows the

expressions for A for different robust penalty functions.
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M-estimator Penalty function Influence function

Frobenius 1
2 |x|22 x

σ

l1/l2
2
σ

√
σ2 + |x|2 1

σ

(
x√

σ2+|x|2

)

Cauchy 1
σ ln

(
1 + |x|2

σ2

)
1
σ

(
x

σ2+|x|2

)

GermanMcClure 1
σ3

|x|2
σ2+|x|2

1
σ

(
x

(σ2+|x|2)2

)

Table 3.1: Frequently used M-estimators for robust estimation. Mathematical symbols are
explained in the text.
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Figure 3.2: Penalty (a) and influence (b) functions of the M-estimators presented in Table
3.1.
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M-estimator Weight tensor

Frobenius 1
1+Kµ

l1/l2
1

1+Kµ
√
σ2+|E |2

Cauchy 1
1+Kµ(σ2+|E |2)

GermanMcClure 1
1+Kµ(σ2+|E |2)2

Table 3.2: Weight tensor expressions (Equation 3.11). Mathematical symbols are explained
in the text.

In addition, the final expression for reconstruction is analog to the Cadzow-based denoising and

reconstruction algorithm used by Oropeza and Sacchi (2011), where the rank reduction is applied to

Hankel matrices constructed from the seismic data. Also, the POCS reconstruction method (Abma

and Kabir, 2006) presents a similar expression, but in this case reconstruction is achieved through

frequency-wavenumber thresholding. Finally, PMF (Gao et al., 2013) presents a similar expression.

3.2.4 Final Tensor Completion algorithm

The numerical solution of the objective function in equation 3.10 reduces to Algorithm 3.1.

Algorithm 3.1 Low-Rank tensor completion via rQR decomposition.

1: Dobs, µ,P, pK , Niter, rel, tol
2: for i = 1 : Niter do
3: Projection operator via rQR:
4: for k = 1 : K do
5: Zik ← unfoldk

(
Z i
)

6: M← ZikΩ
7: Q,R← qr[M]
8: Ẑik ← QQHZik
9: end for

10: C ← 1
K

∑K
k=1 foldkẐ

i
k

11: Z i+1 ← (I −A ◦P) ◦ C + A ◦D
12: end for

We remind the reader that the expression of the tensor A depends on the penalty function used to

measure the error in the model.
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3.3 EXAMPLES

3.3.1 Synthetic data

Noiseless examples

We begin by exploring a simple 5D model with four dipping planes to assess the behavior of the

proposed algorithm. The objective of this simple experiment is to assess the behaviour of the

proposed method. As a consequence, we only use Frobenius norm for the error functional in our

cost function.

The synthetic volume corresponds to a spatial tensor of size 12×12×12×12, and 1000 time samples

with a time sampling rate of 2 ms. The intersection of the planes with the vertical axis occurs at

0.5 s, 0.7 s, 1.0 s and 1.43 s.

To quantitatively compare the results among tests run with different parameters, we define a quality

reconstruction parameter, QR, in dB units as

QR [dB] = 10 log
‖D true‖2F

‖Z −D true‖2F
,

where D true is the complete, noise free data and Z is the final reconstructed volume. If QR = 2 dB,

‖D true‖2F is 1.6 times bigger than ‖Z −D true‖2F ; while if QR = 10 dB, then the numerator is 10

times bigger than the denominator. Overall, we consider any result with a QR larger than 10 dB as

an acceptable reconstruction.

In addition, we set an error less than 0.004 at each frequency for the convergence of the algorithm or

a maximum number of 20 iterations. The band of frequencies used for reconstruction is 1 to 70 Hz.

Figure 3.3 shows the results for the reconstruction of noise-free data, 40% of which is decimated.

The Frobenius penalty function is used with reconstruction parameters µ = 0.001 and p = 4 for all

unfoldings. Results show an effective performance of the method. In addition, the quality factor for

this experiment is Q = 26.5 dB. Therefore, we can conclude that the low rank approximation via

randomized techniques in the PMF method conveys appropiate results.
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Figure 3.3: Reconstruction of noise-free linear events. (a) Original data. (b) Decimated
data with 40% missing traces. (c) Reconstructed data. (d) Error. Each subplot shows
four common midpoint gathers, each of which is enumerated with the corresponding inline
number.

In their work, Stanton et al. (2012) and Gao et al. (2015) discuss that curved events preserve their

low-rank property in a similar trend to linear events. In this sense, low-rank approximation methods

could be used with the objective of denoising and reconstructing seismic volumes. With the aim of

testing our method in such scenario, we propose the analysis of synthetic curved events. Considering

this, we perform an experiment with the same parameters as those in Figure 3.3. Results are shown

in Figure 3.4. From this figure, we can also conclude that PMF with randomized QR decomposition

yields proper reconstruction results no only in windows were linear approximations can be considered

but also in scenarios presenting curved events.
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Figure 3.4: Reconstruction of noise-free hyperbolic events. (a) Original data. (b) Decimated
data with 40% missing traces. (c) Reconstructed data. (d) Error.

Synthetic data contaminated with noise

Having tested the proposed method in noise-free synthetic volumes, we continue testing the recon-

struction quality of the method for noisy traces. One of the main contributions of this paper is

the evaluation of traces presenting non-Gaussian noise distribution. Thus, we design two different

experiments presenting this kind of noise, as background noise or as outlier traces.

We begin by considering non-Gaussian background noise. Following the structure of the previous

section, we design a synthetic seismic volume with the same parameters as those considered for the
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noise-less linear experiment. In addition, 40 % of the data is decimated. Following, a Gaussian

mixture with SNR = 1.5, where SNR =
‖signal‖2F
‖noise‖2F

is generated. The proposed gaussian mixture

considers two random series each of which presents gaussian distribution with different variance. In

addition, these series are blended in accordance to a pre-defined mixing parameter. In this sense,

we design simple background noise that follows a non-Gaussian distribution, and we added it to the

synthetic seismic volume.

As non-Gaussian noise is being considered, we perform the reconstruction under the Frobenius

penalty function and different robust penalty functions, all of which are listed in Table 3.1. As

expected, all robust calculations present analog results, then only those obtained using l1l2 penalty

function are shown in the following figures. The selected parameters for these experiments are µ = 5,

p = 6 for all the unfoldings and a maximum of 100 iterations per calculated frequency. For robust

penalty functions, there is an extra parameter, σ that has to be pre-defined. In this experiment and

the following, σ = 0.0001 ∗ ‖Dobs(ω)‖F for each considered frequency, ω. At the end of the present

section we present a brief discussion on the selection of this parameter.

Results are shown on Figure 3.5 and Figure 3.5 continuation. In subplot (a), four common midpoint

gathers of the ideal volume presenting four dipping events is portrayed. Subplot (b) presents the

same gathers after decimation and addition of noise. From this subplot it can be observed that the

added noise represents an important percentage of the total energy of the traces. Following, (c)

and (d) show the reconstruction perform with the proposed method, considering Frobenius and l1l2

penalty functions, respectively. Next, subplots (e) and (f) are presented. These subplots reveal

the error of the reconstruction with respect to the initial ideal volume. Detailed analysis of these

images shows that Frobenius norm is not able to completely reconstruct the events embedded in the

noisy traces. As previously showed in Figure 3.2, this effect is expected from this norm as it penalty

function assigns bigger weights to greater errors. For a better visualization of this effect, subplot

(g) is included, showing the difference between the errors calculated in subplot (e) and (f). In this

visualization, the removal of part of the signal using Frobenius penalty function, with respect to l1l2

penalty function is more noticeable. From these results, it can be concluded that robust penalty

functions outperform the standard Frobenius one for non-Gaussian noise distributions.
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Figure 3.5: Reconstruction of linear events with non-Gaussian noise. (a) Original data. (b)
Decimated data with 40% missing traces. Reconstructed data considering Frobenius (c) and
l1/l2 (d) penalty functions, respectively.



54

1  

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m
e(
s)
  

(e)

4  7  10  1  

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m
e(
s)
  

(f)

4  7  10  

1  

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m
e(
s)
  

(g)

4  7  10  

Figure 3.5 continuation. (e) and (f) error corresponding to the reconstructions in (c) and (d),
respectively. (g) Difference between (e) and (f).

A final test is considered to evaluate the method in the presence of corrupted or outlier traces. The

initial data is again modelled from 4 linear dipping events where non-gaussian noise is added to the

ideal traces with SNR = 0.5. In addition, 5 % of the traces have been replaced by sinusoidal time

series simulating incorrect measurements. Finally, 40 % of the data is decimated.

The reconstruction is performed considering µ = 1, p = 4 for all the unfoldings and a maximum of

100 iterations per calculated frequency. For robust penalty functions, σ = 0.0001 ∗ ‖Dobs(ω)‖F for

each considered frequency, ω.
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Results are shown in Figure 3.6. As in the previous examples, each subplot shows a common midpoint

gather of the analyzed synthetic volume, two of them consider a constant CMP-x coordinate and

varying CMP-y, while the other two consider constant CMP-y coordinate with moving CMP-

x coordinate. Subplot (a) shows the ideal synthetic volume. Subplot (b) illustrates the input

incomplete, noisy volume. This subplot shows the character of the outlier traces included in the

data. As in the previous example, from these images, it can be seen that the noise represents a high

percentage of the energy of each trace. Subplots (c) and (d) show the reconstructed result achieved

via Frobenius and l1/l2 penalty functions, respectively. From these subplots (c) and (d), it can be

concluded that the reconstruction with Frobenius penalty function is deficient in terms of denoising

corrupted traces. Analyzing the errors, presented in subplots (e) and (f), it can be analyzed that

once more, a robust penalty function is needed in those cases where non-Gaussian noise is present

in the seismic volume, in particular if such noise is originated from outlier traces. In this case, the

reconstructing algorithm is not able to denoise outlier traces when the standard Frobenius penalty

function is used. In constrast to the previous example, where the non-Gaussian noise is present as

a constant background component, it can be deduced that the Quality Reconstruction with both

penalty functions is lower when outlier or local problematic traces are present. In any case, given

that the time and computing resources needed to reconstruct the considered data are not affected by

choice of penalty function, it is concluded that always a robust penalty function should be preferred

over a Frobenius one, when non-Gaussian noise is present in the volume of interest.
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Figure 3.6: Reconstruction of linear events with non-Gaussian noise and corrupted traces. (a)
Original data. (b) Decimated data with 40% missing traces. Reconstructed data considering
Frobenius (c) and l1/l2 (d) penalty functions, respectively. (e) and (f) error.
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SNR Decimation
Frobenius l1/l2

µ QR [dB] µ σ QR [dB]

0.5 10 5 19.1 5 0.001 24.4
0.5 40 1 15.5 1 0.0001 20
0.5 90 0.2 13.6 0.08 0.0001 13.3
1 10 4 19.7 4 0.001 25.8
1 40 1 16.9 0.9 0.0001 20.8
1 90 0.005 14.5 0.005 0.0001 14.5
10 10 1.1 22.5 1.1 0.0001 29.3
10 40 1.1 16.9 1.1 0.0001 22.7
10 90 0.005 15.4 0.005 0.0001 15.5

Table 3.3: Parameter selection for optimal QR considering Frobenius and l1/l2 penalty
functions.

Discussion on parameter selection

Finally, the difficulty on how to practically determine σ for robust inversion has to be discussed. In

order to do so, we design an experiment with 4 linear events. The ideal volume is analog to the one

used in the previous experiments. The maximum number of iterations for each frequency is set to

100 and 4 random projection vectors were used in the rQR decomposition. The band frequency is

1 to 70 Hz. Non-Gaussian noise is added to the synthetic data using a Gaussian mixture. SNR

varies from 0.5 to 20. Using line search, we aim to find the parameters µ and σ that optimize

the final QR of the experiment. Table 3.3 shows QR for different SNR and decimation scenarios

when reconstruction is performed considering Frobenius or l1/l2 penalty functions. From the results,

it can be concluded that, even though σ has an impact on the final QR results, its variation is

minimal. Most importantly, from this Table as from Figure 3.5, it can be concluded that robust

penalty functions outperform Frobenius one.

3.3.2 Field data

Following, we test the algorithm on seismic data. The data was acquired to monitor a heavy oil

field in Alberta, Canada. Sources and receivers were distributed following an orthogonal survey.

Their locations are shown on Figure 7.3. The fold before binning is also shown in Figure 3.8. The

data is NMO corrected to avoid spectral wrapping in the frequency-wavenumber domain. Moreover,

a low-pass filter is applied to remove operation noise.
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Figure 3.7: Survey acquisition geometry. Sources follow East-to-West lines. Receivers form
North-to-South lines.

3D seismic data acquisition naturally yields to volumes that depend of 5 dimensions. The process

call Binning permits to save the data in a 5D structure (a tensor).

Binning implies assigning each trace of a 3D survey to an appropriate cell of a 5D volume grid defined

by the coordinates of the midpoint and offset and time of the corresponding trace (Vermeer, 2002).

Reconstruction methods perform poorly on highly decimated data. In this sense, the parameters

used to bin field data become of paramount relevance. Therefore, the main objective is to tailor a

5D grid that has a fewer number of redundancy traces per bin but, at the same time, presents most

of its bins filled with information.

Proper binning parameters for the considered data are 5× 5 m common midpoint (CMP) and 100 m

offset by 45 degree in azimuth. Such grid presents approximately 80% decimation of traces. The

binned area includes 274 CMPx bins and 27 CMPy bins. Binning is performed sequentially, that is,

the trace kept for any given bin is the last trace evaluated for the corresponding cell.

Following, we define overlapping windows or patches in space and time. This technique is used

to ensure stationarity of the wavefield. In addition, given the size of the considered volume, it

benefits the computational effort. Each window consists of 45 CMPx bins by 27 CMPy bins. This

configuration makes a total of 7 patches.

The reconstruction is performed on every patch with the same parameters. We consider a band

frequency ranging from 1 Hz to 100 Hz, a maximum number of 50 iterations per considered frequency,

µ = 1 and p = 5, 5, 18, 30 for each unfolding, respectively.
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Figure 3.8: Fold map before binning.

Finally, an ensemble of the patches is done to recover the full 5D reconstructed volume. Figures

3.10 to 3.12 show slices of such volume before and after reconstruction considering Frobenius and

robust norms.
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Figure 3.9: Offset vs. Azimuth distribution after binning.
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Figure 3.10: Reconstructed field seismic data for fixed CMPx. (a) Original data. (b)
Reconstructed data using Frobenius penalty function. (c) Reconstructed data using l1/l2
penalty function.
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Figure 3.11: Reconstructed field seismic data for fixed CMPy. (a) Original data. (b)
Reconstructed data using Frobenius penalty function. (c) Reconstructed data using l1/l2
penalty function.

It can be concluded that the reconstruction method improves overall SNR and provides continuity to

events without generating bogus data. In addition, in the presence of non-Gaussian or outlier noise,

the consideration of robust penalty functions for the evaluation of the model provides better and more

robust results. These characteristics facilitate qualitative and quantitative seismic interpretation

and improve seismic attribute extraction.

3.4 CONCLUSIONS

In this article, we study the regularization of prestack seismic data as an inverse problem. We

propose an objective function composed of a misfit term and a constraint that considers a low-rank
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Figure 3.12: Reconstructed field seismic data for fixed CMPy. (a) Original data. (b)
Reconstructed data using l1/l2 penalty function.
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approximation to the data tensor. The solution is obtained through optimization of the objective

function.

In order to achieve low-rank tensor completion, the method applies low-rank matrix factorization

to every mode unfolding of the data tensor via randomized QR decomposition. The advantage of

the proposed technique is twofold: first, we avoid the computational cost of the SVD, secondly and

most important, the method does not require the definition of the rank of the ideal data. This is an

important advantage from the application point of view.

Following, the presence of erratic or non-gaussian noise is acknowledged by modelling the misfit

term with robust penalty functions such as l1/l2, Cauchy or GermanMcClure, instead of the popular

Frobenius one. The results obtained on synthetic and land data show the performance of the

algorithm, even in the presence of curved events and low SNR.
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F-X Quaternion singular spectrum analysis

B. Bahia1

Abstract

The quaternion signal model can naturally represent multi-component seismic data.

In this paper, this model is employed to generalize the Singular Spectrum Analysis

(SSA) filter to the case of vector measurements. The necessary tools (quaternion Fourier

transform and quaternion singular value decomposition) for generalization of such

technique to the quaternion domain are reviewed. Quaternion vector autoregressive

models are used to justify the rank-reduction operation in the quaternion domain.

Simultaneous denoising and reconstruction of synthetic multicomponent seismic records

are illustrated and compared against the scalar version of the SSA filter.

4.1 Introduction

Multicomponent (MC) sensors have allowed the vector wavefield to be acquired by recording

vibrations in three orthogonal directions, acquiring, therefore, a three-dimensional (3D) signal. The

processing of such signals is said to be more intensive due to, for example, the volume of data to be

processed. In this light, different approaches for processing multidimensional signals can be taken.

For instance, processing can be carried out component-wise, where each component is processed per

time. Another option is to embed the vectorial signal into a long-vector, allowing for its simultaneous

processing. However, both approaches have drawbacks which have been gaining attention among

1Email: breno.bahia@ualberta.ca
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researchers lately. Namely, component-wise processing of vector data disregards possible relations

between its components whereas the long-vector notation accounts only for linear relations between

them, which could result in a loss of information (Le Bihan and Ginolhac, 2001; Le Bihan and

Mars, 2004). A more concise approach to handle vector data is to adopt a quaternionic model for

multidimensional signals (Le Bihan and Mars, 2004). The reasoning is that the quaternion domain

(H) offers a natural way of representing three- and four-dimensional signals, such as three- and

four-component (3C and 4C) seismic data, while accounting and preserving mutual relations between

components (Le Bihan and Mars, 2004; Took and Mandic, 2011; Stanton and Sacchi, 2013). The

usage of quaternions, therefore, has been increasing among the signal processing community, which

retools the field with new techniques based on quaternion algebra. Examples of known techniques

that have been extended to the quaternion domain are QR decomposition (Bunse-Gerstner et al.,

1989), Fourier transforms (Ell, 1992), and singular value decomposition (SVD) (Le Bihan and Mars,

2004). Such extensions allow the formulation of further signal processing techniques, as subspace

methods for signal decomposition, in the quaternion domain. For example, singular spectrum

analysis (SSA) has been applied to the multichannel analysis of electroencephalograms based on a

quaternion-valued approach (Enshaeifar et al., 2016). In the geophysical community, applications of

quaternion signal processing have already been presented; some examples regarding the processing of

MC seismic signals are time-lapse analysis and edge detection (Witten and Shragge, 2006), velocity

analysis (Grandi et al., 2007), deconvolution (Menanno and Mazzotti, 2012), reconstruction (Stanton

and Sacchi, 2013), and wavefield separation (Sajeva and Menanno, 2017).

The goal of this paper is to validate the quaternion-valued SSA (QSSA) (Enshaeifar et al., 2016) as

a tool for simultaneous denoising and reconstruction of multicomponent seismic data in a holistic

approach. SSA is usually regarded as a model-free (data-driven) method, and has, therefore,

applications in diverse areas of knowledge such as climatology (Ghil et al., 2002), seismic data

processing (Trickett, 2008; Oropeza and Sacchi, 2011), and medicine (Enshaeifar et al., 2016).

The method is mainly described as a subspace decomposition algorithm where the original signal

is represented as a sum of components such as trend, periodic components, and noise. Trend

and periodic components are often approximated by time series of small rank (Golyandina and

Zhigljavsky, 2013) whereas the noise subspace is usually ignored. SSA is often described in two

complementary stages: decomposition and reconstruction. The decomposition stage is based on the

SVD of what is known as trajectory matrix. SSA has already been successfully applied to denoising

and reconstruction of single component seismic data by Trickett (2008)2 and Oropeza and Sacchi

(2011), and recently extended to MC seismic data (Sacchi et al., 2017; Janzen et al., 2017). For the

2Cadzow filtering and SSA are equivalent algorithms arising from different fields.
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MC data case, however, the authors employed long-vector notation to represent their data samples

in frequency-space (f − x) domain. Here, the potential of the quaternion field for representation of

3D (or 4D) signals is exploited by adopting the quaternion signal model to represent 3C (or 4C)

data within the SSA context. Two versions of SSA were defined by Enshaeifar et al. (2016) in the

quaternion domain; one is based on the straightforward extension of its real counterpart by proper

replacement of real-valued techniques with their quaternionic equivalents, and the other exploits

augmented second-order statistics of quaternion random signals (Took and Mandic, 2011).

The underlying idea for the application of SSA in quaternion-valued MC data is the same as in

Oropeza and Sacchi (2011) and Sacchi et al. (2017), where denoising and reconstruction are applied

to the signal at monochromatic frequency slices, thus requiring the application of the Fourier

transform (FT) to the data. As already mentioned, FT has been extended to H by Ell (1992),

and has found applications in the processing of color images (Ell and Sangwine, 2007) and MC

seismic data reconstruction (Stanton and Sacchi, 2013). Likewise, SVD has also been extended to

H, paving the way for applications as wavefield separation (Le Bihan and Mars, 2004; Sajeva and

Menanno, 2017). Together with vector autoregressive models for quaternion variables (Ginzberg

and Walden, 2013), these techniques allow for the formulation of simultaneous MC seismic data

denoising and reconstruction based on rank-reduction methods, as it is going to be discussed. The

paper is then organized as follows: section 2 is devoted to a brief description of quaternion algebra,

quaternion model of vector signals, quaternion SVD (QSVD) and quaternion Fourier transform

(QFT). QSSA is discussed, with mention to its augmented version, and its applications to synthetic

data are illustrated in section 3, followed by conclusions in section 4.

4.2 Quaternions

Quaternions are an extension of complex numbers, being also regarded as one case of hypercomplex

numbers. Its inherent 4D structure provides an intuitive framework for the representation of three-

and four-dimensional signals, yielding a unified processing approach for vector data. In the following,

some basic definitions of quaternion algebra are reviewed. This will provide enough background

to allow the definition of quaternion signals and possible techniques for its processing. Thorough

descriptions of quaternions can be found elsewhere in the literature, as Ward (2012) and, focusing

on signal and image processing, Hitzer and Sangwine (2013) and Ell et al. (2014). The description

given here mainly follows Ell et al. (2014).
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Quaternion algebra

Definitions

A quaternion variable, q ∈ H, can be defined as a four-dimensional hypercomplex number with

cartesian form given by

q = a+ bi + cj + dk , (4.1)

where the tuple {a, b, c, d} ∈ R are its components. A quaternion can be decomposed as a scalar

(or real) part plus a vector (or imaginary) part, which consists of three imaginary components, as

follows

S(q) = a, (4.2)

V (q) = bi + cj + dk = q − S(q), (4.3)

and finally

q = S(q) + V (q). (4.4)

A quaternion is said to be pure if S(q) = 0, and the set of pure quaternions can be denoted as

V (H). Quaternions with null vector part are simply identified as elements of R. The imaginary

units (i , j , k) follow the rules3

i2 = j 2 = k2 = −1 (4.5)

and

ijk = −1, (4.6)

and also describe the three orthogonal axes of the vector part in q. Furthermore, together with the

unitary operator, the imaginary units form a 4D basis in H ({1, i, j, k})4. Finally, it is possible to

notice that the sets of real and complex numbers are special cases of quaternions, i.e., R ∈ C ∈ H.

3Other relations, such as ij = −ji = k , can be drawn from 4.6 by left or right multiplications by i or k , respectively.
4This is one specific 4D basis in H. Others are also possible.
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Following the rules given in 4.5 and 4.6, one can get to the conclusion that multiplication in H is, in

general, not commutative. Using the words of Ell and Sangwine (2007), that is the main difference

between quaternion and usual algebra. In fact, the operations of addition and multiplication of

quaternion variables are defined in analogy to its complex counterpart, always keeping in mind that

the ordering of operators is not arbitrary due to the field’s property of non-commutativity. This

property has important implications in the development of quaternion-based techniques, as the

example of the QFT. On the other hand, provided that the non-commutativity of quaternion algebra

is kept in mind, Ell and Sangwine (2007) describe the implementation of quaternion-based operations

and techniques as being straightforward. Actually, when manipulating quaternion variables, one

hopes that classical definitions for real or complex numbers to be trivial extensions to the quaternion

field. However, there are specific properties for the quaternion domain which do not arise in its

complex counterpart (see, e.g., Took and Mandic (2011)), and some extensions might not be that

straightforward.

Properties

Some properties of quaternions that are interesting for the scope of this paper are the conjugate of

a quaternion, which is given by

q∗ = a− bi − cj − dk , (4.7)

and its modulus

|q| =
√
qq∗ =

√
q∗q =

√
a2 + b2 + c2 + d2. (4.8)

If |q| = 1, q is a unitary quaternion.

Crucial for the development of the augmented QSSA is the concept of quaternion involutions

(self-inverse mappings) about the imaginary axes

qi = −iqi = a+ bi − cj − dk , (4.9)

qj = −j qj = a− bi + cj − dk , (4.10)
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and

qk = −kqk = a− bi − cj + dk . (4.11)

One can relate a quaternion and its involutions by

q∗ =
1

2
(qi + qj + qk − q), (4.12)

and express the four components of q as

a =
1

2
(q + q∗) b =

1

2i
(q − qi∗) (4.13)

c =
1

2j
(q − qj∗) d =

1

2k
(q − qk∗). (4.14)

Representations

There are different representations of quaternions which are particularly useful in the development

and study of hypercomplex techniques. Examples are polar and Cayley-Dickson (CD) forms of a

quaternion. The polar form of a quaternion is equivalent of the Euler formula, and is given by

q = |q|eµφ (4.15)

where its modulus (|q|) is given by 4.8, and the phase (φ ∈ R+) and eigenaxis (µ ∈ V (H)) are given

by

φ = tan−1 |V (q)|
S(q)

(4.16)

and

µ =
V (q)

|V (q)| , (4.17)

respectively. From 4.17, note that |µ| = 1, being called a pure unitary quaternion.

A quaternion can also be represented as a pair of complex numbers. This is known as Cayley-Dickson

form, and it splits the quaternion in two different (orthogonal) planes. In this representation, q is

written as

q = z1 + z2j , (4.18)
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where z1 = a+ bi and z2 = c+ di . Notice that {z1, z2} ∈ Ci , the set of complex numbers defined

with i2 = −1. Therefore, the CD form allows the interpretation of a quaternion in terms of complex

numbers. This representation can be generalized to what is called symplectic decomposition of

quaternions, where q is written in another basis {1, µ, ν, µν} ∈ H as q′

q′ = a′ + b′µ+ c′ν + d′µν, (4.19)

with decomposition given by

q′ = (a′ + b′µ) + (c′ + d′µ)ν. (4.20)

The complex units {µ, ν, µν} follow the same rules as in 4.5 and 4.6

µ2 = ν2 = (µν)2 = −1, (4.21)

and S(µν) = 0, which imples µ⊥ν, µν⊥µ and µν⊥ν (orthonormal basis in V (H)). The new set of

components {a′, b′, c′, d′} is obtained through the change of basis

a′ = a (4.22)


b′

c′

d′


 =




µ1 µ2 µ3

ν1 ν2 ν3

µν1 µν2 µν3






b

c

d


 . (4.23)

The quaternion given by 4.20 is decomposed into its simplex and perplex parts

q′ = qs + qpν, (4.24)

with qs = (a′ + b′µ) and qp = (c′ + d′µ). Again, notice that {qs, qp} ∈ Cµ. It is important to pay

attention to the fact that the simplex and perplex parts of a quaternion in its symplectic (and CD)

form are isomorphic to complex numbers since it allows quaternion signals to be used as complex

signals. This, in turn, facilitates the development of quaternion-based techniques (Ell and Sangwine,

2007).

Vectors and matrices of quaternions

The definitions above facilitates the description of vectors and matrices of quaternions. Vectors and

matrices of quaternions will be used in the representation of quaternion signals recorded by vector
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sensors. Again, while several classical definitions can be easily extended to the quaternion domain

as, for instance, scalar product, norm and the distance between two vectors, some operations for

real and complex arrays do not hold in the quaternion domain. The reader can refer to Le Bihan

and Mars (2004) to a signal-processing-oriented description of such operations, and to Zhang (1997)

for a more complete study of quaternion matrices.

Intuitively, a vector of quaternions x = [x1 x2 . . . xN ]T (x ∈ HN ) with N dimensions is such

that its elements are quaternions (xi ∈ H, i = [1, N ]). The scalar product between two quaternion

vectors x and y is defined as

〈x,y〉 = x/y, (4.25)

where the superscript / denotes the conjugate transpose of a quaternion vector. The norm of a

quaternion vector is then given by

‖x‖ =
√

x/x. (4.26)

Likewise, a matrix X ∈ HN×M also has quaternions as its elements X = [x1 x2 . . . xM ], with

xi ∈ HN , i = [1,M ].

Representations of quaternions can also be applied to vectors and matrices of quaternions. The

complex representation (CD form) of vectors and matrices of quaternions is rather useful for the

concepts of rank and SVD in this field.

The CD representation of a quaternion vector x ∈ HN is given by x = xs+xpj , where {xs,xp} ∈ CNi .

For a quaternion matrix X ∈ HN×M , the CD form is no different: X = Xs + Xpj , where

{Xs,Xp} ∈ CN×Mi . The complex representation is the most common way of studying quaternion

matrices. This is done with the definition of the complex adjoint matrix, χX ∈ C2N×2M , of a

quaternion matrix X, which is given by

χX =

(
Xs Xp

−X∗p X∗s

)
. (4.27)

It is through this notation of quaternion matrices that, for instance, complex decomposition

algorithms can be used to compute decomposition of quaternion matrices (Le Bihan and Mars,

2004).
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The definition of rank of a quaternion matrix is essential in the development of SSA in the quaternion

domain. Just as for real and complex matrices, the rank of a quaternion matrix X can be defined

as the maximum number of columns that are right linearly independent. It can also be understood

as the minimum number of rank-1 quaternion matrices that result in X by linear combination.

Other useful properties for the discussion of QSVD in the following sections are: the rank of a

quaternion matrix X is k if and only if the rank of its complex adjoint χX is 2k. Finally, the rank

of a quaternion matrix X is k if X has k non-zero singular values (Zhang, 1997).

Quaternion signals

As stated before, the objective of this paper is to avoid the usage of component-wise or long-

vector notation when processing vector signals. The approach adopted here follows Le Bihan

and Mars (2004) and Ell and Sangwine (2007), where the vector signals are defined by means

of quaternions, which allows for its simultaneous and concise processing. For the case of 2D-

3C seismic data, where an array of vector sensors records three orthogonal components, here

denoted by (Ux,Uy,Uz) ∈ Rnt×nx, at nt discrete time samples and nx discrete space positions, its

possible to encode the three corresponding signals into the components of a pure quaternion matrix

Q ∈ V (Hnt×nx) such as

Q[n, x] = Ux[n, x]i + Uy[n, x]j + Uz[n, x]k , (4.28)

with n = [1, nt] and x = [1, nx]. As it is possible to notice, Q represents the multicomponent

seismic data, and Ux, Uy, and Uz are the two horizontal and vertical components, respectively. Of

course, extension for 4C and data with higher dimensions is possible. As it is defined, Q requires

quaternion-based techniques for its processing, as for instance the QFT and QSVD which are

discussed next.

It is important to stress, though, that quaternions can be used to accommodate two pairs of complex

signals, as it follows from its symplectic decomposition, and process them simultaneously (Stanton

and Sacchi, 2013). In this case, two components in the frequency domain, say x and y, could be

represented by means of the Cayley-Dickson form of quaternions as

Q[ω, x] = Ũx[ω, x] + Ũy[ω, x]j , (4.29)

where {Ũx, Ũy} ∈ Cnt×nxi are obtained through the classical Fourier transform of the real components

Ux and Uy.
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4.3 Quaternion tools for signal processing

The definition of quaternion signals as a “new” way to handle multidimensional signals calls for

generalization of classical tools in signal processing, such as Fourier and Laplace transforms, to their

hypercomplex versions. In fact, although a recent growing number of applications of hypercomplex

numbers in signal processing are being documented, usage of quaternions in this field dates back to

the 80s, with applications to Fourier transforms in nuclear magnetic resonance imaging by Ernst

et al. (1987) and Delsuc (1988). In the following sections, the quaternionic extension of two signal

processing techniques vastly used in its real and complex versions are discussed: the Singular Value

Decomposition and the Fourier Transform. Furthermore, the open-source Quaternion toolbox for

MATLAB (Sangwine, 2005) makes computation with quaternion matrices convenient by offering

the implementation of such techniques and others more.

Quaternion Singular Value Decomposition

Quaternion singular value decomposition is a fundamental tool when treating vector signals. Zhang

(1997) provides the theoretical basis for the existence of the SVD for quaternion matrices but its

computation is given in two ways by Le Bihan and Mars (2004) and Sangwine and Le Bihan (2006).

QSVD can be computed through the complex representation of quaternion-valued matrices, but its

description is analogous to the real or complex case. The possibility of computing the QSVD allows

for the definition of quaternionic signal processing techniques as wave separation based on subspace

methods (Le Bihan and Mars, 2004) and QSSA (Enshaeifar et al., 2016).

A given quaternion matrix X ∈ HN×M of rank r has a SVD written as

X = U

(
Σr 0

0 0

)
V/ (4.30)

where Σr ∈ Rr×r contains the r singular values of X, arranged in decreasing magnitude order, on

its main diagonal. U ∈ HN×N and V ∈ HM×M are unitary quaternion matrices (so S(UU/) =

S(VV/) = I, and V (UU/) = V (VV/) = 0) which contain the left and right singular vectors of X,

respectively. Proof of existence of QSVD is given in Zhang (1997) or Loring (2012), and it is based

on the polar decomposition of quaternion matrices. QSVD is rank revealing, i.e., the number of
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non-null singular values equals the rank of the matrix. Hence, likewise real or complex cases, QSVD

can be written as a sum of r rank-1 quaternion matrices as

X =
r∑

n=1

Xn =
r∑

n=1

unv
/
nσn, (4.31)

where un (nth column of U) and vn (nth column of V) are the left and right singular vectors, and

σr represents the (real) singular values of X.

One way to compute the QSVD uses the isomorphism between quaternion matrices (HN×M ) and

their Cayley-Dickson representation (C2N×2M ) (Le Bihan and Mars, 2004), which allows the SVD

of a quaternion matrix X to be obtained from the SVD of its complex adjoint matrix χX (equation

4.27) using classical algorithms. The SVD of χX is given by

χX = UχX

(
Σ2r 0

0 0

)
(VχX )/ =

2r∑

n′=1

uχX

n′ vχX/
n′ σn′ , (4.32)

with left and right singular vectors given by uχX
n and vχX

n , respectively. The diagonal matrix Σ2r

has a special structure where its singular values (σn′) appear by pairs along its main diagonal

(Zhang, 1997), which are also the singular values of X5. Once computed the complex SVD of χX ,

obtaining the singular values and vectors of X is a matter of associating the correct indexes: the

nth singular elements of X (σn,un,vn) are associated with the n′ = (2n− 1)th singular elements of

χX . This happens because the matrix is redundant in the way it is built to preserve the quaternion

properties (Sangwine and Le Bihan, 2006).

It is also possible to obtain a rank-p (p < r) approximation of a given quaternion matrix, in a

least-squares sense, through its QSVD. As in real and complex cases, the best rank-p estimate

to a quaternion matrix can be obtained by truncating QSVD at its first p singular elements in

equation 4.31 (Le Bihan and Mars, 2004). It is, therefore, possible to use low-rank techniques in

quaternion-based signal processing provided that these approximations are justified.

Quaternion Fourier Transform

The importance of Fourier analysis in signal processing is incontestable. The extension of Fourier

transforms to the field of quaternions is, therefore, a natural step in the processing and analysis of

5As it can be noticed, χX has twice more singular values than X due to its construction and size (Le Bihan and
Mars, 2004).
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signals defined employing quaternions. A formal definition of hypercomplex spectral transformations

can be found in Ell (1992) but earlier applications of quaternions together with FTs had already

been documented, as aforementioned. Other applications of the QFT already found in the literature

include the definition of multidimensional analytic signals (Bulow and Sommer, 2001), processing of

color images (Ell and Sangwine, 2007), and vector reconstruction of MC seismic data (Stanton and

Sacchi, 2013). Good references on the topic are Hitzer and Sangwine (2013) and Ell et al. (2014).

Quaternion Fourier transforms have allowed the holistic treatment of vector-signals defined with

quaternion variables. The fact that quaternion multiplication is non-commutative has important

implications in the QFT definition. Specifically, due to non-commutativity, the positioning of the

exponential kernel in the transform definition is meaningful, and a variety of QFTs is possible.

Moreover, the fact that a generalized complex operator µ2 = −1 can be defined increases the number

of possible QFT definitions even further6. The 1D right-sided forward7 FT of a quaternion-valued

function f : R→ H is defined as (Ell et al., 2014)

FR
µ {f}(ω) = FR(ω) = κ−

∫ +∞

−∞
f(t)e−µωtdt, (4.33)

with inverse given by

F−Rµ {FR}(t) = f(t) = κ+

∫ +∞

−∞
F (ω)eµωtdω, (4.34)

where µ is an arbitrary pure unit quaternion (µ2 = −1), and κ+κ− = (2π)−1. This definition is said

to be the right-sided QFT because the exponential kernel is placed to the right of the function to

be transformed. In a similar fashion, therefore, one can define the left-sided QFT by plancing the

exponential kernel by the left side of f(t) or F (ω). For vector signals of higher dimensons, as color

images or 5D seismic data, the number of QFT definitions is even greater because non-commutativity

also implies that eia+jb 6= eiaejb, and each of these kernels can be placed on either side of the function

to be transformed. This gives rise to sandwiched, as well as factored and unfactored multi-axis

definitions of the QFT as shown in table 4.1 for the forward 2D case (Hitzer and Sangwine, 2013).

It is important to notice that, since the complex units (i, j, k) are special cases of quaternions, QTFs

actually offer a generalization of the Fourier transform definition where the complex FT is a special

case in which µ = i.

6To infinity (since there are infinite square roots of −1 in V(H)).
7The authors also define a reverse transform, where the sign of the exponent is positive. This transform is not the

same as the inverse transform.
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Table 4.1: 2D QFT definitions

Left Right Sandwich

Single-axis e−µ(ωx+ηy)f(x, y) f(x, y)e−µ(ωx+ηy) e−µωxf(x, y)e−µηy

Dual-axis e−(µωx+νηy)f(x, y) f(x, y)e−(µωx+νηy) NA
Factored e−µωxe−νηyf(x, y) f(x, y)e−µωxe−νηy e−µωxf(x, y)e−νηy

The importance of the isomorphism between complex numbers and complex subfields (defined in the

symplectic decomposition of quaternions) becomes more apparent when the question of what are

the criteria for quaternion functions to be Fourier-transformable arises. Existence and invertibility

are inherited, due to this isomorphism, from the complex case. Also, numerical implementation is

greatly facilitated with the use of already existing complex Fourier transforms, such as complex

FFTs (Ell et al., 2014). Regarding computational aspects of QFTs, it is first necessary to define the

discrete QFT (DQFT), as it is done for the 1D left-sided case8 (Ell et al., 2014)

F [ω] =
1√
N

nt−1∑

n=0

e−µ2π nω
N f [n], (4.35)

with inverse

f [n] =
1√
N

nt−1∑

ω=0

eµ2π nω
N F [ω]. (4.36)

Instead of writing a direct code for computation of DQFT, or even a FFT code for it, Ell and

Sangwine (2007) propose to take advantage of already existing FFT codes by using symplectic

decomposition of quaternions and isomorphisms with the complex case. First, notice that the DQFT

of a quaternion function f along a given eigenaxis µ requires the definition of a basis {1, µ, ν, µν}.
According to Ell and Sangwine (2007), the choice of µ and ν is arbitrary but these cannot be parallel

to each other. If ν is not perpendicular to µ, an uptaded value for ν can be found by taking the

cross-product between µ and µν. Having defined the 4D basis in H, the 1D DQFT is as follows (Ell

and Sangwine, 2007):

• Apply a change of basis from f to f ′ following 4.23;

8The superscripts are being dropped to avoid clutter. If necessary, distinction shall be evident from the context.
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• Decompose the function into its simplex and perplex parts following 4.24;

• Perform two 1D complex FFTs of fs and fp to obtain Fs[ω] and Fp[ω] ;

• Construct the full quaternion in frequency domain by F ′[ω] = Fs[ω] + Fp[ω]ν;

These steps can be generalized to a N-D QFT (Stanton and Sacchi, 2013).

The choice of the eigenaxis µ for the QFT deserves attention. Although earlier described as arbitrary,

the choice of the eigenaxis has its consequences, which seems to be more understood in the case of

color images (see, e.g., Ell and Sangwine (2007)). In a general sense, the choice of a different basis in

H defines a preferential association of components axes, which could be described as a certain mixing

between them (Stanton and Sacchi, 2013). The fact that there is no apparent preferential association

of the signals in 3-space with the eigenaxis (or the basis) allows the usage of any pure quaternion

µ in the QFT definition (Hitzer and Sangwine, 2013). In the case of RGB images, for instance,

defining the eigenaxis µ = 1√
3
(i, j, k), corresponds to define it as the gray-line9 in color-space. This

choice of µ is said to be obvious in color-image vector processing as the simplex and perplex parts

of the quaternion in the basis {1, µ, ν, µν} results in the luminance and chrominance information,

respectively, of the image. So far, no analogy could be found in the case of quaternion representation

of MC seismic data (Stanton and Sacchi, 2013). Also, note that this degree-of-freedom when defining

the QFT eigenaxis permits practitioners to define it according to their convenience. A trivial but

perhaps advantageous choice could be {1, µ, ν, µν} = {1, i, j, k}, where the coefficients are kept the

same after the change of basis (Stanton and Sacchi, 2013).

By knowing how to apply the QFT, it is now possible to describe the Fourier analysis of vector

signals defined with quaternion variables. Using the definition of quaternionic signal given by 4.28,

application of QFT yields another quaternion signal, which is usually a full quaternion (all four

components are non-zero), represented by the QFTed simplex and perplex parts of the quaternion as

Q̃[ω, x] = Q̃s[ω, x] + Q̃p[ω, x]j , (4.37)

with Q̃ ∈ Hnt×nx obtained through the QFT with respect to time. The frequency domain coefficients

in the hypercomplex spectrum have the same layout as the classical spectrum and are divided into

positive and negative frequencies, also including the DC and Nyquist terms, as usually defined (Ell

et al., 2014). Therefore, even though there are no conjugate symmetries for the QFT of a quaternion

signal as in the real case, a symmetry of the coefficients indexes exists, i.e., the same frequency

9Diagonal of the RGB color cube connecting the colors black (0, 0, 0) and white (1, 1, 1).
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component is represented by the indexes N and nt−N10. It is possible to illustrate the above by

encoding the 2D 3C seismic data shown in figure 4.1 into the components of the quaternion signal.

The seismic data was generated using a second-order elastic finite-differences simulation (Boyd,

2006) considering a medium consisting of three flat homogeneous layers where the middle one is an

HTI medium. The physical properties of the medium follow Stanton and Sacchi (2013).
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Figure 4.1: Elastic finite-difference synthetic data.

Analogously to its complex counterpart, a signal which has been QFTed is written in terms of

cosinusoidal basis functions (the hypercomplex exponentials) and hypercomplex amplitudes. Its

possible, therefore, to write the hypercomplex representation of the signal in terms of its amplitude

and phase, analogously to what is usually done in classical processing, and the additional concept

of orientation (the eigenaxis), as it follows from equation 4.15 (Ell and Sangwine, 2007). The

amplitude and FK spectra of the above seismic data are shown in figure 4.2. Both of these spectra

are computed by using the polar representation of quaternions, after applying the left-sided QFT

with eigenaxis µ = 1√
3
(1, 1, 1) to the data. Although the frequency content being shown in figure

10One should pay attention for numerical implementation using one-based indexing. DC and Nyquist coefficients
should be considered.
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4.2(a) seems to be the same on both sides of the spectrum, they actually differ in value since there

are no conjugate symmetries for quaternion signals (just as in the complex case) in the Fourier

domain. As an implication, operations carried out in monochromatic frequency slices, as classically

done in several filtering techniques (e.g., SSA, prediction, and projection filters), have to be applied

to both sides of the spectrum separately. On the other hand, the hypercomplex spectrum offers the

advantage of representing the amplitude of all of its elements in a single term given by its modulus

(equation 4.8) (Stanton and Sacchi, 2013).
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Figure 4.2: (a) Amplitude spectrum and (b) FK spectrum of the quaternion-based seismic
signal.

4.4 (Quaternion) Singular Spectrum Analysis

SSA is a data-driven subspace decomposition algorithm often used for analysis of 1D time series,

where the original signal is represented as the sum of components usually classified as belonging to

signal or noise subspaces. SSA can be described, regardless of the domain it is being applied (R, C
or H), in two stages: decomposition and reconstruction.

Considering the 2D 3C dataset in figure 4.1, represented as a quaternion signal, in frequency domain
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Q̃ ∈ Hnt×nx, it is possible to represent a monochromatic frequency q ∈ Hnx as

q =
(
q[1] q[2] . . . q[nx]

)T
. (4.38)

In the decomposition stage of SSA, it is first necessary to construct a Hankel matrix T ∈ HL×nx−L+1,

which columns are one-sample lagged versions of a length-L window of the signal q. In the SSA

literature, this matrix is named the trajectory matrix, and it is given by

T =




q[1] q[2] . . . q[K]

q[2] q[3] . . . q[K + 1]
...

...
. . .

...

q[L] q[L+ 1] . . . q[nx]



, (4.39)

where K = nx − L + 1. Following Oropeza and Sacchi (2011), the mapping of the data to the

trajectory matrix is going to be denoted by the operator PH such that

T = PH q. (4.40)

According to equation 4.31, T can be represented as a sum of rank-1 matrices using its QSVD

T =
r∑

n=1

Tn =
r∑

n=1

unv
/
nσn, (4.41)

where, again, r is its rank, un and vn are the n-th right and left singular vectors, respectively, and

σn its n-th singular value. The reconstruction stage starts with the truncation of the QSVD of T to

its largest p singular elements. As already discussed, this approximates T to Tp in a least-squares

sense. The rank-reduction (truncation) operation can be represented by the operator PR so one has

Tp =

p∑

n=1

Tn = PRT. (4.42)

Finally, the reconstructed time series is achieved from Tp by averaging the elements along its

antidiagonals, which is represented by the operator PA

q̂ = PA Tp. (4.43)
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Combining equations 4.40, 4.42 and 4.43, it is possible to write

q̂ = PA PRPH q = Pq, (4.44)

where P = PA PRPH represents the SSA filter (Oropeza and Sacchi, 2011).

Enshaeifar et al. (2016) argues that second-order statistical information from the signal can be

used to enhance the quaternion-valued SSA (QSSA) by incorporating information from the three

involutions (equations 4.9 to 4.11) in an augmented trajectory matrix. This is the difference between

AQSSA and QSSA. In AQSSA, the standard trajectory matrix T (equation 4.39) is augmented by

all three involutions to generate Ta ∈ H4L×K as

Ta = [TT TiT TjT TkT ]T . (4.45)

By doing so, one expects to capture complete second order information of the signal by exploiting

the covariance between components of the quaternion signal (see Took and Mandic (2011)).

As it is known, p linear events in t−x can be represented by the superposition of p complex sinusoids

in x by adopting autoregressive models of order p (Oropeza and Sacchi, 2011; Sacchi et al., 2017).

This is at the core of the justification to approximate the trajectory matrix to its rank-p version.

Using quaternion vector autoregressive (VAR) models (Ginzberg and Walden, 2013), extension of

this argument to the quaternion domain can be tested. Following Ginzberg and Walden (2013), the

VAR process of order p can be written as

q[n] = A1q[n− 1] +A2q[n− 2] + ...+Apq[n− p], (4.46)

where Ai ∈ H are the AR coefficients, and it is assumed that the process has no innovation and it is

zero-mean. By substitution of equation 4.46 into 4.39, one can show that this matrix has rank p,

where p is the order of the AR process, i.e., the number of dips in the data. This results, therefore,

seems to justify the rank-p approximation of the trajectory matrix in the quaternion domain.

However, as stated by Ginzberg and Walden (2013), this process describes proper11 quaternion

signals. In the case of improper signals, widely linear quaternion VAR processes, which takes in

consideration the involutions of the signal, should be used. This process is written as (Ginzberg and

Walden, 2013)

q[n] = A1q[n− 1] +B1q
i[n− 1] + C1q

j [n− 1] +D1q
k[n− 1] + ...+Dpq

k[n− p]. (4.47)

11Proper signals are such that have vanishing complementary covariance matrices, i.e., covariance between data
components is zero. These are also called circular signals.
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where Ai, Bi, Ci, and Di ∈ H are the AR coefficients. Equation 4.47 should be used to justify the

low-rank approximation when using AQSSA. It is expected that the addition of linear operations on

the involutions will increase the rank of the trajectory matrix.

In order to simultaneously reconstruct and denoise multicomponent data, one can use the iterative

imputation algorithm described in Oropeza and Sacchi (2011)

qiter = αiterqobs + (1− αiter)S Pqiter−1 + (1−S )Pqiter−1, (4.48)

where qobs is the noisy quaternion signal with missing observations, the number of iterations is

denoted by iter = [1, . . . , itermax], S denotes the sampling operator, 1 is a nx× 1 vector of ones,

and α is a iteration dependent trade-off parameter set to linearly decrease from 1 to 0 as iteration

number increases (Oropeza and Sacchi, 2011).

The prediction gain Ri is used to quantify (in dB) and evaluate the performance of the algorithms,

which is given by

Ri = 10 log10

‖Uo
i ‖22

‖Ui −Uo
i ‖22

, (4.49)

where Uo
i and Ui are the true (noise-free and complete) and reconstructed data, respectively, with

i = (x, y, z) representing the (real) component of the data.

Examples

An example will be used to test the application of QSSA and AQSSA in denoising and reconstruction

of multicomponent 2D seismic data. The results of denoising and reconstruction are compared

against single-component SSA (denoted by SSA).

In order to approximate the condition of linear events in t− x, a window of the data shown in figure

4.1 is used (Figure 4.3). This window has 2 to 3 quasi-linear events, accounting for approximately

0.22 seconds of data in 51 traces, showing different polarities and also offset-dependent variations in

amplitude. The number of time samples is nt = 111 and in space nx = 51. Figure 4.4 shows the

noisy windowed data with SNR= 2 for all components.

By varying the eigenaxis of the QFT, it is possible to gain some further insight on its importance and,

perhaps, how to properly define it. Figures 4.5 and 4.6 show the frequency slices at 20 Hz and 40
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Figure 4.3: Window of 2D 3C synthetic seismic data.
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Figure 4.4: Window of 2D 3C synthetic seismic data contamined with noise.

Hz, respectively, for both noise-free and noisy cases, to illustrate the consequences of the eigenaxis

choice in the QFT. The axis were set to (a)µ = i, (b)µ = j, (c)µ = k, and (d)µ = 1√
3
(1, 1, 1).

Observe that the components of all basis are very similar to each other. Also, notice that the scalar

component of (a), (b) and (c) represent the real part of the complex FT of the purely imaginary

signal defined by the respective component (i,j,k). That happens because the signal is initially

defined as a pure quaternion, and no mixing happens with the component in its simplex part since

S(q) = 0. In addition, observe that by setting the eigenaxis to µ = 1√
3
(1, 1, 1) indeed mixes the

quaternion components. That seems to reduce the noise level in each one of them, as more easily

observed for the frequency slice of 20 Hz (Figure 4.5(d)). That is the reason why this eigenaxis is

employed in this paper. Also, the left-sided QFT is always employed.

Noise and missing observations will increase the rank of the trajectory matrix, just as in the
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single-component case. The spectrum of singular values of the trajectory matrix and its augmented

version, obtained for the frequency of 20 Hz, are shown in figure 4.7. It is important to notice that

the curvature observed in the windowed data increases the rank of the trajectory matrix, i.e., the

small singular values do not vanish as in the ideal case of linear events. The same would be observed

in the case of real data. Hence, the number of singular values used in the rank-reduction operator

should be increased to two or three times the number of expected dips in the data. Nevertheless, the

noise-free singular value distribution illustrates the approximate low-rank character of both matrices,

which further justifies the development of rank-reduction algorithms for processing multicomponent

seismic data in the quaternion domain.
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Figure 4.5: Frequency slice at 20 Hz of the noise-free (dashed lines) and noisy windowed
data (straight lines). Legend: scalar component - black, i−component - red, j−component -
green, and k−component - blue.
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Figure 4.6: Frequency slice at 40 Hz of the noise-free (dashed lines) and noisy windowed
data (straight lines). Legend: scalar component - black, i−component - red, j−component -
green, and k−component - blue.
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Figure 4.7: Singular values of trajectory matrix for frequency slice at 20 Hz of the noise-free
and noisy windowed data.

For all algorithms, the frequency range used in the simulations is 0 to 60 Hz. The window length

is set to L = bnx2 c+ 1, where bc denotes the integer part of its argument, so that the trajectory

matrix is closest to a square matrix (Oropeza and Sacchi, 2011). The rank is set to p = 4 for all

algorithms. The number of iterations for the imputation algorithm is set to 30 in all cases.

Figures 4.8 to 4.10 show the denoising results for SSA, QSSA and AQSSA, respectively. For this

example, the reconstruction gains indicate that single-component SSA can be outperformed by the

quaternionic approaches but the results are yet not consistent among components.

Table 4.2: Denoising quality factors.

SSA QSSA AQSSA
Rx(dB) 9.2257 9.1901 9.3532
Ry(dB) 8.7778 7.1951 7.5778
Rz(dB) 8.2872 8.1111 8.7950
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Figure 4.8: Results for single-component SSA denoising.
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Figure 4.9: Result for QSSA denoising.
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Figure 4.10: Result for AQSSA denoising.
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It is also possible to test QSSA and AQSSA for the case where missing observations disrupt the

data (Figure 4.11). The data has 40% of its traces randomly decimated. Figures 4.12 to 4.14 show

the reconstruction results for SSA, QSSA and AQSSA, respectively, in the case of noise-free data.

For this example, both QSSA and AQSSA were able to outperform SSA for all components.

Table 4.3: Reconstruction quality factors for noise-free decimated data.

SSA QSSA AQSSA
Rx(dB) 14.9801 15.7723 19.2908
Ry(dB) 14.7861 15.0882 20.0428
Rz(dB) 8.5857 11.8549 11.8776
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Figure 4.11: Noise-free decimated data with 40% of traces missing
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Figure 4.12: Results for single-component SSA reconstruction.
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Figure 4.13: Result for QSSA reconstruction.
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Figure 4.14: Result for AQSSA reconstruction.

The final test is to simultaneously denoise and reconstruct the data using QSSA and AQSSA. Figure

4.15 shows the data with SNR=2 and randomly decimated to 40% of its traces. Figures 4.16 to 4.18

shows the results for SSA, QSSA and AQSSA, respectively. As indicated in table 4.4, superiority in

the quaternionic approaches over component-wise processing can be observed in this example for

only for the x component.
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Table 4.4: Reconstruction quality factors for noisy decimated data.

SSA QSSA AQSSA
Rx(dB) 4.9872 5.529 6.9222
Ry(dB) 5.8574 4.2748 4.9912
Rz(dB) 6.4979 4.4450 5.7709
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Figure 4.15: Noise-free decimated data with 40% of traces missing.
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Figure 4.16: Results for single-component SSA reconstruction.
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Figure 4.17: Result for QSSA reconstruction.
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Figure 4.18: Result for AQSSA reconstruction.

4.5 Conclusions and Discussion

In this paper, SSA denoising and reconstruction in the vector field case is investigated using the

quaternion signal model. The MC data is defined as a pure quaternion signal which can then be

treated with quaternionic signal processing tools. QSVD and QFT are briefly presented as such tools.

QSSA and its augmented version are introduced as possible techniques for simultaneous denoising

and reconstruction of multicomponent seismic data, in a holistic approach, through rank-reduction.

As in its real counterpart, the trajectory matrix in the ideal case, where the data is not corrupted by

noise and missing observations, is of low rank. The problem of noise reduction and data completion

is, therefore, posed as a rank reduction problem since noise and dead traces will increase the rank

of the trajectory matrix. The iterative imputation algorithm is also generalized to the quaternion
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domain, allowing for simultaneous MC seismic data denoise and reconstruction.

Employment of the field of quaternions, as shown in this paper, seems promising. On the other

hand, QSSA and AQSSA are still not consistent with the tests in the sense that its performances

are, at times, inferior to the scalar case. The same is not observed when the comparison is made

between both quaternionic approaches, where AQSSA outperforms QSSA in every test. More has to

be investigated regarding the quaternion vector autoregressive models so a better understanding can

be achieved for the parameter setting, especially in AQSSA. Furthermore, the question of a possible

preferential eigenaxis (or basis in H) for the QFT is still open for seismic signals. A thought is that

directional information from multicomponent data could perhaps be obtained using polarization

filters.

Regarding the computational aspects of quaternion-based techniques, it should be kept in mind

that the possibility of a concise approach to process vector signals comes with a price. The

computational load of hypercomplex techniques is heavier than its real-valued counterparts due

to its 4D structure. For instance, addition in the quaternion domain requires four real-valued

additions, and multiplication requires 16 real-valued multiplications (Alfsmann et al., 2007). Thus,

techniques already known for being computationally heavy, such as SVD, also impose a difficulty in

the development of such techniques. On the other hand, this also opens the way to other exciting

topics such as the extension of fast rank-reduction algorithms to the quaternion-domain, such as

randomized SVD or QR.
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Controlling signal leakage in FX Deconvolution: A dis-

cussion on a paper presented at SEG by Chiu et al.

Mauricio D Sacchi 1

Abstract

A recent paper entitled ”Residual-signal recovery using a pattern-based method” by Chiu

et al. (2017) presents a solution to a long-standing problem in seismic data processing.

The authors adopt FX deconvolution and present an algorithm that is capable of

recovering the signal that has leaked into the error panel. I will investigate the proposed

algorithm and attempt to understand its premises and limitations.

5.1 Introduction

FX deconvolution is one of the traditional tools for enhancing seismic records. The method is

often adopted to remove incoherent noise (Canales, 1984; Gulunay, 1986). FX deconvolution

poses denoising as a linear prediction problem in the frequency-space domain and it corresponds to

assuming an autoregressive (AR) model in space. In other words, an AR model is used to predict

the spatial signal, and the prediction error identifies the offending noise in the data. A problem with

FX deconvolution is signal leakage. The latter is primarily due to the inability of the FX filter to

properly model additive noise. In fact, the AR model representation adopted by FX deconvolution

can only incorporate the noise in the form of a random innovation. In a recent article, Chiu et al.

1Email: msacchi@ualberta.ca
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(2017) proposed to attenuate signal leakage by reapplying the FX deconvolution operator to the

error and, by this way, they propose to estimate the coherent portion of the signal that leaked into

the error. The algorithm of Chiu et al. (2017) can be summarized as follows:

1 Estimate the prediction filter a from the signal d → a

2 Apply the prediction filter to the signal to obtain a denoised signal → d̂

3 Compute error/noise → e = d− d̂

4 Apply the prediction filter2 to the error e to extract the coherent part of signal in the error

→ r

5 Improve the estimation by adding r to the estimated signal in [2] → d̂ + r

In next sections, we will try to bring to light this intriguing algorithm.

5.2 Theory

5.2.1 Prediction filtering

In the frequency-space (FX) domain we will denote the data as d(ω, x). To avoid notational clutter,

we will drop the dependency on ω, and we understand that the process is carried out for all frequencies

ω. We will also assume data evenly discretized in space d(ω, n− 1∆x) ≡ dn, n = 0 . . . N − 1 where

N is the number of traces. In FX deconvolution, one assumes the following linear prediction model

dn = a1 dn−1 + a2 dn−2 + . . . aL dn−L + en . (5.1)

Consider, for instance, the case where the order of the AR model is given by L = 3 and N = 8. The

AR model can be written in terms of the following system of equations

2The filter is already computed in [1]
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The above system of equations can be written in compact form via the following expression

M a− d = e . (5.3)

The coefficients of the AR model are estimated by minimizing the Euclidean norm of the error

(Gulunay, 2017). At this point it is important to point out that we also need to incorporate a

regularization term to guarantee the stability of the solution. Therefore, we will minimize a cost

function that consists of two parts

Φ = ‖M a− d‖22 + µ‖a‖22 . (5.4)

The first term of the cost function is the misfit, the second is the regularization term that is given, in

this case, by the squared l2 norm of the filter. The trade-off parameter (often called pre-whitening)

µ controls predictability and noise rejection. The trade-off parameter µ in conjunction with the

length of the filter L need to be adjusted to properly model the signal and reject the noise. The

minimization of the cost function Φ leads to the damped least-squares solution

â = (MHM + µI)−1MHd . (5.5)

Once the filter is compute via expression 5.5 one can predict the data as follows

d̂ = Mâ (5.6)

where

d̂ = (d̂3, d̂4, d̂5, d̂6, d̂7)T (5.7)

clearly, the first two points d̂1, d̂2 were not predicted by our model. However, one can easily use

backwards prediction to predict these two points as well. Let us turn our attention into the signal

and predicted error
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d̂ = Mâ

= M(MHM + µI)−1MHd (5.8)

= Ad .

where the data resolution matrix A = M(MHM + µI)−1MH . Similarly, one can compute the

estimator of the noise

ê = d− d̂ (5.9)

= (I−A) d .

The tradeoff parameter µ and the filter length L control the ability of the prediction filter predict

the signal versus noise rejection. In general, filters that are too aggressive in terms of random noise

removal will lead to excessive signal leakage in the error panel. Conversely, filters that preserve the

signal cannot remove random noise (Gulunay, 2017).

5.2.2 The coherent portion of the signal in the estimated noise

We will assume that the error e contains coherent signal. Chiu et al. (2017) proposes to apply the

filter A to the error to estimate its coherent part

r = Aê

= A(I−A)d (5.10)

where r is the coherent portion of the signal extracted from the estimated error ê. The final

estimator of the ”improved” signal is given by

ˆ̂
d = d̂ + r

= Ad + A(I−A)d (5.11)

= (2A−AA)d

now we anlysize the form AA
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A A = M(MHM + µI)−1MH M(MHM + µI)−1MH (5.12)

From where one can see that when µ = 0 A is an idempotent matrix: A A = A. Therefore when

µ = 0
ˆ̂
d = Ad = d̂ , (5.13)

In other words, if µ = 0 there is no advantage in reapplying the prediction filter to the error.

Interestingly, the flow proposed by Chiu et al. (2017) suggests that one might prefer to use a

significant trade-off parameter to attenuate the noise and then estimate the signal leaked into the

error panel.

5.3 Example

Figures 5.2 and 5.2 portray an example where I tried to use the flow proposed by Chiu et al. (2017).

In this case, I adopted a filter of length L = 10 points, and µ = 1%. The trade-off parameter is

percentual of the zero-lag autocorrelation coefficient of the input data. In other words µ = 1%

corresponds to µ = 0.01× r0 where r0 is the zero-lag autocorrelation coefficient of the input signal.

It is evident that the signal that has leaked in the first error panel was correctly modeled and

incorporated back in the predicted signal. However, it is also evident that, as always, there is no

free lunch. The final estimation of the signal (panel e) in Figures 5.2 and 5.2) contain more noise

than the initial estimator of the signal in panel b).

I have repeated the test in Figures 5.3 and 5.4. However, in this case I have adopted a filter of

length L = 10 points, and µ = 20%. The large trade-off parameter makes the initial filter more

aggressive. The latter can be seen in panel b) of Figures 5.3 and 5.4. The final result shows that we

have been able to partically eliminate signal leakege at the cost of adding noise to the final estimator

of the signal in panel e).

5.4 Conclusion

The flow proposed by Chiu et al. (2017) can be used to attenuate signal leakage in FX deconvolution.

However, it is not clear the real benefit of it at this point. In general, my main observation is that
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Figure 5.1: Results obtained with µ = 1%, L = 10. a) Data d. b) Predicted data d̂ by
FX deconvolution. c) Error e = d− d̂. d) Predicted coherent part of the error r. e) New
predicted data d̂ + r. f) New error d− (d̂ + r)

Figure 5.2: Results obtained with µ = 1%, L = 10., only 1:5 traces plotted in each panel.
a) Data d. b) Predicted data d̂ by FX deconvolution. c) Error e = d− d̂. d) Predicted
coherent part of the error r. e) New predicted data d̂ + r. f) New error d− (d̂ + r)
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Figure 5.3: Results obtained with µ = 20%, L = 10. a) Data d. b) Predicted data d̂ by
FX deconvolution. c) Error e = d− d̂. d) Predicted coherent part of the error r. e) New
predicted data d̂ + r. f) New error d− (d̂ + r)

Figure 5.4: Results obtained with µ = 20%, L = 10., only 1:5 traces plotted in each panel.
a) Data d. b) Predicted data d̂ by FX deconvolution. c) Error e = d− d̂. d) Predicted
coherent part of the error r. e) New predicted data d̂ + r. f) New error d− (d̂ + r)
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one can minimize signal leakage at the cost of bringing back noise to the final estimator of the clean

data.

A few intriguing questions remain unanswered. For instance, what is the connection, if any, of the

flow proposed by Chiu et al. (2017) and the projection filter (Soubaras, 1995).
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Monogenic signal for features and pattern detection

B. Manzanilla 1

Abstract

Over the last decade computer vision and pattern recognition have proliferated across

many disciplines. Seismic data are more than ever a perfect candidate for the extraction

of features and recognition of patterns, specially in large data sets. In times of low oil

prices this is a valuable tool to leverage the value of already acquired data given the

increase in the acquisition cost to revenue ratio. The basis of any feature extraction

and pattern recognition algorithm is the ability to convey to a computer whatever

features are of interest to the human interpreter. This task entails the identification of

features that are constantly present across data sets -invariants- and the design of tools

to measure them. This forms the basis for any other more elaborate pattern recognition

and data analysis task. Among those invariants, local amplitude and phase in signals

are one of the best descriptors. In the present article, some ideas on how to make use of

the Multidimensional Analytic or Monogenic Signal as a tool to identify patterns are

set forth. Local orientation, phase and amplitude, are explained, and how to interpret

the results. Finally some potential paths for further development are suggested. This

report, ponders on the value of the local phase and amplitude as potential starting

points in the generation of more complex pattern recognition algorithms, valuable to

the interpretation and the processing community.

1Email: bmanzani@ualberta.ca
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6.1 Introduction: The Analytic representation of signals

In the environment of pattern recognition and feature extraction there are many tools used to define

an image according to its characteristics. Any digital image, either optical, acoustic or seismic is in

the end a two dimensional signal. The two fundamental properties of one dimensional signals are

its phase, a scalar from zero to 2π and amplitude (Oppenheim (1999)). For any signal expressed

in more than one dimension, the phase is represented by a vector (Zang and Sommer (2007)).

This motivated on which this report is based. In order to define the tools for the analysis of two

dimensional signals, a first attempt is made to explain the foundations for a one dimensional signal.

In the case of one dimensional signals, the split into even and odd parts is of essential importance.

Let f(t) be a time signal that , after discretization is represented as a time series:

f [t] = a ∈ Q, and ∀t ∈ Q+ (6.1)

This signal has a unique Fourier representation,. Its n-th term is:

F [ωn − φn] = an(cos [ωn − φn]) + (i)bn(sin [ωn − φn]) | an, bn, ωn and φn ∈ Q, and ∀n ∈ N
(6.2)

The real part of this signal is said to be even in nature, since for any positive frequency there is

always an identical counterpart on the negative half of the spectrum, as an innate characteristic

of the cosine in its Fourier series expression. However, any signal whose spectrum is odd, will be

purely imaginary, which accounts for the sine part. Therefore every negative frequency component

is identical to its positive counterpart with a sign reversal or in terms of phase the same signal with

a 90 degrees shift.

This accounts for a multiplication of the spectrum by the imaginary unit i(Taner, 1979). A signal

whose odd part is obtained directly rotating the phase of its even part (conjugate harmonic) is

called analytic. The analytic signal is of great value because it fulfills properties valid for real life

signal processing problems across many different disciplines. The first one is that it satisfies the

Laplace equation. The second one is that its derivatives are smooth and bounded at each point.

Besides, this analytic properties are translated in our case into an identity split. This means that

the analytic signal is separable into two fundamental parts: instantaneous amplitude (envelope)
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and instantaneous phase (Felsberg and Sommer (2001)). For a signal in the frequency domain

represented as a complex function as FH :

FH = F (ω) = A [ω] exp i [π(ω0 − φn)n] (6.3)

A simple way to obtain the conjugate of a signal is by flipping the the sign of the negative part

of its spectrum (Bridge (2017)) and adding them together. The sum of the original signal and its

conjugate is:

fH(t) = F−1{F (ω) + i(sign(ω))F (ω)} (6.4)

There are two fundamental observations. Firstly, the odd part of the signal is roughly equal to the

derivative of the even part, normalized by the magnitude of the frequency. In frequency domain:

i(sign(ω))F (ω) =
iω

|ω|F (ω) =
1

|ω|F{
d

dt
f(ω)} (6.5)

fH(t) = F−1{F (ω) +
−iω
|ω| F (ω)} (6.6)

With time representations:

fH(t) = f(t) + f∗(t) (6.7)

This fact provides a ”differential” like operator without the high pass effect. Secondly, we have a

complex number representation, which is in itself a split of identity, i.e. the signal may be expressed

as a real instantaneous amplitude (or envelope) times a complex exponential whose argument is the

frequency and the instantaneous phase (Felsberg & Sommer, 2001):

A(t) = 2
√
f2 + (f∗)2 φ(t) = atan(

f∗

f
) (6.8)

These signal properties open the door for feature extraction tools like the instantaneous attributes

(Chopra and Marfurt, 2005). Moreover, the instantaneous phase of the signal carries the majority of

the structural information whereas the amplitude envelope can be seen as a measure of confidence



Monogenic Signal 109

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

Figure 6.1: At every point there are two fundamental directions in which we can calculate
the instantaneous phase, and this yields two different phase values at the same position,
which is impossible.

Figure 6.2: There are two directions in which we can analyze the symmetry in the Fourier
domain: sign of component one changes as one traverses axis number two, and vice-versa.
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on that given phase value at that given instant(Felsberg and Köthe (2005)). In fact, one can roughly

reconstruct the structure of a signal, by using the phase alone (Oppenheim and Lim, 1981).

However, the Hilbert transform is a method only valid for one dimensional signals since the only

difference introduced to produce the conjugate harmonic is a scalar phase rotation by one quarter

of π radians. Now, let us imagine we can generate arbitrary one dimensional signals as slices in

any possible propagation direction over an image or other signal in a higher dimensional space.

Unfortunately, a major disadvantage in such a representation of an analytic signal (as 1D slices) is

that the value of instantaneous phase and amplitude would be totally different just by changing the

direction of the slice we take.

Hence, the possibility to use the Hilbert transform to obtain the instantaneous properties of the

overall image by dividing it into one dimensional signals is eliminated, since any change in orientation

would yield different results. In this article, I present a method to separate the local counterparts of

the instantaneous phase and amplitude of two dimensional vector valued scalar signals i.e. images.

The theory is already established in the corpus of specialized literature (Oppenheim and Lim (1981),

Taner et al. (1979), Felsberg and Sommer (2001), Bridge (2017)).

6.1.1 Scale Space and self similarity

So far we have seen that the Riesz transform is a convolutional operator with properties similar

to those of the derivative. At the beginning of the 1980’s in the last century, some formalism

about the scale in images were set forth (Witkin (1984), Koenderink (1984), Lindeberg and ter

Haar Romeny (1994)). A key discovery was that any natural image sampled with a finite bandwidth

(finite support) follows a Gaussian distribution in its samples and behaves as a smaller scale copy of

itself when convolved with a Gaussian filter (see Figure 6.5). Therefore the convolution of an image

with a Gaussian kernel does not alter the phase nor the position of local maxima and minima. This

is in fact a preponderant interpretation of how the human visual system works, and thus a basis to

develop pattern detection algorithms, which is why it has remained a popular topic in the computer

vision and pattern recognition literature. By looking at an image at progressively farther and farther

distances our vision fundamentally sees a smaller (decimated) and smoother version of the original.

Here the only limit is that, at a certain point, the neighboring objects merge, successively. This

situation is depicted in the figure(6.4), where a set of smoothed one dimensional signals is shown

(top of the image). The curves on the bottom trace the positions of all peaks and troughs in the

family of smooth signals. The ”n” shape patterns, eventually merge on the smoothest signal, but
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Figure 6.3: On the far left, a test image was convolved (symbolized by the star) with a
Gaussian kernel(center). After convolution the local maxima and minima are still honored,
as it is attested by the fact that the main features in the picture does not change even after
decimation of the convolved image(far right).

one never sees the creation of any new peak nor trough. This is called a scaleogram (Lindeberg and

ter Haar Romeny (1994)). This is remarkable since, in the case of higher dimensional signals the

consistency in the location of local extrema is not trivial and depends highly on the kernel chosen

(Lindeberg and ter Haar Romeny (1994)). An empirical explanation is that Gaussian kernels are

zero phase, unitary filters (even functions). This is what the so called scale space concept entails, in

which the iterative convolution of an image with a Gaussian kernel yields a set of images which

although progressively sparser, still agree in the fundamental positions of local extrema. This images

are called Pyramids since every new image is smoothed and decimated producing a set of images

that mimics the levels of a ”Pyramid” (Freeman et al. (1991)). Each level will have half of the

number of columns and rows of the preceding one.

Borders, Edges and Derivatives: Steerable Filters

The following points should be considered the bottom line of the interpreter just as any other user

of computer systems in which the user relies in his eyes to evaluate results of any kind (Marr and

Vision (1982)). One of the fundamental operations in any pattern recognition technique is to be

able to segment images, in order to separate features of interest. Our visual system detects only

surfaces. Thus for visualization purposes, the only fundamental segmentation pattern we are able

to recognize are either curves contained in surfaces or changes in light intensity (Marr and Vision

(1982)). Any border may be perceived as a sudden change in amplitude with congruent phase for

all components. If it is a line the local phase will be either ±π or ±π
4 if it is the boundary of two

surfaces (Kovesi (2003)). Hence, the first choice of an operator for edge and border detection is the

gradient (Marr and Vision (1982)) under noise-free conditions . However we know that the gradient
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Figure 6.4: Top: A set of signals is generated. The recursive convolution of the Gaussian
kernel with the image yields a smoother result every time. Bottom: The scaleogram. By
tracking the positions of the peaks and troughs in the family of signals we can generate
the ”n” shaped plots on the bottom. This image was modified after Lindeberg and ter
Haar Romeny (1994) and was originally published by Witkin (1984).
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has a high-pass effect, that increases the amplitude of random noise, which is present in all real

signals. This has rendered its direct application obsolete. However, we know that the convolution

over complex valued and real functions is commutative, and that is equivalent to multiplication in

frequency domain. Functions like the Gaussian kernel, Poisson (Felsberg and Köthe (2005)), Gabor

filters and their logarithms (Bridge (2017)), among others, are convolutional filters with zero phase

and unitary amplitude. Similarly, differential operators such as finite differences may be applied as

convolutional masks. Hence, convolving the signal with the directional derivative of a smoothing

kernel in time, or multiplying them in frequency domain is equivalent to obtaining the directional

derivatives of a signal and then smoothing them. This methodology is similar to the structure tensor

(Zang and Sommer (2007)). Moreover, these operators are suitable for the construction of pyramids

of directional derivatives, provided that local maxima and minima in the derivative are congruent

for each smoothing level.

The aforementioned strategy, has given place to extremely fast algorithms for feature and pattern

recognition with convolutional kernels, with several applications in diverse fields including seismic

interpretation and pattern recognition (Simoncelli and Freeman (1995)). In the Figure (6.5), I show

a smoothed directional derivative image produced with the method of Gaussian pyramids produced

with the Gaussian directional derivative operator.

A second application of the pyramid methodology to detect edges in images is the so-called Laplacian

pyramid. To construct it, we generate a set of images product of recursive smoothing. However, in

this case, unlike in the Gaussian pyramid, each smoothed image is first subtracted from its parent

image, prior to decimation. This to decrease amplitude variations within the borders while at the

same time emphasizing the borders themselves. Nevertheless, a draw back in this methods is that

the integrity of the phase is not guaranteed. Given that we are subtracting two similar images but

with different levels of details, the smallest wavelengths are smeared if the smoothing difference is

too large. In Figure 6.6. I present an example where I produce a two level Laplacian pyramid. If the

level of smoothing is not chosen close enough to the parent image the non stationarity of the wavelet

is apparent given that by following the contour of the cameraman in the image, one can see a gentle

variation in gray tone parallel to the coat, tripod and legs. A second challenge in the use of the

Laplacian pyramid as a tool for edge and border detection is that of noise levels and level of detail

in the identification process. For instance a tool to pick the borders once emphasized with in the

Laplacian pyramid levels could the second central differences applied as a convolutional mask (6.7).

If we again resort to direct differentiation techniques, the signal to noise ratio falls significantly.

To summarize this section, there are two main challenges in the use of pyramids as steerable filters.

Firstly, the filters are not perfectly orthogonal, in other words you have to use more than the bare
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Figure 6.5: Top left: the derivative of a Gaussian kernel is equivalent to smoothing plus
derivation. Top right: The target image contains random noise. Bottom left: due to its
high pass effect, after performing conventional finite differences on the image the noise is
increased. Bottom right: the direct convolution of the derivative of the Gaussian kernel with
the image yields a smoother result, suitable for edge detection.
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Figure 6.6: To construct a Laplacian pyramid after convolution with a Gaussian kernel
each image is subtracted from its parent, this removes the smoothest trends inside the areas
bounded by all edges.The main features of the image are again honored, but a phase change
is introduced.

minimum number of filters. Thus, pyramids are said to overcomplete (Freeman and Adelason,

1995). This poses a problem as well for the generation of equivalent analytic signals since the

instantaneous attributes are a result of a basis of elementary filters, that are independent from each

other. Secondly as they are not an analytic representation, they are not suitable to the generation of

an analytic signal and all the attributes of interest that this kind of representation would possess.

6.2 Monogenic Signal

6.2.1 Multidimensional analytic signal

In this section I introduce the extension of the Analytic signal concepts for images, and propose the

feasibility of an extension to volumes and other dimensions. As starting point, it is important to
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Figure 6.7: One of the challenges in feature extraction images is the noise. In this example,
the second difference was calculated on the same image without noise (left) and with 10% of
white noise.

stress the profound difference between local and instantaneous properties. The word instantaneous

entails a temporal reference or, relaxing the term, a point in a line -e.g. the line of time. For two

dimensional signals phase and amplitude are considered local because they hold a constant value

for a given point, regardless of the direction in which they are calculated -i.e. rotation invariance.

Moreover, since the phase is roughly a measure of structure, or changes, it is invariant to changes in

the overall value of amplitude. We can think of the image as a set of points. In turn, every point in

the image is the intersection between any given number of lines in any possible direction projected

on the image to analyze. In order for a signal to be a Monogenic function (and thus to be able to

extract its local properties) it has to satisfy that the total derivative (i.e. the sum of its directional

derivatives) is constant upon any possible translation:

ΦH(x1, y1) = ΦH(x2, y2), AH(x1, y1) = AH(x2, y2) (6.9)

or rotation and scaling

FH(ρ1, θ1) = FH(ρ2, θ2), ∀ρ1 = s(ρ2) and θ1 = θ2 + α (6.10)

In a similar manner, scaling of the amplitude by a constant factor should never affect the phase of

the signal.
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6.2.2 The Riesz Transform

For an image in the Fourier domain, there are two frequency or wavenumber components (κ/ω)

and therefore there are two directions in which sign can change (see Figure 6.8). Therefore we can

think that an analytic signal taking arguments in Rn is equivalent to finding n conjugate harmonics

by applying the Riesz transform to the image n times in n directions (Zang and Sommer (2007),

Bridge (2017)). The Riesz transform is an analogous to the one dimensional Hilbert transform, as a



118

-0.5

0

0.5

Figure 6.8: Riesz operators in Frequency domain. Note the polarity reversal across the
horizontal (left) and vertical axis (right). Even though the 1

|~ω| term damps the amplitude as
we move away form the origin the filters are still different from zero at the boundary.

convolutional kernel transform extended to Rn. At this point we must recall that the conjugate

harmonics of a signal have roughly the shape of a differential operator. Thus we may loosely express

the analytic signal as:

F(Rnf)(x) = −i ωj
~|ω|

(Ff)(x)
1

|~ω|F{
∂

∂xj
f(t)} (6.11)

where the frequency (or wavenumber) vector in Rn is:

~ω = {ωj |j ∈ (1, n);n ∈ N} (6.12)

However although noise is partially controlled by the 1
|~ω| term, we can see in Figure 6.9 that the

Riesz operator in Frequency domain is not zero at the boundary (it is in fact asymptotic), and

thus in noisy data this would introduce artifacts, upon the application of the filter masks. Thus, a

set of filters for smoothing and derivatives is desirable to tapper off the highest frequencies at the

boundaries. For our application we chose log-Gabor filters (Fischer et al. (2009)). These filters are

defined as:

G(ω) =
ω0

ω
exp

(
− (log(ω/ω0))2

2 (log(σ/ω0))2

)
(6.13)

Where ω is a circular adimensional frequency that takes values from 0 to π. The scale or bandwidth

of the filter band is measured with the variance of the function normalized by the frequencyσ.
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Figure 6.9: Riesz operators in Frequency domain. Note the polarity reversal across the
horizontal (left) and vertical axis (right). Even though the 1

|~ω| term damps the amplitude as
we move away form the origin the filters are still different from zero at the boundary.

6.3 Monogenic Scale Space and curvature Tensor

By combining the concepts of Scale-Space and Riesz Transform one can construct ”Pyramids”

of analytic signals and their attributes. This opens the door to a tremendous number of useful

applications in which there is not just a means to approximately describe borders and edges, but to

actually obtain curvature and more detailed geometry parameters (Felsberg and Sommer (2004)).

This concept was coined in Felsberg (2004), and named as Monogenic Scale-Space. Figure (6.10) is

again used and the border detected with the local amplitude of the curvature tensor.

6.3.1 Application of the Monogenic signal to border and edge detection

In this section some results in the application of the local amplitude, phase, orientation to detect

pattern are shown. The first set of images are a similar test image (figure 6.10) as the one presented

by Zang and Sommer (2007). More examples pertinent to seismic interpretation will be presented

below. The current test image is just a portable network graphics file (png), with binary dimensions

and amplitude (eight bits). The first approach was to produce the local amplitude (6.11), local
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Figure 6.10: Raw test image. The test image is a grid like pattern with an amplitude of 0.5
(127) relative to the maximum possible for 8 bit images (255) against a black background
(zero amplitude). Modified after Di-Zang, Sommer, 2007.
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Figure 6.11: Local Amplitude of the test image. Modified after Di-Zang, Sommer, 2007.

phase (6.12), and an orientation filter (6.13). The local orientation is a key advantage of the

multidimensional analytic signal over its standard one dimensional counterpart. Given the fact that

we have now two directions to calculate the odd parts of the signal, we can estimate the ratio of

change in horizontal and vertical directions (horizontal and vertical Riesz operators), to estimate

the orientation or dip angle of borders and edges.
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Figure 6.12: Local phase of the test image. Angles go from 0 to π.Modified after Di-Zang,
Sommer, 2007.

-3

-2

-1

0

1

2

3

Figure 6.13: Local orientation of the borders of the test image. Angles go from −π to π.
Modified after Di-Zang, Sommer, 2007.
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Curvature: calculation of the curvature tensor components

From the images we can see that amplitude responds quite well with the pattern however as it is

pointed out in Zang and Sommer (2007), the detection of corners is not identifiable by means of

a two dimensional analytic signal. Thus we now need to extend the method to be able to detect

curvature. For our purposes, curvature in an image means either a ”lump” or ”depression” in the

local amplitude, in the case of pictures this is light intensity and for seismic images, this may be

reflectivity (if calculated), or local amplitude of the seismic signal. A second type of curvature is

when there is a constant amplitude but a sharp turn in a border. Curvature is thus, the fundamental

the purpose to test these filters in the grid pattern shown. This is key in the identification of seismic

targets as these are rarely bounded by straight lines. In order to achieve this a new tool is needed.

This tool is called the curvature tensor, which is the analytic signal counterpart of the structure

tensor (Zang and Sommer (2007)). The Curvature Tensor is the result of the application of the Riesz

transform to a set of angular filters similar to those used in the steerable pyramids (see Simoncelli

and Freeman (1995)). The filters are called spherical harmonics and they are basically angular

weighting coefficients, thus adding more possible combinations to calculate angles in the test images.

These set of filters have the core characteristic of reacting to corners (Zang and Sommer (2007)).

Thus we can now calculate, the so called two dimensional local amplitude (figure 6.14), phase (figure

6.15) and the mean curvature response (corner detector). The amplitude maxima and minima are

presented in figure (6.16) and the corner detector in figure (6.17)
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Figure 6.14: Two dimensional local Amplitude of the test image. Notice the reaction to the
intersections in the pattern. Unlike the one dimensional local amplitude, the two dimensional
local amplitude responds more accurately in the corners. Input test image modified after
Di-Zang, Sommer, 2007.
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Figure 6.15: Two dimensional local phase of the test image. Notice the reaction to the
intersections in the pattern. Angles go from 0 to π. Input test image modified after Di-Zang,
Sommer, 2007.
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Figure 6.16: Two dimensional amplitude maxima mapped by the Gaussian curvature -which
is the second total derivative. The image has local maxima at the intersections. Input test
image modified after Di-Zang, Sommer, 2007.
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Figure 6.17: Local response of corners (the pixel size in the image). Input test image
modified after Di-Zang, Sommer, 2007.
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Figure 6.18: Two dimensional local Amplitude of a png image of a salt dome model synthetic
seismic data.

6.3.2 Application of the multidimensional analytic signal to synthetic data

The following are examples of the same attribute presented before, applied to a png version image

of a synthetic salt model. This is doable since the analytic signal takes care of the pixel amplitude

distribution and it is insensitive to the physical phenomena that may produce such amplitudes. The

image preset two characteristics that important to mention. First, since the format works with

eight bits amplitude there 28 possible values as compared to the ±232 in a four byte conventional

trace. This means that we loose details in the image. However given the fact that we low pass first

the images to generate smooth versions, we prevent the formation of aliasing Moire patterns. The

image was taken from: http://www.seismiccity.com/Services.html.
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Figure 6.19: Two dimensional local phase of a png image of a salt dome model synthetic
seismic data. Angles go from 0 to π.
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Figure 6.20: Local response of mean curvature or corners.
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Figure 6.21: Two dimensional amplitude minima mapped by the Gaussian curvature (values
> 0).

6.4 Application of the multidimensional analytic signal to real

Seismic Data: John Lake.

The following examples are a brief exercise to evaluate how suitable the multidimensional analytic

signal is to identify channels. There are two sets of images: time slices for which I present one

dimensional local attributes and curvature tensor attributes. The channel is already quite visible in

the raw data (6.24). However the response of the curvature tensor attributes, and in particular, the

one dimensional phase, allows to convey information about the channel that can be, in principle

measurable. The phase is invariant to amplitude changes in the time slice, condition that makes it

an ideal detector for structures in data where amplitude change are abrupt. The central frequency

chosen was π/2 and the standard deviation was σ = .2.

The second most efficient attributes in picking the channel features are the corner detector (6.27)

and the Gaussian curvature or local maxima and minima detector (6.28).
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Figure 6.22: Time slice of John Lake dataset showing a channel. The presence of the
channel is evident in the data, however at this stage we show that, in principle it is possible
to detect features of interest in quantifiable fashion that can be used by machine learning
algorithms.
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Figure 6.23: One dimensional local Amplitude of a time slice showing a channel.
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Figure 6.24: One dimensional local phase. Angles go from 0 to π.
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Figure 6.25: One dimensional local orientation. Angles go from −π to π.
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Figure 6.26: Two dimensional amplitude.

6.5 Conclusions and the road ahead

The multidimensional analytic signal is a useful tool to detect features in images, however its use

needs accurate determination of parameters in order to produce results that are useful for the

detection of features of interest to the interpreter. It is shown that, in principle it is possible to

detect features of interest in a quantifiable fashion that can be used by machine learning algorithms

(angles, envelope amplitudes, curvature). Since the local attributes are insensitive to the phenomena

that produced the images, this makes them ideal for robust and fast applications, but its use requires

a good working knowledge of parameter testing in order to avoid biasing the interpretation. The

curvature tensor provides better resolution to non-straight boundaries and amplitudes maxima or

minima. it allows to detect patterns that might of interest to map reservoir and delimit potential

drilling targets. The response of the curvature attributes to faults and contacts seems to be promising

in the case of the synthetic salt dome model. However this model is just an 8 bit graphic file with

very low noise content. The current state of development of this work requires further research

in parameter selection, particularly to interpret the response of the phase and orientation of the

curvature tensor. This point will require the selection of a methodology for unwrapping the phase,

as in the current state of development this is still represented with wrapped color scales. From

the point of view of pattern detection this work seems a good starting point to develop a deeper

understanding and potentially connect this methodology with other like the steerable pyramids.
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Figure 6.27: Local response of corners (the pixel size in the image). Angles go from −π to
π.
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Figure 6.28: Two dimensional amplitude minima mapped by the positive part of the
Gaussian curvature -which is the second total derivative. The image has local maxima at
the intersections.
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6.6 Appendix: attributes table

Local Attributes Table

Attribute Name Values Responds to

Amplitude [0,∞) Total power of

original signal and

its conjugate har-

monics

Phase [0, π] Responds to struc-

ture in image

Orientation [π, π] Indicates the an-

gular orientation

of the structure

(in this work )

2D Amplitude [0,∞) Responds both to

borders and cor-

ners

2D Phase [0, π] Gives the angle

of the normal vec-

tor to any border

requires unwrap-

ping

2D Orientation [π, π] Indicates the an-

gle of a vector par-

allel to the bor-

ders.

Mean curvature or

corner detector

(−∞,∞) Responds both

corners i.e. sud-

den orientation

changes in edges.

Gaussian cur-

vature or local

extrema detector

(−∞,∞) Responds to local

maxima/minima

in amplitude.
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Computational efficient multi-dimensional Singular Spec-

trum Analysis

J. Cheng1 and M. D. Sacchi

Abstract

We present a computational efficient multi-dimensional Singular Spectrum Analysis

method for the recovery and de-noising of multi-dimensional seismic data. Compared

to the other implementations of Singular Spectrum Analysis method, the proposed

algorithm does not require building multi-level block Hankel trajectory matrices. The

key is to replace the singular value decomposition of a multi-level block Hankel matrix

by the randomized QR decomposition. We also present a new strategy in which

anti-diagonal averaging of the multi-level block Hankel matrix is efficiently computed

via convolution. The new algorithm significantly decreases the computational cost

and memory requirement of Singular Spectrum Analysis data recovery. We test the

effectiveness of the method through synthetic and real data examples.

7.1 Introduction

The enhancement of signal-to-noise ratio of seismic records and the interpolation of seismic data are

important subjects in the field of seismic data processing. Different techniques have been utilized

to de-noise seismic traces and to recover seismic traces at unsampled spatial positions. Many of

1Email: jinkun@ualberta.ca
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these techniques rely on mathematical transforms, such as the Fourier transform (Duijndam et al.,

1999; Liu and Sacchi, 2004; Xu et al., 2005), Radon transform (Kabir and Verschuur, 1995; Trad

et al., 2002) and Curvelet transform (Herrmann and Hennenfent, 2008; Hennenfent et al., 2010),

that convert the data to a different domain. Noise attenuation and interpolation can also be carried

out via the spatial prediction filters (Canales, 1984; Spitz, 1991) and the projection filters (Soubaras,

1994) in the frequency-space domain.

In recent years, a new family of de-noising and interpolation methods based on rank reduction has

been proposed. The rank reduction methods assume that the ideal well-sampled, noise-free data can

be represented by a low-rank matrix/tensor (Trickett, 2003; Kreimer and Sacchi, 2012). De-noising

and reconstruction can be implemented by finding a low-rank structured data that honors the

noisy and incomplete observation. This article interests in rank-reduction techniques based on

Cadzow filtering, also called Singular Spectrum Analysis (Sacchi, 2009; Trickett and Burroughs,

2009; Trickett et al., 2010). Cadzow filtering and Singular Spectrum Analysis denote equivalent

methodologies that arise from different research areas. Researchers usually adopt Cadzow filtering

as a tool for de-noising in signal processing (Cadzow, 1988) whereas Singular Spectrum Analysis has

been proposed for analyses of time series and dynamic systems (Broomhead and King, 1986). We

will adopt the name Singular Spectrum Analysis (SSA) in this article following (Sacchi, 2009). It is

important to note that SSA has been extended to Multi-dimensional Singular Spectrum Analysis

(MSSA) for multi-dimensional seismic data de-noising and reconstruction (Oropeza and Sacchi, 2011;

Gao et al., 2013). MSSA for seismic data de-noising and reconstruction is based on the assumption

that in frequency-space domain, each constant frequency slice of seismic data can be embedded

into a low-rank Hankel matrix. If the data consists K dipping events, the rank of the associated

Hankel matrix equals K. Incoherent noise and missing observations will increase the rank and

therefore, rank reduction is an effective tool for de-noising and interpolation (Oropeza and Sacchi,

2011). Rank reduction is commonly applied via the Singular Value Decomposition (SVD) (Golub

and van Loan, 1996) and the filtered data are acquired by averaging the anti-diagonal elements of

the reduced-rank Hankel matrix.

Despite the efficacy of MSSA, its computational cost has always been a concern because rank

reduction is usually implemented via the classic truncated SVD. Efforts have been made by replacing

the SVD by more efficient algorithms, such as randomized singular value decomposition (Oropeza

and Sacchi, 2011) and Lanczos Bidiagonalization(Gao et al., 2013). It is important to note that

Gao et al. (2013) utilized a fast Hankel matrix-vector product in a Lanczos Bidiagonalization

algorithm to avoid building Hankel matrices. The method is very efficient in calculating the low-rank
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approximation of the Hankel matrices. However, large Hankel matrices are formed in the final

anti-diagonal averaging stage in order to recover the filtered data.

We present a computational efficient implementation for MSSA that does not require building

Hankel matrices. To improve the computational performance, firstly, we adopt the randomized

QR decomposition (RQRD) (Chiron et al., 2014; Cheng and Sacchi, 2016) for acquiring the low-

rank approximation of the Hankel Matrices. Secondly, following Gao et al. (2013), we embed the

Hankel matrices into circulant matrices and compute the Hankel matrix-vector multiplication via

Fourier transform. Finally, we propose to compute the anti-diagonal averaging of Hankel matrices

via convolution (Korobeynikov, 2010). The latter can also be computed efficiently via Fourier

transform. As a result, the construction of the Hankel matrices is avoided in MSSA and therefore

the proposed method is computationally efficient. We adopt synthetic and real data examples to

test the performance of the proposed algorithm.

7.2 Computational efficient SSA

7.2.1 The complexity of SSA

We first provide a brief review of the SSA methodology and analyze the computational complexity for

the method. We begin our discussion by examining 2D seismic data D(ω, x) in the frequency-space

domain. We assume the data are regularly sampled along the spatial dimension. At a given

monochromatic frequency ω0, the frequency slice can be denoted as D(ω0, x) = [D1, D2, · · · , DN ]T ,

where N is the total number of traces. SSA of seismic data entails the following three steps:

• We first embed D(ω0, x) into a Hankel structured trajectory matrix H as follows

H =




D1 D2 · · · DM

D2 D3 · · · DM+1

...
...

. . .
...

DL DL+1 · · · DN



, (7.1)

where L + M − 1 = N and L ≤ M . A good strategy is to choose L such that the Toeplitz

matrix is approximately square. In other words, we let L =
[
N
2

]
+ 1. Forming the Hankel

structured matrix is computational efficient but this step requires the storage of an M × L
matrix.
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• The second step of SSA entails finding a low-rank approximation of the Hankel trajectory

matrix. This is usually done by the truncated SVD as follows

[U,S,V] = SVD[H] , (7.2)

where U and V are orthonormal matrices and S is a diagonal matrix. Note that this step

can be extremely expensive for large matrices. The computational complexity of the singular

value decomposition is approximately O(L2M + LM +M3) (Golub and van Loan, 1996). A

new set of singular values Ŝ are computed via

Ŝl,l = Sl,l l ≤ K
Ŝl,l = 0 l > K

(7.3)

The low-rank approximation of the Hankel matrix is then computed via

Ĥ = UŜV. (7.4)

The regrouping of the Hankel matrix also yield a complexity O(L2K) .

• In the last step, anti-diagonal averaging of the reduced-rank matrix is applied to recover the

filtered signal. In other words, filtered data can be recovered via

D̂i =

{ 1
i

∑i
j=1 Ĥj, i−j+1 1 ≤ i ≤M ,

1
M

∑M
j=1 Ĥj, i−j+1, M ≤ i ≤ L ,

1
N−i+1

∑M
j=i−L+1 Ĥj, i−j+1, L ≤ i ≤ N ,

(7.5)

where i denotes the trace indices. Anti-diagonal averaging requires O(N) multiplications and

O(ML) sums (Korobeynikov, 2010).

Randomized QR decomposition

We propose to use a randomized QR decomposition as an alternative to the SVD. Instead of applying

SVD to the Hankel matrix, a random projection is first performed

M = HΩ, (7.6)
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where Ω denotes a random set that is composed by k independent vectors (k �M). The random

projection shrinks the size of Hankel matrix (L×M) to a much smaller matrix (L×k) while keeping

as much variability as possible.

The random projection can be computed using a fast Hankel matrix-vector product. Therefore

building Hankel trajectory matrix can be avoided when performing matrix rank reduction. The idea

is to embed the Hankel matrix into a circulant matrix and then use fast Fourier transform to compute

matrix times vector multiplications (O’Leary and Simmons, 1981). We refer the readers to Gao

et al. (2013), where the authors discussed in details a fast Toeplitz matrix-vector product. A Hankel

matrix can be easily converted to a Toeplitz matrix by reversing the columns. We conveniently

adopt the algorithm in Gao et al. (2013) given the following relation

y = Hx = Tz, (7.7)

where T denotes a Toeplitz matrix and x is a vector (Korobeynikov, 2010). z is acquired by reversing

the order of the entries of x. y is the resulting vector of the multiplication. As is discussed in Gao

et al. (2013), no Hankel or Toeplitz matrix is required. Therefore, fast matrix-vector multiplication,

is a key step to avoid building the Hankel trajectory matrix in the SSA algorithm. Fast Hankel

matrix-vector product is summarized in Algorithm 7.3, where ◦ denotes the Hadamard (element-wise)

product.

Algorithm 7.1 Fast Hankel matrix-vector product

Inputs:
Seismic data at a given frequency: D; Vector x; Size of Hankel matrix: L and
M

Output:
Vector after multiplication: y

c = [DM , DM+1, · · · , DN , D1, D2, · · · , DM−1]T (first row of circulant matrix)

z = [xM , xM−1, · · · , x1, 0, 0, · · · , 0]T (reverse order and padding zeros to length N)

ŷ = ifft(fft(c) ◦ fft(w))

y = ŷ(1 : L)
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Then an economic-size QR decomposition is applied to matrix M

[Q,R] = qr(M). (7.8)

Finally the low-rank approximation can be computed y projecting H onto the orthonormal basis Q

Ĥ = Q(Q∗H) . (7.9)

As is discussed in Cheng and Sacchi (2016), the parameter k in the randomized QR decomposition is

a relaxation of the desired rank K. In other words, randomized QR decomposition is less stringent

on the choice of rank (number of dips). The latter is very important since we usually do not have

prior information about the rank of seismic data. We also point out that the QR decomposition is a

very stable algorithm to provide the orthonormal basis Q. Conversely, Lanczos bidiagonalization

(Gao et al., 2013) tends to be unstable and an expensive re-orthogonalization on Lanczos vectors is

often required.

7.2.2 Fast anti-diagonal averaging

We show that the anti-diagonal averaging of Hankel matrix can be efficiently computed via convo-

lution. To clearly demonstrate the method, the singular value decomposition is adopted and we

assume that the desired rank of the Hankel trajectory matrix equals 1. We can rewrite Equation

7.4 as follows

Ĥ = s1u1v1. (7.10)

Since we assume Ĥ is a rank-1 matrix, s1 is a constant and denotes the largest singular value and

u1 and v1 denotes the first row and the first column of matrix U and V, respectively. s1u1v1 is

also named an eigenimage of the matrix Ĥ. Combining Equation 7.5 and Equation 7.10 yields the

following expression

D̂i =

{ s1
i

∑i
j=1 u1jv1i−j+1 , 1 ≤ i ≤M ,

s1
M

∑M
j=1 u1jv1i−j+1 , M ≤ i ≤ L ,

s1
N−i+1

∑M
j=i−L+1 u1jv1i−j+1 , L ≤ i ≤ N .

(7.11)

The filtered spatial data can be computed via the expression
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D̂i = s1wi

N∑

j=1

u1jv1i−j+1 , (7.12)

where wi denotes constants that are determined by the size of Hankel matrix and are computed in

advance. We can rewrite Equation 7.12 in its vector form

D̂ = w ◦ [s1(u1 ∗ v1)], (7.13)

where u1 ∗ v1 denotes the convolution that can be efficiently computed using the Fast Fourier

Transform. We can repeat the process to compute each eigenimage corresponding to each desired

singular value of the rank-K approximation. The filtered data equals the summation of the K

eigenimages

D̂ = w ◦ [s1(u1 ∗ v1) + s2(u2 ∗ v2) + · · ·+ sK(uK ∗ vK)]. (7.14)

The computational complexity reduces to O(N log(k)).

The strategy can also be adopted for the randomized QR decomposition. Again if we assume Ĥ is a

rank-1 matrix, Equation 7.9 reduces to

Ĥ = q1t1 , (7.15)

where t1 = q∗1 H and q1 denotes the first row of the matrix Q from the QR decomposition.

Apparently t1 can be computed via the fast Hankel matrix-vector product. In other words, the

computational of the explicit Hankel matrix can be avoided in the anti-diagonal averaging, and thus,

in the full SSA algorithm. Equation 7.15 then becomes comparable with Equation 7.10 with the

filtered data given by

D̂ = w ◦ (q1 ∗ t1). (7.16)

We can also extend the solution to find the rank-k approximation

D̂ = w ◦ [(q1 ∗ t1) + (q2 ∗ t2) + · · ·+ (qk ∗ tk). (7.17)

The resulting computational efficient SSA is summarized in algorithm 7.2.
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Algorithm 7.2 Computational efficient SSA

Inputs:
Seismic data: D; rank: k

Output:
SSA filtered data: D̂

for ω = ωmin : ωmax do
d = D(ω, :)

Ω = rand(M,k) (generate random vectors)

d̂ = 0
for i = 1 : k do

M(:, i) = fast multiply(d,Ω(:, i)) (algorithm 1)

end for

[Q,R] = qr[M]

for i = 1 : k do
q = Q(:, i)

z = fast multiply(d,q)

d̂ = d̂ + ifft(fft(q) ◦ fft(z))

end for

D̂(ω, :) = d̂
end for

7.3 Computational efficient MSSA

We now turn our attention to the case where seismic data depends on more spatial dimensions. In

other words, we extend the method of SSA to MSSA. In our analysis, we will use 3D seismic data

knowing that he method can be extended into 5D without difficulties. For 3D seismic data, at a

given monochromatic frequency ω0, the single frequency slice can be denoted as follows,

D(ω0, x, y) = Dj1,j2 , (7.18)

where ω0 represents the temporal frequency. j1 = 1, · · · , N1 and j2 = 1, · · · , N2 denote the trace

index corresponding to each spatial dimension. N1 and N2 are the total number of traces in each

dimension. For each frequency slice, we embed the multi-dimensional spatial data into a multi-level

block Hankel (MBH) matrix. We first construct each row of the spatial data matrix Dj1,j2 into a

level-1 Hankel matrix as follows
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H(1)j2 =




D1,j2 D2,j2 · · · DM1,j2

D2,j2 D3,j2 · · · DM1+1,j2
...

...
. . .

...

DL1,j2 DL1+1,j2 · · · DN1,j2



. (7.19)

Then we organize the second dimension into the Hankel structure by constructing a block Hankel

matrix

H(2) =




H
(1)
1 H

(1)
2 · · · H

(1)
M2

H
(1)
2 H

(1)
3 · · · H

(1)
M2+1

...
...

. . .
...

H
(1)
L2

H
(1)
L2+1 · · · H

(1)
N2



, (7.20)

Consequently, the size of the level-2 block Hankel matrix H(2) is L1L2 ×M1M2, where we let

Li = [Ni
2 ] and Mi = Ni + 1− Li, i = 1, 2.

Similar to the computational efficient SSA method discussed in the previous section, we adopt

RQRD as an alternative to the SVD for computing the low-rank approximation of a given matrix

as follows

M = H(2)Ω,

[Q,R] = qr(M), (7.21)

Ĥ(2) = Q(Q∗H(2)) ,

where the random projection is computed using a fast MBH matrix-vector product. We refer

the readers to Gao et al. (2013), where the authors discussed in details a fast multi-level Hankel

matrix-vector product. Fast MBH matrix-vector product is also summarized in Algorithm 7.3.

The anti-diagonal averaging can be also efficiently computed via convolution. To clearly illustrate

the fast anti-diagonal averaging algorithm, we assume the desired rank of the Hankel matrix is 1.

The Q basis from the QR decomposition shrinks to a vector q. Equation 7.22 can be rewritten as

Ĥ(2) = qt , (7.22)

where t = q∗H(2). Conveniently, t can be computed via the aforedescribed fast MBH matrix-vector

multiplication. The anti-diagonal averaging of a level-2 block Hankel matrix can be expressed as

follows

D̂j1,j2 =
1

W1

1

W2

j1∑

i1=1

j2∑

i2=1

Uj1, j2Vi1−j1+1, i2−j2+1 =
1

W1

1

W2
U ∗V , (7.23)
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where Uj1,j2 = q(j1×M2)+j2) and Vi1,i2 = t(i1×L2)+i2) and ∗ denotes the matrix convolution in this

case. In other words, q and t are reshaped into matrices based on the size of the Hankel matrices at

each level. W1 and W2 count the number of summations along each anti-diagonal direction at each

level. As a result, the anti-diagonal averaging of level-2 MBH matrix can be computed via matrix

convolution. The latter can be computed efficiently via 2D Fast Fourier Transform (FFT). k matrix

convolutions are required if the desired rank equals k. The resulting computational efficient MSSA

is summarized in algorithm 7.4. The method can be extended to higher dimensional situations. For

instance, both MBH matrix-vector multiplication and anti-diagonal averaging can be computed by

4D FFT for 5D seismic volumes.

Algorithm 7.3 Fast MBH matrix-vector product (level-2)

Inputs:
Seismic data at a given frequency: D; Vector x;
Size of Hankel matrix: L1, L2, M1 and M2

Output:
Vector after multiplication: y

X
M1×M2

= reshape( x
M1M2×1

)

(1) Rearrange the entries of spatial data D and the the entries of X:

C
N1×N2

=



DM1,M2 · · · DN1,M2 D1,M2 · · · DM1−1,M2

...
. . .

...
...

. . .
...

DM1,N2 · · · DN1,N2 D1,N2 · · · DM1−1,N2

DM1,1 · · · DN1,1 D1,1 · · · DM1−1,1

...
. . .

...
...

. . .
...

DM1,M2−1 · · · DN1,M2−1 D1,M2−1 · · · DM1−1,M2−1


,

Z =



XM1,M2 · · · X1,M2 0 · · · 0
...

. . .
...

...
. . .

...
XM1,1 · · · X1,1 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


(2) Y = ifft2D(fft2D(C) ◦ fft2D(Z))

(3) W = Y(1 : L1, 1 : L2)

(4) y
L1L2×1

= reshape( W
L1×L2

)
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Algorithm 7.4 Computational efficient MSSA

Inputs:
Seismic data in frequency-space domain: D; rank: k; Size of Hankel matrix:
M1 and M2;

Output:
SSA filtered data: D̂

for ω = ωmin : ωmax do
D = D(ω, :, :) (take the spatial data)

Ω = rand(M1M2, k) (generate random vectors)

for i = 1 : k do

M(:, i) = MBH multiply(D,Ω(:, i)) (algorithm 1)

end for

[Q,R] = qr[M]

for i = 1 : k do
q = Q(:, i), Uj1,j2 = q(j1×M2)+j2); t = MBH multiply(D,q) , Vi1,i2 = t(i1×L2)+i2) ;

D̂ = D̂ + ifft2D(fft2D(U) ◦ fft2D(V)) (convolution)

end for

D̂(ω, :) = D̂

end for

7.4 Performance analysis

To test the efficiency of the proposed computational efficient MSSA algorithm, we compared the

performance of different implementations of SSA for random noise attenuation of 3D seismic data

patches of different size. SSA rank reduction filter is applied on 50 frequency slices are performed in

each run. Table 7.1 shows the signal-to-noise ratio of the data after de-noising and the computational

time for the conventional multi-dimensional SSA (MSSA) (Oropeza and Sacchi, 2011), Randomized

MSSA (Oropeza and Sacchi, 2011), SSA via Lanczos bi-diagonalization (Gao et al., 2013) and the

proposed computational efficient MSSA (FSSA), respectively. The four algorithms exhibit similar

capabilities in the attenuation of random noise. However, the proposed computational efficient

MSSA outperforms the other three methods in computational efficiency.
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(Nx ×Ny)
MSSA RMSSA Lanczos FSSA

Time(s) S/N(dB) Time(s) S/N(dB) Time(s) S/N(dB) Time(s) S/N(dB)

20 × 20 2.033 5.021 0.667 5.052 0.411 5.001 0.237 5.302

40 × 40 12.76 9.667 7.669 10.01 1.124 9.801 0.678 10.22

60 × 60 58.85 12.01 41.12 11.77 2.485 12.56 1.325 11.96

80 × 80 152.7 14.05 142.5 14.28 6.933 14.77 2.998 14.68

Table 7.1: Comparison of computational accuracy and efficiency for different SSA methods:
conventional 3D MSSA (MSSA), randomized MSSA (RMSSA), Lanzcos Bidagonalization
(Lanzcos), and the proposed computational efficient MSSA (FSSA). In this experiment, the
subset size for FSSA is three times of the desired rank.

7.5 Examples

7.5.1 Synthetic example - 3D reconstruction

To test the effectiveness of the proposed algorithm, we first adopt a synthetic data set which is

simulated with three linear events in x-y-t. The data contain Nx ×Ny traces, with Nx = 20 and

Ny = 25. The temporal length of the window is 0.4s with a sampling interval 0.002s. This represents

a typical size of data patches commonly used for seismic data reconstruction (Oropeza and Sacchi,

2011). The noise-free and ideally sampled data are shown in Figure 7.1 (a). To mimic the seismic

data that are observed in the field, we randomly remove 50% of the traces. In addition, we assume

data that are contaminated with random noise Figure 7.1 (b). We adopted the classical SSA recovery

algorithm proposed by Oropeza and Sacchi (2011).

Dν = αDobs + (I − αS)FFSSA(Dν−1), (7.24)

where ν is the number of iteration and S denotes the sampling operator. FFSSA denotes the

proposed fast SSA filtering algorithm. The scalar α ≤ 1 denotes the weight for averaging the

observed and SSA filtered data. The de-noised and reconstructed result is shown in Figure 7.1 (c).

The reconstructed data becomes comparable with the noise-free and ideally sampled data. Figure
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7.2 exhibits a slice (x = 5) of the data cube. The algorithm effectively suppresses the noise while

reconstructing the coherent signal.
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Figure 7.1: Results of SSA de-noising and reconstruction: synthetic example. (a) Ideal
noise-free seismic data (b) Data with incoherent noise and 50% decimation (c) Data after
fast SSA reconstruction (d) Differences between (a) and (c).
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Figure 7.2: Results of SSA de-noising and reconstruction synthetic example (Slice at x=5).
(a) Ideal noise-free seismic data (b) Data with incoherent noise and 50% decimation (c) Data
after fast SSA reconstruction (d) Differences between (a) and (c).

7.5.2 Real data example - 3D reconstruction

We adopt the computational efficient MSSA algorithm to reconstruct a small patch of a prestack

seismic data set. The data are rearranged into 15 CMP bins and 45 offset bins. NMO correction
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has been applied to each CMP gather before reconstruction. As is shown in Figure 7.3 (a), around

50% of traces are missing after binning. The result of computational efficient MSSA reconstruction

is shown in Figure 7.3 (b). In this example, we choose α = 0.4 and k = 8. The missing traces are

successfully interpolated with signal that is coherent along the spatial direction. We also exhibits a

single CMP gather before and after reconstruction in Figure 7.4.
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Figure 7.3: Results of SSA de-noising and reconstruction for 3D field data. (a) A small
patch of field data before reconstruction (b) De-noised and reconstructed data via the fast
SSA algorithm.

7.5.3 Real data example - 5D reconstruction(WCSB)

We also adopt an example involves the reconstruction of a real prestack 5D volume via the proposed

computational efficient MSSA method. We extracted a small patch of the data set shown as the

rectangular area in Figure 7.5 (Kreimer and Sacchi, 2012). After binning, the seismic traces were

assigned to the midpoint-offset grid which has dimensions 16× 18× 12× 12. Around 40% of the 4D

grid do not contain any observation. We selected a time window in the interval 900− 1250 msec

that corresponds to 351 samples. Figure 7.6 (a) shows a subset of the data prior to reconstruction.

This subset is acquired by fixing CMPy and Offsety. Figure 7.6 (b) illustrates the reconstructed

CMP gathers via the proposed computational efficient MSSA method with α = 0.4 and k = 18.

Figure 7.7 shows a set of offset gathers with the same CMPy and Offsety fixed, where we display

the original and reconstructed offset gathers.
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Figure 7.4: Results of SSA de-noising and reconstruction for 3D field data (Slice at cdp
bin=8) (a) A small patch of field data before reconstruction (b) De-noised and reconstructed
data via the fast SSA algorithm.
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Figure 7.5: Results of SSA de-noising and reconstruction for 3D field data (Slice at cdp
bin=8) (a) A small patch of field data before reconstruction (b) De-noised and reconstructed
data via the fast SSA algorithm.
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Figure 7.6: Results of SSA de-noising and reconstruction for 3D field data (Slice at cdp
bin=8) (a) A small patch of field data before reconstruction (b) De-noised and reconstructed
data via the fast SSA algorithm.
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bin=8) (a) A small patch of field data before reconstruction (b) De-noised and reconstructed
data via the fast SSA algorithm.
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7.6 Conclusions

This article illustrates the computational efficient Multi-dimensional Singular Spectrum Analysis

method for the reconstruction and de-noising multi-dimensional prestack seismic volumes. Important

savings for large-scale dimensionality reduction problems are attainable via the proposed randomized

QR decomposition. To avoid the construction of multi-level block Hankel matrices, we proposed

fast multi-level block Hankel matrix-vector product and a fast convolution for the final anti-

diagonal averaging. Both multi-level block Hankel matrix-vector product and the fast anti-diagonal

averaging are computed via Fast Fourier Transform. The proposed method significantly improves

the computational efficiency.
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Edge-preserving smoothing for simultaneous-source FWI

model updates in high-contrast velocity models

Amsalu Y. Anagaw1 and Mauricio D. Sacchi

Abstract

Full waveform inversion (FWI) can provide accurate estimates of subsurface model

parameters. In spite of its success, the application of FWI in areas with high-velocity

contrast remains a challenging problem. Quadratic regularization methods are often

adopted to stabilize inverse problems. Unfortunately, edges and sharp discontinuities

are not adequately preserved by quadratic regularization techniques. Throughout the

iterative FWI method, an edge-preserving filter, on the other hand, can gently incorporate

sharpness into seismic images. For every point in the seismic image, edge-preserving

smoothing assigns the average value of the most uniform window neighboring the point.

Edge-preserving smoothing generates piecewise-homogeneous images with enhanced

contrast at boundaries. We adopt a simultaneous-source frequency-domain FWI, based

on quasi-Newton optimization, in conjunction with an edge-preserving smoothing filter

to retrieve high-contrast velocity models. The edge-preserving smoothing filter gradually

removes the artifacts created by simultaneous-source encoding. We also propose a simple

model update to prevents disrupting the convergence of the optimization algorithm.

Finally, we provide tests to examine the proposed algorithm.

1Email: aanagaw@ualberta.ca
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8.1 Introduction

The primary purpose of Full Waveform inversion (FWI) is to estimate high-resolution physical

properties of geological structures by minimizing the data misfit between observed and modeled

seismograms through local iterative optimization techniques (Lailly, 1983; Tarantola, 1987; Stekl

and Pratt, 1998). FWI is an ill-posed inverse problem (Virieux and Operto, 2009) and, therefore,

regularization and preconditioning strategies are often required to obtain stable estimates of velocity

models. Regularization methods also serve to impose desired features on subsurface images (Zhdanov,

2002). Quadratic regularization methods are often adopted to deliver smooth models (Constable et al.,

1987). In an attempt to preserve discontinuities in images, non-quadratic regularization techniques

have become popular in the field of image processing (Künsch, 1994; Geman and Reynolds, 1992;

Charbonnier et al., 1997). The basic idea involves adopting a regularization constraint that imposes

sparsity on the spatial derivatives of the desired image. Non-quadratic regularization methods that

safeguard high-velocity contrasts were adopted for linearized Born inversion (Youzwishen and Sacchi,

2006; Anagaw and Sacchi, 2012) and FWI (Akcelik et al., 2002; Anagaw and Sacchi, 2011; Guitton,

2012; Smithyman et al., 2015; Esser et al., 2016; Brandsberg-Dahl et al., 2017; Peters and Herrmann,

2017). Farquharson and Oldenburg (1998) investigated edge-preserving regularization techniques

for the solution of electromagnetic inverse problems. Similarly, Valenciano et al. (2005) proposed a

non-quadratic edge preserving regularization for interval-velocity inversion from RMS velocities.

Edge-preserving techniques for inverse problems require the resolution of a non-quadratic regu-

larization problem that often contains more than one trade-off parameter (Anagaw and Sacchi,

2011; Valenciano et al., 2005; Farquharson and Oldenburg, 1998). Our experience indicates that

estimating optimal trade-off parameters controlling goodness-of-fit and edge-enhancement is not an

easy task when one tries to solve nonlinear inverse problems like FWI. An alternative solution to

edge preservation via regularization involves adopting a model update followed by edge-preserving

smoothing. The process, often called edge-preserving smoothing, corresponds to filtering techniques

capable of denoising images with sharp discontinuities. The basic principle of edge-preserving

smoothing is to apply smoothing (averaging) to uniform areas of the image and to switch off

smoothing across edges. In this paper, we propose to use the edge-preserving smoothing algorithm,

originally proposed by AlBinHassan et al. (2006), to preserve edges and discontinuities of velocity

models recovered via FWI. In our approach, the edge-preserving smoothing filter is applied to

each FWI model update via a scheme that gently sharpens the image without degrading data

fitting. We also point out that Zhang and Zhang (2017) investigated a similar strategy for seismic
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traveltime tomography where a 1D edge-preserving smoothing operator is used in conjunction with

a re-weighted least-squares technique to enhance edges in tomographic velocity inversion.

A 2D acoustic simultaneous-source frequency-domain FWI algorithm (Stekl and Pratt, 1998; Anagaw

and Sacchi, 2014) is employed to generate model updates that undergo edge-preserving smoothing.

We have chosen the quasi-Newton l-BFGS optimization engine (Nocedal, 1980) to estimate the

model perturbations. However, it is clear that one could adopt a different optimization engine for

computing the model perturbations. We have tested our algorithm with the BP/EAGE velocity

model (Billette and Brandsberg-Dahl, 2005). The BP/EAGE model contains high-contrast velocity

boundaries and complex salt bodies making it an excellent candidate for experimenting with the

proposed algorithm.

8.2 Theory

8.2.1 FWI updates

Our work pertains to acoustic FWI with frequency-domain solvers and source encoding (Stekl and

Pratt, 1998; Anagaw and Sacchi, 2014). Waveform inversion often uses the least-squares misfit

defined as the l2 norm of the residual between the observed data dobs and synthetic data dcal(m):

J(m) =
1

2
‖ dobs − dcal(m) ‖2 . (8.1)

The minimization of the misfit function is a nonlinear problem where from measured wavefields one

attempts to estimate the P-wave velocity model m. We omit the derivation of the frequency-domain

FWI algorithm and just state that in each iteration we adopt the l-BFGS method (Nocedal, 1980)

to generate model perturbations ∆mk where k indicates the iteration number. During the iterative

process, for each frequency group, the source encoding scheme is kept constant. We remind the

reader that the perturbation ∆mk corresponds, in our case, to a gradient contaminated by cross-talk

artifacts introduced by source encoding (Anagaw and Sacchi, 2014). We propose the following model

update scheme:

uk = mk + α∆mk (8.2)

mk+1 = mk + β(Puk −mk) , (8.3)
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where uk denotes a temporary update of the model. The scalar α is the step length determined via

line search. The scalar β ∈ (0, 1) controls the tradeoff between descending toward the minimum of

the cost function J and introducing contrast in the model update. The operator P symbolizes the

edge-preserving smoothing filter. Algorithm 8.1 is the pseudocode for the proposed multi-scale FWI

with edge-preserving smoothing. Equation 3 can also be written as follows:

mk+1 = (1− β) mk + βPuk . (8.4)

Note that equation 4 shows that in each iteration, we keep the current model update weighted by

(1− β) plus the edge-enhanced model weighted by β. The scalar β is a small number to guarantee

convergence to the minimum of the cost function J . In other words, expression 8.4 constraints the

new update mk+1 to remain close mk to guarantee converge to the minimum of the cost function J .

Algorithm 8.1 Pseudo-code: Multiscale FWI using quasi-Newton l-BFGS method with edge-
preserving smoothing. Source encoding kept constant for each group frequency.

Estimation of m = argmin
m

J(m)

Initialization: m0

for ωi in 1: Nω do
for k in 1: max iter do

Compute perturbation ∆mk via l-BFGS
Estimate α via line search
uk = mk + α4mk

Apply edge-preserving smoothing and update the model
mk+1 = mk + β(Puk −mk)

end for
end for

8.2.2 Edge-preserving smoothing

For the 2D edge-preserving smoothing operator design, we follow the procedure presented by

AlBinHassan et al. (2006). We consider a 2D velocity model and select 5× 5 pixels moving windows.

The central point of each 5 × 5 window is the point to which one assigns the estimate of the

edge-preserving filter. In AlBinHassan et al. (2006) paper, a total of 9 neighbouring overlapping

windows around the central point are chosen: four hexagonal windows, four pentagonal windows,

and one square window. We adopted the same procedure but with 10 overlapping windows around

the central point, where the extra window is the full 5× 5 window. For each window, we compute

its mean and standard deviation. The window with the lowest standard deviation is the most
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uniform window, and its average value is assigned to the central point. The process as demonstrated

in AlBinHassan et al. (2006) smooths homogeneous areas and preserves discontinuities across

boundaries.

8.3 Numerical Examples

We consider a portion of the original BP/EAGE velocity model (Billette and Brandsberg-Dahl,

2005), where large velocity contrasts and complex salt bodies are present, as shown in Figure 8.1.

Figures 8.1a and b are the true and smooth velocity models used for FWI, respectively. The

BP/EAGE velocity model was gridded onto a coarser grid of size 50 m by 50 m. The actual velocity

model contains salt domes of high-velocity contrast, subsalt low-velocity zones under the salt, and

several anomalies that offer an ideal velocity model to test the algorithm. Synthetic data were

generated via a finite-difference method. A total number of 100 sources and 298 receivers were

computed. The sources are placed 50 m below the surface, while the receivers on the surface of the

earth. A Ricker wavelet of a central frequency of 10. Hz represents the source signature. The source

encoding scheme contains four super-shots, and each super-shot includes 25 individual sources. The

edge-preserving smoothing filter suppresses incoherent cross-talk noise introduced by the source

encoding. A set of thirteen discrete frequencies between 2. Hz and 12. Hz were selected for the

input data to our multiscale FWI code and frequencies were grouped. The multiscale frequency

grouping consists of five groups with an overlap of 4 frequencies (Anagaw and Sacchi, 2014). The

inversion is then carried out in a sequential approach starting from the first group of frequencies

(containing low frequencies) to the last group (containing high frequencies). We run the inversion

with and without applying the edge-preserving smoothing operator for a maximum of 60 iterations.

The parameter β ∈ (0,1) is selected as follows. First, we run a standard FWI until achieving

convergence. The algorithm converges after about 60 iterations. We, then, execute the algorithm

with edge-preserving smoothing for different values of β for 60 iterations. Finally, we pick β such

that the convergence curves of the conventional FWI and the proposed algorithm are similar. In

this example, our numerical experiments have indicated that adopting β = 0.05 yields results with

enhanced edges without affecting the minimization of the cost function J .

Figures 8.2a and b depict the reconstructed velocity models obtained via FWI without and with the

edge-preserving smoothing operator. We also clarify that the edge-preserving smoothing operator

was turned off for the first frequency group. In the earliest stage of the inversion, the algorithm

captures the long-wavelength structure of the velocity model, and as it proceeds with the remaining

frequency groups, the edge-preserving smoothing filter sharpens the updated model.
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Figure 8.1: Portion of the original BP/EAGE velocity model. True velocity model (a) and
smooth velocity model (b). The smooth velocity model was adopted as the starting model
for the inversion.
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Figure 8.2: (a) Reconstructed velocity model with classical FWI (no edge-preserving smooth-
ing). (b) Inverted velocity model with edge-preserving smoothing FWI update described in
this article.
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Figure 8.3: (a) and (b) are windows extracted from the top left zone of Figures 8.2a and 2b,
respectively.

To complete our analysis, we also show windows of the estimated models. Figures 8.3a and b show

the top left sections of the reconstructed velocity. Model updates with edge-preserving smoothing

filtering not only provide an image with enhanced resolution but also salt boundaries that were

correctly retrieved. The proposed algorithm is also able to delineate both shallow and subsalt

velocity anomalies.

Figure 8.4 shows vertical velocity profiles extracted at horizontal position 1.80 Km on the left

and at horizontal position 3.20 Km on the right, respectively. Figure 8.5 shows lateral velocity

profiles extracted at depth levels 2.50 Km and 3.60 Km, respectively. These selected positions are

highlighted by green arrow in Figure 8.2a. Our results highlight that the proposed algorithm yields

images with enhanced velocity contrasts.

Figure 8.6 shows the convergence rate comparisons of the algorithm with and without applying EPS

in the FWI. The misfit function is normalized by its first misfit function value. Figure 8.6 a&b are

the misfit curves for group frequencies of maximum frequency 6 Hz and 9 Hz, respectively. As we

see from the convergence rates of the optimization of FWI with EPS for models with high-velocity

contrast, the a relative faster reduction in the misfit function is observed when we employ the EPS

operator.
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Figure 8.4: Comparison of vertical velocity profiles of the reconstructed velocity models
portrayed in Figure 8.2. The velocity profiles are extracted at horizontal positions 1.80 Km
(a) and 3.20 Km (b).
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Figure 8.5: Comparison of lateral velocity profiles of the reconstructed velocity models
portrayed in Figure 8.2. The lateral velocity profiles are extracted at depth levels 2.50 Km
(a) and 3.60 Km (b).
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Figure 8.6: Relative data misfit reduction curve with and without applying EPS. Misfit
curves for group frequencies of maximum frequency 6 Hz (a) and 9 Hz (b).

8.4 Conclusions

We have developed a 2D FWI algorithm with a model update that includes an edge-preserving

smoothing filter to improve the retrieval of high-contrast images. The edge-preserving smoothing

technique searches for the most uniform neighbourhood around each point in the image. The average

of the window with minimum standard deviation is assigned to the central point. We have equipped

our algorithm with a scalar parameter that controls the sharpness of the update while the iterative

solution is guaranteed to descend to the minimum of the objective function of the FWI problem.
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Time-domain elastic Gauss-Newton full-waveform inver-

sion via matrix-free adjoint-state method

Ke Chen1

Abstract

A time-domain matrix-free elastic Gauss-Newton FWI algorithm is formulated based on

elastic least-squares reverse time migration (LSRTM) algorithm. We consider the elastic

Gauss-Newton FWI as an iterative elastic LSRTM problem. The proposed algorithm

consists of two loops of iterations: the outer Gauss-Newton nonlinear iterations and

the inner conjugate gradient least-squares (CGLS) linear iterations. The Gauss-Newton

search direction in each outer FWI iteration is computed using the matrix-free CGLS

algorithm. This step is equivalent to apply an elastic LSRTM on data residual, with

the Jacobian operator as elastic Born modeling operator and the adjoint of Jacobian

operator as elastic RTM operator. The CGLS algorithm can be safely used for solving the

Gauss-Newton search direction because our discretized numerical versions of elastic Born

and RTM operators passed the dot-product test. The inner CGLS linear iterations are

preconditioned using the elastic pseudo-Hessian operator. Our algorithm is matrix-free

that only requires the forward Jacobian and adjoint Jacobian operator applied “on the

fly” to vectors. The operators are applied on vectors efficiently via the adjoint-state

method. We use the proposed algorithm to simultaneously invert for P- and S-wave

velocities.The proposed elastic Gauss-Newton FWI generates better inverted models

than the nonlinear conjugate gradient method based elastic FWI. More importantly, the

elastic Gauss-Newton FWI can decouple the crosstalk between P- and S-wave velocity

models, which is an important problem in multiparameter FWI.
1Email: ke7@ualberta.ca
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9.1 Introduction

Full-waveform inversion (FWI) (Bamberger et al., 1982; Lailly, 1983; Tarantola, 1984; Virieux and

Operto, 2009) aims at estimating subsurface model parameters using the full-wave mode data

recorded by seismic receivers. It is a nonlinear and ill-posed inverse problem. Tarantola (1984)

formulates time-domain acoustic FWI as a nonlinear least-squares inverse problem (Tarantola and

Valette, 1982). The inverse problem was proposed to be solved using the iterative method. Tarantola

(1984) adopts the adjoint-state method (Lions, 1971) to compute the gradient of the objective

function to avoid the expensive explicit computation of the Fréchet derivative (Bamberger et al.,

1982; Lailly, 1983). Gauthier et al. (1986) conduct the first numerical study of 2D acoustic FWI

in time domain on synthetic seismic reflection and transmission data. Tarantola (1986) extends

the FWI theory to isotropic elastic case and analyzes the radiation patterns of point diffractors for

different parameters. For inverting reflection seismic data, Tarantola (1986) suggests first optimizing

the P-wave impedance, second optimizing the S-wave impedance, and then optimizing the density.

Mora (1987b, 1988) numerically study the 2D time-domain elastic FWI of synthetic reflection

and transmission multicomponent data. Crase et al. (1990) propose a robust time-domain elastic

FWI based on `1 norm or Cauchy criterion minimization and apply it on real marine streamer

data. More recent, 2D time-domain elastic FWI has been applied to marine seismic streamer

data (Shipp and Singh, 2002) and multicomponent OBC seismic data (Sears et al., 2008, 2010).

Kohn et al. (2012) investigate the influence of model parameterization in 2D time-domain elastic

full-waveform inversion. Matharu and Sacchi (2017) discuss the encoded source time-domain elastic

FWI. Time-domain elastic FWI has also been extended to three dimensional (Epanomeritakis et al.,

2008; Guasch, 2011; Vigh et al., 2014; Borisov and Singh, 2015; Raknes et al., 2015; Albertin et al.,

2016). However, it is still computational challenging even on modern high-performance computer

cluster.

To mitigate the crosstalk among multiparameters in elastic FWI, several strategies have been

introduced recently. Wang et al. (2016) propose to use the block-diagonal pseudo-Hessian (Jin et al.,

1992) for preconditioning the gradient in elastic FWI. Ren and Liu (2016) and Wang and Cheng

(2017) propose to use wavenumber-domain wavefield decomposition (Zhang and McMechan, 2010)

to separate the P- and S-wave field before gradient computing to reduce the crosstalk in elastic

FWI. Pan et al. (2017) propose to approximately estimate the crosstalks and subtract them from

the gradient.

In this paper, we propose a time-domain matrix-free elastic Gauss-Newton FWI algorithm based on

elastic least-squares reverse time migration (LSRTM) algorithm (Chen and Sacchi, 2017). We chose
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to adopt the first-order velocity-stress elastic wave-equation system (Virieux, 1986) for forward

modeling and the inversion is parameterized in terms of P- and S-wave velocities. The proposed

algorithm consists of two loops of iterations: the outer Gauss-Newton nonlinear iterations (Nocedal

and Wright, 2006) and the inner conjugate gradient least-squares (CGLS) linear iterations (Hestenes

and Stiefel, 1952; Paige and Saunders, 1982). The outer nonlinear iteration uses parabola fitting

line search (Vigh et al., 2009) to estimate the step size. The Gauss-Newton search direction in each

outer FWI iteration is computed using the matrix-free CGLS algorithm. We recognize that this step

is actually equivalent to apply an elastic LSRTM on data residual (Chen and Sacchi, 2017), with

the Jacobian operator as elastic Born modeling operator and the adjoint of Jacobian operator as

elastic RTM operator. The CGLS algorithm can be safely used for solving the Gauss-Newton search

direction because our discretized numerical versions of elastic Born and RTM operators passed the

dot-product test (Mora, 1987a; Claerbout, 1992). In the inner CGLS linear iterations, the step

size is analytically calculated without of the need of line search. The inner CGLS linear iterations

are preconditioned using the elastic pseudo-Hessian operator (Shin et al., 2001a; Chen and Sacchi,

2017). Our algorithm is matrix-free that only requires the forward Jacobian and adjoint Jacobian

operator applied “on the fly” to vectors. The operators are applied on vectors efficiently via the

adjoint-state method (Lions, 1971). We use the proposed algorithm to simultaneously invert for P-

and S-wave velocities. The proposed elastic Gauss-Newton FWI generates better inverted models

than the nonlinear conjugate gradient method based elastic FWI. More importantly, the elastic

Gauss-Newton FWI can decouple the crosstalk between P- and S-wave velocity models.

The first discussion of Gauss-Newton method for time-domain FWI problem can be traced back

to Tarantola (1984) where they call it the “total inversion” method (Tarantola and Valette, 1982).

Time-domain elastic Gauss-Newton FWI has also been investigated in Sheen et al. (2006) and

Epanomeritakis et al. (2008). However, both Sheen et al. (2006) and Epanomeritakis et al. (2008)

do not consider the multiparameter crosstalk problem. Epanomeritakis et al. (2008) only inverted

for the shear modulus. In Sheen et al. (2006), the Jacobian matrix and Hessian matrix are explicitly

using the reciprocity of the Green’s function (Tarantola, 1988; Shin et al., 2001b), which is too

expensive for large-scale problem. Recently, Pan et al. (2016) discuss the Gauss-Newton and

full-Newton method in elastic HTI media. However, it is also based on explicitly computing and

inverting the Hessian operator which impedes the application to realistic scale problem.

This paper is organized as follows: First, we describe the system of equations that we have adopted

to forward model elastic wavefields. Then, we discuss the general time-domain elastic Gauss-Newton

FWI algorithm. Subsequently, we propose to formulate the step of solving Gauss-Newton search

direction as an elastic LSRTM problem. We discuss the elastic Born and RTM operators and the
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numerical adjointness of those operators. Furthermore, we propose to solve the Gauss-Newton

search direction using the CGLS algorithm and also propose to precondition the CGLS algorithm

by elastic pseudo-Hessian. Then, we summarize the time-domain matrix-free elastic Gauss-Newton

FWI algorithm. In the last section, we provide numerical examples that permit us to evaluate the

performance of the proposed algorithm.

9.2 Theory

9.2.1 Time-domain, heterogeneous, isotropic elastic wave equation

We assume a heterogeneous, isotropic elastic earth media. The propagation of seismic wave is

governed by the elastic wave equation (Virieux, 1986)

ρ
∂vx
∂t
−
(
∂σxx
∂x

+
∂σxz
∂z

)
= 0,

ρ
∂vz
∂t
−
(
∂σxz
∂x

+
∂σzz
∂z

)
= 0,

∂σxx
∂t
− (λ+ 2µ)

∂vx
∂x
− λ∂vz

∂z
= fxx,

∂σzz
∂t
− (λ+ 2µ)

∂vz
∂z
− λ∂vx

∂x
= fzz,

∂σxz
∂t
− µ

(
∂vx
∂z

+
∂vz
∂x

)
= 0,

(9.1)

with zero initial condition and appropriate boundary conditions. In the above equation, vx and vz

are the horizontal and vertical particle velocity fields, σxx, σxz and σzz are the stress fields. Similarly,

ρ indicates density, λ and µ the Lamé parameters, fxx and fzz are the explosive source terms. In

the wave equation, we dropped the dependence on spatial and temporal coordinates x and t of

our variables to make the notations concise but we understand that vx = vx(x, t), λ = λ(x), etc.

The elastic wave equation is the state equation of the elastic parameter inversion problem when it

is regarded as optimal control problem (Lions, 1971; Plessix, 2006). Abstractly, the elastic wave

equation 9.1 can be written in functional form as follows

S (m)u = f , (9.2)

where u = (vx, vz, σxx, σzz, σxz)
T is the wavefield vector in space U, f = (0, 0, fxx, fzz, 0)T is the

source vector in space F, S (m) (S : U→ F) is the wave equation operator with initial conditions
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and boundary conditions, and m = (ρ, λ, µ)T denotes the model parameter vector in space M . The

wavefield u is linear in the source term f but is nonlinear in the model m. If the source term is

assumed known, u can be regarded as a nonlinear function of the model parameters m

u = u(m). (9.3)

In a general heterogenous media, there is no analytic solution for u given m. A numerical method

must be used to solve the forward problem. In this article, a time domain staggered-grid finite-

difference (FD) scheme (Virieux, 1986; Levander, 1988) is utilized to discretize the continuous form

elastic wave equation 9.1. The unsplit Convolutional Perfectly Matched Layer (C-PML) method is

used to absorb incident waves on artificial computational boundaries (Komatitsch and Martin, 2007).

In our FD code, we adopted a second-order centered difference scheme in time and a selectable

order staggered difference scheme in space.

9.2.2 Time-domain elastic Gauss-Newton full-waveform inversion

FWI estimates the spatially varying coefficients of the wave equation from the seismic data observed

on the surface of the earth. FWI is usually formulated as a nonlinear least-squares inverse problem

that minimizes the functional (Tarantola, 1984, 1986)

J (m) =
1

2

Ns∑

i=1

‖di(m)− dobsi ‖22, (9.4)

where di(m) = T ui(m) is the forward modeled seismic data for ith shot, T is the sampling

operator, dobsi is the observed seismic data for ith shot, and ‖ · ‖2 denotes the `2 norm of vector.

Gradient-based FWI is a local optimization that utilizes the Born approximation in each iteration

(Virieux and Operto, 2009). Introducing a model perturbation m→m + δm and a second-order

Taylor series expansion, the cost function in the vicinity of m is given by the following expression

J (m + δm) = J (m) +
∂J (m)

∂m
δm +

1

2
δmT ∂

2J (m)

∂m2
δm + O(‖δm‖3). (9.5)



Time-domain elastic Gauss-Newton FWI 171

In the vicinity of m, the cost function is linearized and an optimal model update δm should satisfy

∂J (m + δm)/∂δm = 0. The latter results in the following expression

δm = −
[
∂2J (m)

∂m2

]−1
∂J (m)

∂m

= −
{

Ns∑

i=1

[(
∂di
∂m

)†(∂di
∂m

)
+

(
∂2di
∂m2

)† (
di − dobsi

)]}−1 [ Ns∑

i=1

(
∂di
∂m

)† (
di − dobsi

)]
,

(9.6)

where † denotes the adjoint of an operator, ∂di/∂m is the Fréchet derivative or Jacobian operator

of d with respect to m, and the latter is actually the elastic Born approximation operator. In

the above equation, the term in the braces is called the full Hessian in the FWI problem (Pratt

et al., 1998; Fichtner and Trampert, 2011; Metivier et al., 2013). The second term in the braces

corresponds to the second-order multiple scattering. This term is small when the cost function is

close to a minimum. Dropping the second-order term results in the Gauss-Newton update (Pratt

et al., 1998)

δm = −
[
Ns∑

i=1

(
∂di
∂m

)†(∂di
∂m

)]−1 [ Ns∑

i=1

(
∂di
∂m

)† (
di − dobsi

)]
, (9.7)

where the term in the first bracket is the called approximated Hessian

H =

Ns∑

i=1

(
∂di
∂m

)†(∂di
∂m

)
, (9.8)

and the term in the second bracket is the gradient

G =

Ns∑

i=1

(
∂di
∂m

)† (
di − dobsi

)
. (9.9)

With equations 9.8 and 9.9, the Gauss-Newton update 9.7 can be written as

δm = −H −1G . (9.10)

The elastic Gauss-Newton FWI iteratively minimizes the nonlinear least-squares objective function

by updating the model in the Gauss-Newton direction δm. The updated model at (k+1)th iteration

can be written as

m(k+1) = m(k) + η(k)δm(k) = m(k) − η(k)(H (k))
−1

G (k), (9.11)
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where m(k) is the model at kth iteration, η(k) is the step size at kth iteration, and δm(k) is the

Gauss-Newton search direction at kth iteration, H (k) is the approximated Hessian at kth iteration

and G (k) is the gradient at kth iteration. The general time-domain elastic Gauss-Newton FWI

algorithm is summarized as Algorithm 9.1

Algorithm 9.1 Time-domain elastic Gauss-Newton FWI

Initialize: m(0)

for k = 0, 1, · · · while not converge do

1. Forward modeling: d
(k)
i = di(m

(k)), i = 1, · · · , Ns

2. Compute data residual: δd
(k)
i = dobsi − d

(k)
i , i = 1, · · · , Ns

3. Compute Gauss-Newton search direction: δm(k) = −(H (k))
−1

G (k)

4. Compute step size η(k) via parabola fitting line search.
5. m(k+1) = m(k) + η(k)δm(k)

end

9.2.3 Solve for Gauss-Newton step via CGLS algorithm combing with adjoint-

state method

Formulate Gauss-Newton step as an elastic LSRTM problem

In this section, we will drop the FWI iteration index (k) of the approximated Hessian, gradient

and model update to make the notations concise but we understand that they depend on the FWI

iteration index. In the definition of Gauss-Newton update (equation 9.11), the approximated Hessian

H needs to be inverted. However, explicitly computing and inverting the Hessian operator are

prohibitively expensive for realistic scale problem. Instead, we solve for the Gauss-Newton step

update via the matrix-free conjugate gradient least-squares algorithm combing with adjoint-state

method. Gauss-Newton update 9.7 can be computed via solving normal equations

Ns∑

i=1

(
∂di
∂m

)†(∂di
∂m

)
δm = −

Ns∑

i=1

(
∂di
∂m

)† (
di − dobsi

)
, (9.12)

or equivalently,

H δm = −G . (9.13)
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If we use Li to denote the Jacobian operator ∂di/∂m and δdi to denote the data residual dobsi −di

for ith shot, the normal equation 9.12 becomes

Ns∑

i=1

L †
i Liδm =

Ns∑

i=1

L †
i δdi. (9.14)

The solution of above equation is equivalent to solving a least-squares inversion problem that

minimizes

Jgn(δm) =
1

2

Ns∑

i=1

‖Liδm− δdi‖22. (9.15)

We recognized that solving for the Gauss-Newton step (equation 9.15) is actually equivalent to solve

an elastic LSRTM problem (Chen and Sacchi, 2017). The Jacobian operator Li is the elastic Born

modeling operator and the adjoint of Jacobian operator L †
i is the elastic RTM operator.

Jacobian operator L : elastic Born modeling operator

The elastic Born modeling or Born approximation describes that the incident wavefield hits the

scatters and generates the scattered wavefield. It maps from model perturbation to data perturbation.

The incident background wavefield for current model is computed using the elastic wave equation

ρ
∂vx
∂t
−
(
∂σxx
∂x

+
∂σxz
∂z

)
= 0,

ρ
∂vz
∂t
−
(
∂σxz
∂x

+
∂σzz
∂z

)
= 0,

∂σxx
∂t
− (λ+ 2µ)

∂vx
∂x
− λ∂vz

∂z
= fxx,

∂σzz
∂t
− (λ+ 2µ)

∂vz
∂z
− λ∂vx

∂x
= fzz,

∂σxz
∂t
− µ

(
∂vx
∂z

+
∂vz
∂x

)
= 0,

(9.16)

with zero initial condition and appropriate boundary conditions. A perturbation of the model

parameters

ρ→ ρ+ δρ, (9.17a)

λ→ λ+ δλ, (9.17b)

µ→ µ+ δµ, (9.17c)



174

leads to a perturbation of the wavefields

vx → vx + δvx, (9.17d)

vz → vz + δvz, (9.17e)

σxx → σxx + δσxx, (9.17f)

σzz → σzz + δσzz, (9.17g)

σxz → σxz + δσxz. (9.17h)

Inserting equation 9.17 into equation 9.16, subtracting equation 9.16, and dropping second and

higher order terms leads to the Born approximation for the first-order velocity stress elastic wave

equation system (Chen and Sacchi, 2017)

ρ
∂δvx
∂t
−
(
∂δσxx
∂x

+
∂δσxz
∂z

)
= −δ%v̇x,

ρ
∂δvz
∂t
−
(
∂δσxz
∂x

+
∂δσzz
∂z

)
= −δ%v̇z,

∂δσxx
∂t

− (λ+ 2µ)
∂δvx
∂x
− λ∂δvz

∂z
= (δλ+ δµ)

σ̇xx + σ̇zz
2(λ+ µ)

+ δµ
σ̇xx − σ̇zz

2µ
,

∂δσzz
∂t

− (λ+ 2µ)
∂δvz
∂z
− λ∂δvx

∂x
= (δλ+ δµ)

σ̇xx + σ̇zz
2(λ+ µ)

− δµσ̇xx − σ̇zz
2µ

,

∂δσxz
∂t

− µ
(
∂δvx
∂z

+
∂δvz
∂x

)
= δµ

σ̇xz
µ
,

(9.18)

with zero initial condition and appropriate boundary conditions. The vector δu = (δvx, δvz,

δσxx, δσzz, δσxz)
T is the scattered wavefield due to model perturbations δ%, δλ and δµ, and u =

(vx, vz, σxx, σzz, σxz)
T is the incident wavefield field in the background model ρ, λ, µ, and the over-dot

means the time derivative. The right side of equation 9.18 is the so-called “secondary source”. The

scattered data is obtained by sampling the scattered wavefield at the receiver positions δd = T δu.

For elastic FWI problem, parameterization in wave speeds is better than parameterization in Lamé

parameters (Tarantola, 1986). The model perturbations have the relationship




δ%

δλ

δµ


 =




1 0 0

V 2
p − 2V 2

s 2ρVp − 4ρVs

V 2
s 0 2ρVs







δρ

δVp

δVs


 , (9.19)

where m = (ρ, Vp, Vs)
T is the background model and δm = (δρ, δVp, δVs)

T is the model perturbation.
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Adjoint of Jacobian operator L †: elastic RTM operator

The elastic RTM operator is the adjoint of the elastic Born modeling operator that maps from

data perturbation to model perturbation. The adjoint-state equation for state equation 9.1 can be

derived using the adjoint-state method (Chen and Sacchi, 2017)

− ρ∂υx
∂t

+

(
∂ςxx
∂x

+
∂ςxz
∂z

)
= δdvx ,

− ρ∂υz
∂t

+

(
∂ςxz
∂x

+
∂ςzz
∂z

)
= δdvz ,

− ∂ςxx
∂t

+ (λ+ 2µ)
∂υx
∂x

+ λ
∂υz
∂z

= 0,

− ∂ςzz
∂t

+ (λ+ 2µ)
∂υz
∂z

+ λ
∂υx
∂x

= 0,

− ∂ςxz
∂t

+ µ

(
∂υx
∂z

+
∂υz
∂x

)
= 0,

(9.20)

with zero final condition and appropriate boundary conditions. In the adjoint-state equation,

vector p = (υx, υz, ςxx, ςzz, ςxz)
T is the adjoint-state wavefield (back-propagated wavefield), vector

δd = (δdvx , δdvz)T is the data residual. Here, we assume that the observed data are two-component

vector particle velocity data. The adjoint model perturbations (δm∗ = (δ%∗, δλ∗, δµ∗)T ) can be

expressed as (Chen and Sacchi, 2017)

δ%∗ = −
∫

(v̇xυx + v̇zυz)dt,

δλ∗ =

∫
(σ̇xx + σ̇zz)(ςxx + ςzz)

4(λ+ µ)2
dt,

δµ∗ =

∫ [
σ̇xzςxz
µ2

+
(σ̇xx + σ̇zz)(ςxx + ςzz)

4(λ+ µ)2
+

(σ̇xx − σ̇zz)(ςxx − ςzz)
4µ2

]
dt,

(9.21)

where the over-dot means time derivative. In elastic FWI, parameterization in wave speeds is a

better than parameterization in Lamé parameters. We use the following parameter transformation




δρ∗

δV ∗p

δV ∗s


 =




1 V 2
p − 2V 2

s V 2
s

0 2ρVp 0

0 − 4ρVs 2ρVs







δ%∗

δλ∗

δµ∗


 , (9.22)

to transform the Lamé parameters perturbations to wave speeds perturbations.
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Solving Gauss-Newton step using preconditioned CGLS algorithm

It is important to precondition the linear system of equations to accelerate the convergence of

CGLS algorithm and stabilize the outer FWI iterations. We adopted the elastic pseudo-Hessian for

preconditioning (Chen and Sacchi, 2017). The preconditioned version of elastic LSRTM minimizes

Jgn(δm̃) =
1

2

Ns∑

i=1

‖LiPHδm̃− δdi‖22, (9.23)

where PH denotes the inverse of the diagonal of pseudo-Hessian. The preconditioned conjugate

gradient least squares (PCGLS) algorithm (Bjorck, 1996) can be summarized as Algorithm 9.2. The

Algorithm 9.2 Preconditioned CGLS algorithm

Initialize
δm(0) = 0
r

(0)
i = δdi, i = 1, · · · , Ns

s(0) = PH
†
(∑Ns

i=1 L †
i r

(0)
i

)

p(0) = s(0)

γ(0) = ‖s(0)‖22
for l = 0, 1, · · · while not converge do

t(l) = PHp(l),

q
(l)
i = Lit

(l), i = 1, · · · , Ns

δ(l) =
∑Ns

i=1 ‖q
(l)
i ‖22

α(l) = γ(l)/δ(l)

δm(l+1) = δm(l) + α(l)t(l)

r
(l+1)
i = r

(l)
i − α(l)q

(l)
i , i = 1, · · · , Ns

s(l+1) = PH
†
(∑Ns

i=1 L †
i r

(l+1)
i

)

γ(l+1) = ‖s(l+1)‖22
β(l) = γ(l+1)/γ(l)

p(l+1) = s(l+1) + β(l)p(l)

end

output of Algorithm 9.2 is the inverted model perturbations δm = PHδm̃ = (δVp, δVs)
T , which is

the Gauss-Newton search direction.

9.2.4 Time-domain matrix-free elastic Gauss-Newton FWI

As discussed in the previous section, we propose to do a time-domain elastic Gauss-Newton FWI

using CGLS algorithm to solve the internal Gauss-Newton linear system of equation. It does not
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need to formulate or invert the Hessian matrix explicitly. Instead, the Hessian is iteratively inverted

by the CGLS iterations. The CGLS only requires two operators Li and L †
i that are applied “on the

fly” to vectors. The operators are applied on vectors efficiently via the adjoint-state method. We

call this algorithm as time-domain matrix-free elastic Gauss-Newton FWI. It can be summarized as

Algorithm 9.3.

Algorithm 9.3 Time-domain matrix-free elastic Gauss-Newton FWI

Initialize: m(0)

for k = 0, 1, · · · while not converge do

1. Forward modeling: d
(k)
i = di(m

(k)), i = 1, · · · , Ns

2. Compute data residual: δd
(k)
i = dobsi − d

(k)
i , i = 1, · · · , Ns

3. Compute Gauss-Newton search direction δm(k) by solving

min
δm(k)

1

2

Ns∑

i=1

‖L (k)
i P

(k)
H δm(k) − δd(k)

i ‖22

using preconditioned CGLS algorithm 9.2.
4. Compute step size η(k) via parabola fitting line search.
5. m(k+1) = m(k) + η(k)δm(k)

end
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9.3 Examples

The proposed method was tested on the elastic inclusion model and the elastic Marmousi2 model

(Martin et al., 2006). The “observed data” are generated with time-domain elastic staggered-grid

finite-difference method. The C-PML boundary condition was applied on four boundaries of the

model. The observed data were assumed to be vector particle velocity fields. At current stage, we

simultaneously invert for P- and S- wave velocities and assume that the density is known. The code

for our numerical examples was written in C and parallelized with Message Passing Interface (MPI)

over shots.

9.3.1 Elastic inclusion model

Figure 9.1 shows the true P- and S-wave velocity models. The square velocity anomalies are

embedded in two layered models. Density is assumed to be constant (2000 kg/m3). The model has

a dimension of 2 km in horizontal axis and 1.5 km in depth with 201× 151 grid points. There are

51 shots and 201 receivers deployed along the surface that simulates a fixed-spread survey geometry.

The shot interval is 40 m and receiver interval is 10 m. The shot depth is 10 m and the receiver

depth is 20 m. A 10 Hz central frequency Ricker wavelet is used to simulate an explosive source. The

multicomponent observed data are simulated using our elastic finite-difference code. The observed

data cubes are shown in Figure 9.2. In this section, we compared the results of conventional elastic

FWI based on nonlinear conjugate gradient method (hereafter, we call it elastic NLCG FWI for

short) and the proposed elastic Gauss-Newton FWI. In the elastic NLCG FWI, we used elastic

pseudo-Hessian to precondition the gradient. And the line search is also based on parabola fitting.

Both the elastic NLCG FWI and the elastic Gauss-Newton FWI utilize multiscale method for

inversion from the low frequency until the high frequency bands of the data (Bunks et al., 1995).

The inverted models from early scale are used as initial models for inversion in later scale. In

other words, there is actually another extra loop over frequency bands outside of the Algorithm 9.3.

There are in total three loops of iterations for our elastic Gauss-Newton FWI algorithm. The four

frequency bands for multiscale inversion is: 0-5 Hz, 0-10 Hz, 0-15 Hz and 0-30 Hz. Figure 9.3 shows

the starting P- and S-wave velocity models for elastic NLCG FWI and elastic Gauss-Newton FWI.

The initial models contain two layers without of the velocity anomalies.

The results of elastic NLCG FWI are shown in Figure 9.4 a and Figure 9.5 a. These results were

computed after 20 nonlinear conjugate gradient iterations. The elastic NLCG FWI recovered the
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(a)

(b)

Figure 1: Elastic inclusion model. (a) True P-wave velocity model. (b) True S-wave velocity

model.

Chen & Sacchi – GEO-Example

26Figure 9.1: Elastic inclusion model. (a) True P-wave velocity model. (b) True S-wave
velocity model.
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(a)

(b)

Figure 2: Prestack multicomponent data for elastic inclusion model. (a) Horizontal particle

velocity data. (b) Vertical particle velocity data.

Chen & Sacchi – GEO-Example

27

Figure 9.2: Prestack multicomponent data. (a) Horizontal particle velocity data. (b) Vertical
particle velocity data.
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(a)

(b)

Figure 3: Elastic inclusion model. (a) Starting P-wave velocity model. (b) Starting S-wave

velocity model.

Chen & Sacchi – GEO-Example

28Figure 9.3: (a) Starting P-wave velocity model. (b) Starting S-wave velocity model.
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main features of the velocity anomalies. However, the recovered velocities models are not very

good. Additionally, there are artifacts in the inverted models. Most important, there is crosstalk

between the inverted P-wave and S-wave velocity models. The elastic Gauss-Newton FWI has

iterated 10 times for outer FWI loop and 20 times for inner CGLS loop (Figure 9.4 b and Figure

9.5 b). It efficiently suppresses the multiparameter crosstalk. Moreover, the recovered velocity

models are much better than the ones obtained by elastic NLCG FWI. The inverted models by

elastic Gauss-Newton FWI also contain fewer artifacts. To show the details more clearly, we display

the profiles of the inverted P-wave velocity models in Figure 9.6 and the profiles of the inverted

S-wave velocity models in Figure 9.7. From the velocity profiles, we can observe that the elastic

NLCG FWI does not fully recover the amplitudes of both the P- and S-wave velocity anomalies.

The amplitudes are underestimated. Also, the crosstalk from S-wave velocity manifests as negative

velocity perturbation in inverted P-wave velocity model. And the crosstalk from P-wave velocity

manifests as negative velocity perturbation in inverted S-wave velocity model. However, the proposed

elastic Gauss-Newton FWI fully recovers the amplitude of velocity anomalies and also completely

removed the crosstalk between P- and S-wave velocity models. We also examine the data fitting of

the two elastic FWI algorithms in Figure 9.8 and Figure 9.9. We can see that the data fitting of

the elastic Gauss-Newton FWI inverted models (Figure 9.9) is much better than that of the elastic

NLCG inverted models (Figure 9.8). We emphasize that image plots in Figure 9.8 and Figure 9.9

have been clipped to the same value. Figure 9.10 compares the converge curves of the elastic NLCG

FWI and elastic Gauss-Newton FWI for four different frequency bands. The relative data misfit for

frequency band 0-f Hz (f = 5, 10, 15, 30) is defined as

misfit =

∑Ns
i=1 ‖d

0−fHz
i − dobsi

0−fHz‖22∑Ns
i=1 ‖dobsi

0−fHz‖22
. (9.24)

We can conclude that the elastic Gauss-Newton converges much faster than the elastic NLCG FWI.

And elastic Gauss-Newton FWI allows better data fitting than the elastic NLCG FWI.
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(a)

(b)

Figure 4: (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave

velocity model by elastic Gauss-Newton FWI.

Chen & Sacchi – GEO-Example

29Figure 9.4: (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave
velocity model by elastic Gauss-Newton FWI.
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(a)

(b)

Figure 5: (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave

velocity model by elastic Gauss-Newton FWI.

Chen & Sacchi – GEO-Example

30Figure 9.5: (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave
velocity model by elastic Gauss-Newton FWI.
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(a) (b)

Figure 6:Chen & Sacchi – GEO-Example

31

Figure 9.6: Profiles of inverted P-wave velocity models at (a) x = 875.5 m and (b) x = 1785
m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;
Green: inverted model by elastic Gauss-Newton FWI.
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(a) (b)

Figure 7:Chen & Sacchi – GEO-Example

32

Figure 9.7: Profiles of inverted S-wave velocity models at (a) x = 1785 m and (b) x = 875.5
m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;
Green: inverted model by elastic Gauss-Newton FWI.
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(a) (b) (c)

(d) (e) (f)

Figure 8:Chen & Sacchi – GEO-Example

33

Figure 9.8: Data and residuals for elastic NLCG FWI. (a) Observed horizontal component
data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic NLCG FWI
inverted models. (c) Horizontal component data residual. (d) Observed vertical component
data of shot at x = 1000 m. (e) Vertical component data modeled by elastic NLCG FWI
inverted models. (f) Vertical component data residual.
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(a) (b) (c)

(d) (e) (f)

Figure 9:Chen & Sacchi – GEO-Example

34

Figure 9.9: Data and residuals for elastic Gauss-Newton FWI. (a) Observed horizontal
component data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic
Gauss-Newton FWI inverted models. (c) Horizontal component data residual. (d) Observed
vertical component data of shot at x = 1000 m. (e) Vertical component data modeled by
elastic Gauss-Newton FWI inverted models. (f) Vertical component data residual.
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(d)

Figure 10:Chen & Sacchi – GEO-Example

35

Figure 9.10: Relative data misfit curves for elastic NLCG FWI and elastic Gauss-Newton
FWI in frequency band (a) 0 - 5 Hz, (b) 0 - 10 Hz, (c) 0 - 15 Hz, (d) 0 - 30 Hz. Blue: data
misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss-Newton FWI.
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9.3.2 Elastic Marmousi2 model

Figure 9.11 shows the true P- and S-wave velocity models of the elastic Marmousi2 model. The

P- and S-wave velocity models are uncorrelated, which pose difficulties for elastic FWI. Density is

assumed to be constant (2000 kg/m3). The model has a dimension of 2550 m in horizontal axis

and 1139 m in depth with 301 × 135 grid points. There are 61 shots and 301 receivers deployed

along the surface that simulates a fixed-spread survey geometry. The shot interval is 42.5 m and

receiver interval is 8.5 m. The shot depth is 8.5 m and the receiver depth is 17 m. A 10 Hz central

frequency Ricker wavelet is used to simulate an explosive source. The multicomponent observed

data are simulated using our elastic finite-difference code. The observed data cubes are shown in

Figure 9.12. The four frequency bands for multiscale inversion is: 0-2 Hz, 0-5 Hz, 0-10 Hz and 0-30

Hz. Figure 9.13 shows the starting P- and S-wave velocity models for elastic NLCG FWI and elastic

Gauss-Newton FWI. The initial models are 1D linearly increasing velocities models.

The results of elastic NLCG FWI are shown in Figure 9.14 a and Figure 9.15 a. These results were

computed after 50 nonlinear conjugate gradient iterations. The recovered velocities models are not

very good. The elastic Gauss-Newton FWI has iterated 10 times for outer FWI loop and 40 times

for inner CGLS loop (Figure 9.14 b and Figure 9.15 b). It efficiently suppresses the multiparameter

crosstalk. Moreover, the recovered velocity models are much better than the ones obtained by

elastic NLCG FWI. To show the details more clearly, we display the profiles of the inverted P-wave

velocity models in Figure 9.16 and the profiles of the inverted S-wave velocity models in Figure

9.17. From the velocity profiles, we can observe that the elastic NLCG FWI does not correctly

recover the amplitudes of both the P- and S-wave velocity anomalies. However, the proposed elastic

Gauss-Newton FWI recovers the amplitude of velocity models very well. We also examine the data

fitting of the two elastic FWI algorithms in Figure 9.18 and Figure 9.19. We can see that the data

fitting of the elastic Gauss-Newton FWI inverted models (Figure 9.19) is much better than that of

the elastic NLCG inverted models (Figure 9.18). We emphasize that image plots in Figure 9.18

and Figure 9.19 have been clipped to the same value. Figure 9.20 compares the converge curves of

the elastic NLCG FWI and elastic Gauss-Newton FWI for four different frequency bands. We can

conclude that the elastic Gauss-Newton converges much faster than the elastic NLCG FWI. And

elastic Gauss-Newton FWI allows better data fitting than the elastic NLCG FWI.

9.4 Conclusions

We propose a time-domain matrix-free elastic Gauss-Newton FWI algorithm based on elastic LSRTM

algorithm. We formulate the elastic Gauss-Newton FWI as an iterative elastic LSRTM problem.
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(a)

(b)

Figure 11: Elastic Marmousi2 model. (a) True P-wave velocity model. (b) True S-wave

velocity model.

Chen & Sacchi – GEO-Example

37

Figure 9.11: Elastic Marmousi2 model. (a) True P-wave velocity model. (b) True S-wave
velocity model.
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(a)

(b)

Figure 12: Prestack multicomponent data for elastic Marmousi2 model. (a) Horizontal

particle velocity data. (b) Vertical particle velocity data.

Chen & Sacchi – GEO-Example
38

Figure 9.12: Prestack multicomponent data. (a) Horizontal particle velocity data. (b)
Vertical particle velocity data.
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(a)

(b)

Figure 13: Elastic Marmousi2 model. (a) Starting P-wave velocity model. (b) Starting

S-wave velocity model.

Chen & Sacchi – GEO-Example
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Figure 9.13: (a) Starting P-wave velocity model. (b) Starting S-wave velocity model.
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(a)

(b)

Figure 14: (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave

velocity model by elastic Gauss-Newton FWI.

Chen & Sacchi – GEO-Example

40

Figure 9.14: (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave
velocity model by elastic Gauss-Newton FWI.
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(a)

(b)

Figure 15: (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave

velocity model by elastic Gauss-Newton FWI.

Chen & Sacchi – GEO-Example
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Figure 9.15: (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave
velocity model by elastic Gauss-Newton FWI.
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(a) (b)

Figure 16: figureChen & Sacchi – GEO-Example

42

Figure 9.16: Profiles of inverted P-wave velocity models at (a) x = 650 m and (b) x = 1520
m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;
Green: inverted model by elastic Gauss-Newton FWI.
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(a) (b)

Figure 17: figureChen & Sacchi – GEO-Example

43

Figure 9.17: Profiles of inverted S-wave velocity models at (a) x = 1450 m and (b) x = 590
m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;
Green: inverted model by elastic Gauss-Newton FWI.
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(a) (b) (c)

(d) (e) (f)

Figure 18:Chen & Sacchi – GEO-Example

44

Figure 9.18: Data and residuals for elastic NLCG FWI. (a) Observed horizontal component
data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic NLCG FWI
inverted models. (c) Horizontal component data residual. (d) Observed vertical component
data of shot at x = 1000 m. (e) Vertical component data modeled by elastic NLCG FWI
inverted models. (f) Vertical component data residual.
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(a) (b) (c)

(d) (e) (f)

Figure 19:Chen & Sacchi – GEO-Example

45

Figure 9.19: Data and residuals for elastic Gauss-Newton FWI. (a) Observed horizontal
component data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic
Gauss-Newton FWI inverted models. (c) Horizontal component data residual. (d) Observed
vertical component data of shot at x = 1000 m. (e) Vertical component data modeled by
elastic Gauss-Newton FWI inverted models. (f) Vertical component data residual.
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Figure 20:Chen & Sacchi – GEO-Example

46

Figure 9.20: Relative data misfit curves for elastic NLCG FWI and elastic Gauss-Newton
FWI in frequency band (a) 0 - 2 Hz, (b) 0 - 5 Hz, (c) 0 - 10 Hz, (d) 0 - 30 Hz. Blue: data
misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss-Newton FWI.
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The proposed algorithm consists of two loops of iterations: the outer Gauss-Newton nonlinear

iterations and the inner conjugate gradient least-squares (CGLS) linear iterations. The outer

nonlinear iteration uses parabola fitting line search to estimate the step size. The Gauss-Newton

search direction in each outer FWI iteration is computed using the matrix-free CGLS algorithm.

We point out that this step is actually equivalent to apply an elastic LSRTM on data residual, with

the Jacobian operator as elastic Born modeling operator and the adjoint of Jacobian operator as

elastic RTM operator. The CGLS algorithm can be safely used for solving the Gauss-Newton search

direction because our discretized numerical versions of elastic Born and RTM operators passed the

dot-product test. In the inner CGLS linear iterations, the step size is analytically calculated without

of the need of line search. The inner CGLS linear iterations are preconditioned using the elastic

pseudo-Hessian operator. Our algorithm is matrix-free that only requires the forward Jacobian and

adjoint Jacobian operator applied “on the fly” to vectors. The operators are applied on vectors

efficiently via the adjoint-state method. We use the proposed algorithm to simultaneously invert for

P- and S-wave velocities.The proposed elastic Gauss-Newton FWI generates better inverted models

than the nonlinear conjugate gradient method based elastic FWI. More importantly, the elastic

Gauss-Newton FWI can decouple the crosstalk between P- and S-wave velocity models.
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Source encoding in multi-parameter full waveform inver-

sion

G. Matharu 1

Abstract

Source encoding techniques alleviate the computational burden of sequential-source full

waveform inversion (FWI) by considering multiple sources simultaneously rather than

independently. The reduced data volume requires fewer forward/adjoint simulations per

non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI)

have thus far focused on mono-parameter acoustic inversion. We extend SEFWI to the

multi-parameter case with applications presented for elastic isotropic inversion. Estimat-

ing multiple parameters can be challenging as perturbations in different parameters can

prompt similar responses in the data. We investigate the relationship between source

encoding and parameter trade-off by examining the multi-parameter source-encoded

Hessian. Hessian probing is employed to demonstrate the convergence of the expected

source-encoded Hessian, to the Hessian of conventional FWI. The convergence implies

that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series

of synthetic inversions are conducted to establish the feasibility of source-encoded multi-

parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than

FWI to achieve a target model error for various first-order optimization methods. An

inversion for spatially inconsistent P− (α) and S-wave (β) velocity models, corroborates

the expectation of comparable parameter trade-off in SEFWI and FWI.

1Email: gian@ualberta.ca
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10.1 Introduction

Since its conception in the 1980s (Lailly, 1983; Tarantola, 1984, 1986; Mora, 1987), full waveform

inversion (FWI) has matured from a mathematical concept, to a viable imaging technique used to

estimate physical parameters in the Earth’s subsurface. The advent of modern supercomputers

coupled with algorithmic advances have led to a flurry of successes in FWI in both exploration

(Pratt et al., 1998; Shipp and Singh, 2002; Sears et al., 2008; Virieux and Operto, 2009; Brossier

et al., 2009; Krebs et al., 2009; Prieux et al., 2013a) and global (Tape et al., 2009; Fichtner et al.,

2009; Zhu et al., 2015) seismology.

The computational cost of FWI remains a limiting factor for large scale 3D applications on real

data. As practitioners accommodate larger and larger datasets, efficient algorithms are crucial to

ensuring FWI remains tractable. Potential transitions to more complex physics (e.g. acoustic to

elastic) further compound the computational cost. The bulk of the computational expense in FWI

originates from computing numerical solutions to multiple partial differential equations per source at

each iteration. The linear dependence of the cost on the number of sources hampers the scalability

of FWI for large datasets. Source encoding is an approach that effectively reduces the dimensionality

of the data (Romero et al., 2000; Krebs et al., 2009). By considering multiple simultaneously rather

than independently, source encoding reduces the computational cost of an FWI iteration.

Source encoding was originally proposed by Romero et al. (2000) to reduce the cost of shot-record

migration. They replaced individual sources by a smaller number of encoded sources, where each

encoded source represents a weighted linear combination of individual sources. The weights —known

as encoding functions— were chosen as random phase-shifts and are necessary to reduce cross-talk

artefacts in the corresponding migration image. Cross-talk artefacts arise from the interaction of

different sources with one another in the imaging condition. Romero et al. (2000) significantly

reduced the cost of shot-record migration whilst maintaining an acceptable image quality.

Simultaneous sources (without source encoding) were later utilized in global tomography (Capdeville

et al., 2005). While the method demonstrated success in synthetic tests, real data examples were

hindered by missing data. Vigh and Starr (2008) synthesized plane-wave gathers for acoustic FWI

using a deterministic form of time-shift encoding. Krebs et al. (2009) extended source-encoding to

FWI and presented two significant results. The first, was the adoption of polarity encoding functions

that had the advantageous property of not increasing simulation time, unlike phase/time-shift based

encoding schemes. The second, was that by randomizing the encoding functions at each iteration,

cross-talk artefacts were almost entirely eliminated from the inverted models. Additional studies in
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source encoded migration/FWI (SEFWI) have explored the properties of cross-talk (Schuster et al.,

2011; Ben-Hadj-Ali et al., 2011), strategies for non fixed-spread receivers (Routh et al., 2011; Choi

and Alkhalifah, 2012), the use of second-order optimization methods (Anagaw and Sacchi, 2014;

Castellanos et al., 2015), and stochastic optimization methods in place of source encoding (Haber

et al., 2012; van Leeuwen and Herrmann, 2013).

The estimation of multiple independent parameters with limited data, poses a significant challenge in

multi-parameter FWI. Changes in different physical properties in the Earth’s subsurface, can provoke

similar responses in the data. This introduces trade-off between the parameters during inversion,

meaning that it can be difficult, or impossible to resolve different parameters uniquely. The model,

model parametrization, acquisition geometry, and data, all affect the resolvability of individual

parameters (Tarantola, 1986; Pratt et al., 1998; Operto et al., 2013). Information on the resolution

of model parameters is contained in the Hessian of the objective function. Ideally, second-order

optimization would be used to account for the Hessian during computation of the model updates.

While second-order optimization methods have been explored in FWI (Epanomeritakis et al., 2008;

Métivier et al., 2013; Anagaw and Sacchi, 2014; Pan et al., 2016), they are computationally expensive

and do not consistently demonstrate improvements over quasi-Newton methods such as L-BFGS.

In lieu of incorporating the Hessian, parameter trade-off can be limited through a combination of

data-driven inversion strategies (Shipp and Singh, 2002; Sears et al., 2008; Prieux et al., 2013a,b)

and appropriate selection of the inversion parameters (Tarantola, 1986; Plessix and Cao, 2011;

Köhn et al., 2012; Operto et al., 2013; Gholami et al., 2013; Alkhalifah and douard Plessix, 2014).

Understanding parameter trade-off is necessary for accurate model appraisal, particularly when

first-order optimization methods are used.

In this paper, we investigate the feasibility of source-encoded elastic full waveform inversion.

Emphasis is placed on understanding the influence of source encoding on the inversion of multiple

parameters. Specifically, we seek to determine how source encoding affects parameter trade-off in

multi-parameter inversion. While our study focuses on the isotropic, elastic case, our treatment is

independent of a specific parametrization so as to be applicable to the general case of multi-parameter

inversion.

The paper is structured as follows. Section 2 provides a brief review of FWI, source-encoded FWI,

and the optimization algorithms associated with each method. Section 3 introduces challenges

associated with multi-parameter inversion. The multi-parameter Hessian, with and without source

encoding, is examined to determine the influence of source encoding on parameter trade-off. Section
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4 presents a series of numerical experiments catered towards testing specific components of source-

encoded FWI. We present results describing the efficiency gain, parameter trade-off, and flexibility

of SEFWI relative to FWI. Conclusions from the study are presented in section 5.

10.2 Theory: Full waveform inversion

Full waveform inversion can be formulated mathematically as a PDE-constrained optimization

problem of the form

minimize
m

J(m),

subject to F (u,m) = 0,
(10.1)

where the functional J(m), is dependent on model parameters m. u is known as the state variable

and F (u,m) is the state or forward equation (Plessix, 2006). In the context of FWI, the forward

equation corresponds to the seismic wave equation, represented symbolically it reads as

L(m)u = s. (10.2)

The state variable is the particle displacement u(x, t) excited by an external source s(x, t). Time

is denoted by t ∈ [0, T ] and x ∈ Ω ⊂ Rd denotes spatial coordinates with dimensions d = 1, 2, 3.

For the sake of brevity, we omit the spatial and temporal dependencies of variables after they are

first introduced, provided that no ambiguities arise from the omission. The model parameters

m(x) = [m1(x),m2(x), . . . ,mNp(x)]T , represent Np independent physical properties of the Earth’s

subsurface; T denotes the transpose. L(m) is a linear differential operator that characterizes the

seismic wave equation and can accommodate varying degrees of physical complexity e.g. acoustic,

elastic, isotropic/anisotropic etc. The physics incorporated into the forward modelling operator

L(m), dictate the physical properties comprised in m. In this study, L(m) refers to the isotropic,

elastic wave equation in the time domain (Aki and Richards, 2002),

L(ρ, λ, µ) [·] = ρ(x)
∂2

∂t2
[·]− (λ(x) + 2µ(x))∇∇ · [·]− µ(x)∇×∇× [·], (10.3)

where [·] is a place-holder for the variable acted upon by L(m). ∇ denotes the spatial gradient

operator. ρ(x), λ(x), and µ(x) are density and the Lamé parameters, respectively; µ is also known as

the shear modulus. The particular choice of L(m) in eq. (10.3) does not lead to a loss of generality

in the forthcoming discussions on FWI and multi-parameter source-encoded FWI.
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The misfit functional J(m) —also known as the objective function— quantifies the difference

between observed and synthetic data by comparing an observable quantity. The most prevalent

choice of objective function for FWI is the least-squares waveform misfit functional

J(m) =
1

2

Ns∑

s=1

Nr∑

r=1

∫

T
|us(xr, t; m)− ds(xr, t)|2 dt. (10.4)

The simulated multi-component data us(xr, t; m) are recorded at the r-th receiver and generated

by the s-th source ss for model m. A similar definition is applicable for the observed data ds(xr, t).

Ns and Nr denote the number of sources and receivers, respectively. The least-squares waveform

misfit (10.4) is a non-linear functional owing to the non-linear dependence of u on m (Virieux and

Operto, 2009).

Non-linear functionals can be minimized via iterative, gradient-based minimization algorithms

(Plessix, 2006). This approach was first demonstrated by Lailly (1983) and Tarantola (1984) who

formulated FWI as a linearized inverse problem. Solutions to eq. (10.1) can be estimated by

iteratively updating the model parameters via

mk+1 = mk + νkδmk, (10.5)

where k denotes the iteration number, νk is a scalar step length, and the model perturbation/update

is δmk(x) = [δm1(x), δm2(x), . . . , δmNp(x)]T . A suitable νk can be estimated using various line-

search algorithms (Nocedal and Wright, 2006). In optimization literature, the model update δmk is

referred to as the search/descent direction and can be derived from the gradient of the objective

function with respect to the model parameters.

FWI gradient

The gradient of J(m) with respect to m, ∇mJ , can be calculated efficiently using the adjoint-state

method; for a complete description of the method, the reader is referred to Tarantola (1984); Mora

(1987); Tromp et al. (2005); Plessix (2006); Fichtner et al. (2006). Gradient computation via the

adjoint-state method requires solutions to the forward (10.2) and adjoint wave equation

L†(m)u† = s†. (10.6)

The linear differential operator L† characterizes the adjoint wave equation, u†(x, t) is the adjoint

wavefield, and s†(x, t) is known as the adjoint source. The adjoint wave equation adheres to the
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same physics as the forward wave equation, but operates in reverse time (T → 0) and replaces s

with adjoint source s†. Initial conditions on displacement and velocity are replaced by analogous

terminal conditions at time T . The precise form of s† is determined by the choice of objective

function. The adjoint source for the least-squares waveform misfit functional is

s†s(x, t) =

Nr∑

r=1

[us(xr, t; m)− ds(xr, t)] δ(x− xr). (10.7)

The adjoint wave equation backpropagates the waveform residuals from the receiver locations into

the subsurface. The same modelling code can be used to solve the forward (10.2) and adjoint (10.6)

wave equations. Given u and u†, the time-domain expression for the derivative of J with respect to

m is

∇mJ(x) = −
Ns∑

s=1

∫

T
u†s(x, t) ·

∂L

∂m
us(x, t) dt. (10.8)

Computation of ∇mJ requires Ns forward simulations and Ns adjoint simulations at each iteration.

The computational cost of an FWI iteration therefore grows linearly with Ns. This linear dependence

can become prohibitive when Ns is large. Source encoding effectively reduces the number of sources

by considering multiple sources simultaneously rather than independently.

10.2.1 Source-encoded FWI

The linear dependence of u with respect to s, allowed Krebs et al. (2009) to reformulate eq. (10.4)

to accommodate simultaneous sources under the assumption of a fixed-spread acquisition. The

revised misfit functional may be expressed as

Ĵ(m) =
1

2

Ne∑

e=1

Nr∑

r=1

∫

T
|ûe(xr, t; m)− d̂e(xr, t)|2 dt, (10.9)

where d̂e are the encoded data and ûe are the synthetic data generated by encoded source ŝe.

The number of encoded sources Ne is selected such that Ne < Ns. We use a circumflex to signify

source-encoded variables or those associated with SEFWI. Source encoding reduces the data volume

by a factor equal to Ns/Ne thereby reducing the number of PDE solves required per iteration.

Maximal data compression is achieved when every individual sources is combined into a single

encoded source.

Let S denote the set containing all the sources in a given acquisition. We synthesize Ne encoded

sources from Ne mutually disjoint subsets of S. Formally, S = ∪Ne
i=1Si where Si ∩ Sj = ∅, {∀i, j =
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1, . . . , Ne, i 6= j}. Mutually disjoint subsets ensure that individual sources are not repeated over

multiple encoded sources. This restriction is not essential to the formulation of SEFWI; however,

we impose it to simplify the forthcoming treatment of SEFWI. Following this definition, ŝe and d̂e

are formed from the linear combinations,

ŝe(x, t) =
∑

s∈Se

qes(t) ∗ ss(x, t), (10.10)

d̂e(x, t) =
∑

s∈Se

qes(t) ∗ ds(x, t), (10.11)

where qes(t) are source-specific encoding functions for the e-th encoded source. Convolution in the

time domain is denoted by ∗. Encoding functions are discussed in detail in section 2.2.

SEFWI gradient

The SEFWI gradient is computed using the adjoint-state method in conjunction with an adjoint

source derived from eq. (10.9),

ŝ†e(x, t) =

Nr∑

r=1

[
ûe(xr, t; m)− d̂e(xr, t)

]
δ(x− xr). (10.12)

Source encoding introduces cross-talk artefacts into the gradient that are a consequence of zero-lag

correlations (10.8) between forward and adjoint wavefields that do not correspond to the same

source. For the case of pure simultaneous sources, i.e. if qes(t) = 1 {∀s ∈ Se, e = 1, . . . , Ne}, the

derivative of Ĵ with respect to m is

∇mĴ(x) = −
Ne∑

e=1

∫

T
û†e(x, t) ·

∂L

∂m
ûe(x, t) dt, (10.13)

= −
Ne∑

e=1

∫

T

∑

i∈Se

u†i (x, t) ·
∂L

∂m

∑

j∈Se

uj(x, t) dt,

= ∇mJ(x)−
Ns∑

i=1

Ns∑

j=1

j 6=i

∫

T
u†j(x, t) ·

∂L

∂m
ui(x, t) dt

︸ ︷︷ ︸
Cross-talk term

. (10.14)

The simplification in eq. (10.14) is valid when subsets Si are mutually disjoint. The second term on

the right hand side of eq. (10.14) represents cross-talk artefacts that compromise the accuracy of
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the desired gradient. For pure simultaneous sources, the cross-talk artefacts stack as coherent noise

over the course of SEFWI iterations resulting in inaccurate models (Romero et al., 2000; Krebs

et al., 2009). The influence of cross-talk artefacts can be ameliorated via source encoding; further

details are described in the following section.

10.2.2 Source encoding

The frequency domain representation of ∇mĴ with general source-encoding is

∇mĴ(x) =−
Ne∑

e=1

[∑

i∈Se

〈
Qe
i (ω)Ui

†(x, ω), Qe
i (ω)

∂L

∂m
Ui(x, ω)

〉

ω

+
∑

i∈Se

∑

j∈Se

j 6=i

〈
Qe
i (ω)Ui

†(x, ω), Qe
j(ω)

∂L

∂m
Uj(x, ω)

〉

ω




︸ ︷︷ ︸
Cross-talk term

, (10.15)

where Qe
i (ω) = F{qei (t)}, U(x, ω) = F{u(x, t)}, U †(x, ω) = F{u†(x, t)}, and F is the Fourier

transform operator. The frequency-space inner product 〈·, ·〉ω between two arbitrary complex-valued

functions f and g, is defined as

〈f, g〉ω :=

∫

ω
f̄(ω)g(ω) dω. (10.16)

Complex conjugation is denoted by a bar above a variable. When the encoding functions form an

orthonormal basis i.e. Q̄e
i (ω)Qe

j(ω) = δij , eq. (10.15) reduces to the standard FWI gradient. In

practice, we seek random encoding functions that exhibit the property

E[Q̄e
i (ω)Qe

j(ω)] = δij . (10.17)

Equation (10.17) states that the expected inner product between any two random encoding functions

is a Kronecker delta function. Previous studies have used this condition to select appropriate

encoding functions, some of which we present here.

Random time-shift encoding employs functions of the form Qs(ω) = eiωτs , where τs is a random time

shift associated with the s-th source. Schuster et al. (2011) demonstrated that for random variables

τs ∼ N (0, σ2), that are independent and identically distributed ∀s = 1, . . . , Ns, the expected inner
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product between two random encoding functions is given by

E[Q̄i(ω)Qj(ω)] =





1, if i = j

e−ω
2σ2
, if i 6= j.

(10.18)

The cross-term (i 6= j) stems from the characteristic function of the random variable τs. Schuster

et al. (2011) conclude that cross-talk noise may be attenuated if the variance of the time shifts is

much greater than the period 2π/ω. Lower frequency signals, therefore require larger time shifts to

reduce cross-talk terms in the gradient.

Plane-wave encoding is a specialized form of time-shift encoding where the time shifts are controlled

by ray parameter p and source position xs (Vigh and Starr, 2008). The encoding functions are

given by

Qs(xs,p, ω) = eiωp·(xs−x0), (10.19)

where x0 is the location of the plane-wave origin. Plane-wave encoding uses all of the available

sources within an acquisition to synthesize plane-wave gathers. The summation over encoded sources

in eq. (10.9) is replaced by a summation over ray parameters. Cross-talk artefacts can be minimized

by sampling over a sufficiently broad range of ray parameters (Vigh and Starr, 2008).

Time-shift encoding schemes extend the duration of seismic traces resulting in longer simulation

times in FWI. While the time shifts are typically much shorter than the duration of a trace, the

increased simulation time is undesirable. Polarity encoding avoids this by opting for encoding

functions of the form

Qi(ω) = pi. (10.20)

The discrete random variable pi takes values of +1 or -1 with equal probability. The orthonormality

condition of eq. (10.17) is satisfied and simulation time remains unaffected.

Source encoding alone is not sufficient to suppress cross-talk artefacts in SEFWI. The encoding

functions should be randomized at regular intervals, ideally after every iteration (Krebs et al., 2009).

Randomizing the encoding functions ensures that the cross-talk terms stack as incoherent noise

over the course of SEFWI. In a theoretical analysis of cross-talk, Schuster et al. (2011) defined the

cross-talk signal-to-noise ratio (c-SNR) as

c-SNR =
‖v‖

‖v̂(est) − v‖ . (10.21)
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In this definition v(x) represents an arbitrary scalar field and v̂(x) is its source-encoded equivalent.

The gradient is one such example. The L2 norm (‖ · ‖) follows a standard definition:

‖ψ‖ := (

∫

Ω
|ψ(x)|2 dx)

1
2 , (10.22)

for an arbitrary real-valued function ψ(x). v̂(est) is a stack of N random realizations of a source-

encoded scalar field, where realization v̂(i) is an instance of v̂ for a particular random source encoding.

Formally,

v̂(est) =

N∑

i=1

v̂(i). (10.23)

Schuster et al. (2011) demonstrated that the c-SNR grows ∝
√
N . The effect of stacking random

realizations is mimicked by randomizing encoding functions at each iteration of SEFWI. Applied

to source-encoded migration, the number of iterations required to achieve a c-SNR comparable to

sequential source migration, is equal to the number of individual sources in an encoded source.

10.2.3 Gradient-based optimization

In the vicinity of an initial model m0, J(m0) can be approximated by a locally quadratic function

following a second-order Taylor expansion. The perturbation δm that minimizes the quadratic

approximation is obtained by solving the Newton system of equations, represented symbolically as

Hδm = −g, (10.24)

where g = ∇mJ and H = ∇2
mJ denote the gradient and Hessian of J(m0), respectively. Henceforth,

we adopt letter symbols for the FWI/SEFWI gradients and Hessians for readability. The Hessian

for the least-squares waveform misfit functional is

H(x,y) =

Ns∑

s=1

Nr∑

r=1

[∫

T

∂us(xr, t)

∂m(x)

∂us(xr, t)

∂m(y)
dt

+

∫

T

∂2us(xr, t)

∂m(x)∂m(y)
[us(xr, t)− ds(xr, t)] dt

]
. (10.25)

The first term on the right hand side of eq. (10.25) is the Gauss-Newton Hessian Ha. The second

term relates to second-order scattering effects and is routinely neglected (Pratt et al., 1998). Ha

acts as a defocusing operator and smears perturbations in space. Conversely, the inverse Hessian
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acts as a focusing operator. The nature of the focusing/defocusing is linked to the source-receiver

acquisition geometry (Pratt et al., 1998). In multi-parameter inversion, Ha carries information

pertaining to the trade-off between physical parameters. The multi-parameter Hessian is explored

in section 3.1.

The non-linearity of the FWI objective function introduces numerous local minima into the search

space. FWI performs a local optimization; therefore, initial models that are not sufficiently close

to the global minimum may converge to a local minima instead. Provided that the inversion is

initiated with a model sufficiently close to the true model, the objective function can be minimized

using gradient-based optimization algorithms.

Gradient-based optimization algorithms can be divided into first- and second-order methods,

contingent on whether the Hessian is utilized by algorithm. First-order techniques rely solely on

gradient information to generate search directions, whereas second-order techniques use the Hessian

in some capacity. The method of steepest descent (SD) sets the search direction as the negative

gradient; however, search directions may be poorly scaled and result in slow convergence. The

non-linear conjugate gradient algorithm (NLCG) computes search directions as a linear combination

of the current and prior iteration gradients. NLCG provides higher convergence rates than SD while

remaining easy to implement.

Convergence rates in SD and NLCG can be accelerated through the use of preconditioners. A

preconditioned steepest descent step takes the form

δm = −P−1g, (10.26)

where P is a preconditioning operator. A comparison of eqs. (10.24) and (10.26), indicates that the

Hessian operator is an ideal preconditioner. In practice, P is chosen to mimic the action of H while

being significantly easier to compute and invert. The Hessian contributes to balancing amplitudes

in the gradient that are deficient due to geometrical spreading or inadequate illumination. The

pseudo-Hessian approximation is popular choice of preconditioner that fulfils the aforementioned

criteria without any additional cost (Shin et al., 2001). Quasi-Newton algorithms, such as the BFGS

algorithm or its limited memory variant (L-BFGS), derive approximations to the Hessian, or its

inverse, using gradient information from the previous m gradients (Nocedal and Wright, 2006).

Second-order methods utilize the Hessian to solve eq. (10.24) and garner search directions. Direct

computation of the Hessian requires access to the Fréchet derivatives ∂u
∂m , which in turn requires

knowledge of the complete time-history of receiver-side Green’s functions for every receiver (Chen
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et al., 2007). Nr forward simulations are required to compute numerical receiver Green’s functions.

The computational resources required to construct and store the Hessian are not viable for problems

of realistic size. Truncated Newton methods are an economical alternative to full Newton methods.

Truncated Newton methods apply the linear conjugate-gradient algorithm to solve eq. (10.24) at each

iteration (Epanomeritakis et al., 2008; Métivier et al., 2013, 2014; Anagaw and Sacchi, 2014). The

inner conjugate-gradient loop requires the computation of Hessian-vector products. Hessian-vector

products can be calculated using second-order adjoint methods (Fichtner and Trampert, 2011a) or

with finite-difference approximations. The action of the Hessian on a vector can be computed at a

cost comparable to that of a gradient calculation. Métivier et al. (2013, 2014) demonstrated that in

complex cases where multi-scattered phases play an important role, truncated Newton methods can

provide better inverted models.

Model regularization

FWI is an ill-posed problem meaning an infinite number of models can fit the data equally

well (Virieux and Operto, 2009). Model regularization is included explicitly into the objective

function. The role of regularization is to stabilize the inversion and make it more well-posed. Model

regularization constrains model updates by imposing prior assumptions on the model. In this study,

we implement a form of Tikhonov regularization that penalizes deviatoric perturbations from a

prior model,

R(m) =
γ

2

Np∑

p

‖mp −mprior
p ‖2. (10.27)

A tunable hyperparameter γ controls the contribution of the regularization term relative to the data

misfit. The prior model in eq. (10.27) is taken as the initial model input to FWI/SEFWI.

Optimization algorithms for source-encoded FWI

The source-encoded Hessian Ĥ = ∇2
mĴ can vary considerably between iterations where the source

encoding is randomized. For this reason, it is not suitable to apply conventional NLCG or L-BFGS.

The conjugacy condition cannot be guaranteed and therefore search directions generated by NLCG

are not assured to be conjugate pairs. Moghaddam et al. (2013) proposed a heuristic alternative

that formed search directions as a weighted sum of prior gradients. Their approach demonstrated

higher convergence rates relative to SD when applied to acoustic SEFWI.
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We implement the hybrid NLCG and L-BFGS algorithms demonstrated by Huang and Schuster

(2012) and Castellanos et al. (2015), respectively. The hybrid algorithms amount to regular-restart

versions of their conventional counterparts. After every M -th iteration, the optimization history is

reset and the source encoding is randomized. The source encoding does not vary between restart

intervals. In this study, we deploy SEFWI with SD and restart variants of NLCG and L-BFGS. We

do not differentiate between regular and restart versions of NLCG/L-BFGS in the text. The reader

may assume that NLCG/L-BFGS applied to SEFWI corresponds to the restart versions described

in this section.

10.3 Multi-parameter inversion

Prior applications of source encoding in migration and FWI have focused on single parameter

inversion under the constant-density, acoustic approximation (Romero et al., 2000; Vigh and Starr,

2008; Krebs et al., 2009; Dai et al., 2012; Anagaw and Sacchi, 2014; Castellanos et al., 2015).

When considering anisotropic or elastic representations of the Earth, multiple independent model

parameters are required to characterize the subsurface. An isotropic elastic medium is adequately

described by 3 independent parameters; a potential parametrization is in terms of density (ρ) and

the Lamé parameters (λ, µ).

An ideal model parametrization consists of a set of physical parameters that are uniquely resolvable

(Tarantola, 1986; Operto et al., 2013). The extent to which a model perturbation can be resolved

uniquely, is dictated by the choice of model parametrization, acquisition geometry, background

model, and bandwidth of the data. A poor choice of model parametrization or inadequate subsurface

illumination can lead to ambiguities between different parameters. Parameter trade-off is the

phenomena where changes in different parameters elicit similar responses in the data. A classic

example is the velocity-depth ambiguity associated with reflection travel times. Further complications

arise when model parameters lie in the null space of the problem. Perturbations to these parameters

will not register in the data making such parameters unresolvable.

Within a given parametrization, certain parameters have a greater influence on the data than others.

A good parametrization prioritises the accurate reconstruction of parameters that most strongly

influence the kinematics of the data. For example, P -wave velocity controls the kinematics of

compressional waves, whereas density primarily influences reflection amplitudes. A parametrization

that allows for the broadband reconstruction of P -wave velocity should be favoured. Tarantola (1986)

compared radiation patterns derived from the Born approximation to assess parameter trade-off
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and resolution. The study concluded that a parametrization of density (ρ), P -wave velocity (α),

and S-wave velocity (β) was suitable for broadband reconstruction of α while limiting parameter

trade-offs.

10.3.1 Multi-parameter Hessian

Parameter trade-offs manifest mathematically in the multi-parameter Hessian. The Hessian carries

information pertaining to the strength of parameter trade-offs along with the spatial resolution

afforded by the acquisition geometry. Neglecting the Hessian in multi-parameter inversion introduces

inaccuracies into the inversion due to erroneous inter-parameter mappings. The multi-parameter

Hessian operator exhibits a block structure and may be expressed in matrix form as

H(x,y) =




Hm1m1(x,y) . . . Hm1mp(x,y)
...

. . .

Hmpm1(x,y) Hmpmp(x,y)


 . (10.28)

The Newton equations in terms of the multi-parameter Hessian operator are

Np∑

j=1

∫
Hmimj (x,y)δmj(y) dy = −gi(x). (10.29)

Equation (10.29) states that the gradient for the i-th model parameter, is a linear combination of the

true model perturbations, weighted by the relevant block elements from the Hessian. Second-order

model updates are obtained by applying the inverse Hessian operator to the gradient vector. Due to

the expense of Newton based methods, the Hessian in eq. (10.29) is often replaced with a diagonal

preconditioning operator to give

∫
Pmimi(x,y)δmi(y) dy ≈ −gi(x). (10.30)

The lack of off-diagonal contributions (i 6= j) in P is a source of uncorrected inter parameter

mappings that manifest during inversion. When inter-parameter mappings are not corrected, it

is important to understand the nature of such mappings for proper model appraisal. A concern

arises when using first-order optimization for SEFWI. The cross-talk artefacts in the SEFWI

gradient will map across multiple parameters contributing to additional parameter trade-offs. To

better understand the behaviour of parameter trade-off in SEFWI, we examine the source-encoded,

multi-parameter Hessian.



Source encoded FWI 219

10.3.2 Source-encoded multi-parameter Hessian

In the frequency domain, the source-encoded Gauss-Newton Hessian (Ĥa) can be written as

Ĥa(x,y) =

Ne∑

e=1

Nr∑

r=1

〈∑

i∈Se

Qe
i (ω)

∂ui(xr, ω)

∂m(x)
,
∑

j∈Se

Qe
j(ω)

∂uj(xr, ω)

∂m(y)

〉

ω

, (10.31)

where ∂ui(xr,ω)
∂m(x) are the Fourier transformed Fréchet derivatives. Equation (10.31) can be simplified

to

Ĥa(x,y) = Ha +

Ne∑

e=1

Nr∑

r=1

∑

i∈Se

∑

j∈Se

j 6=i

〈
Qei (ω)

∂ui(xr, ω)

∂m(x)
, Qej(ω)

∂uj(xr, ω)

∂m(y)

〉

ω

, (10.32)

once again assuming that the subsets Si are mutually disjoint. The cross-talk terms in the source-

encoded Hessian are comparable to those in the source-encoded gradient (10.15). This implies that

the cross-talk in Ĥa can also be attenuated by selecting orthonormal encoding functions (10.17).

The symbolic representation of the Newton equations in SEFWI is,

(Ha + Hc)δm = −(g + gc), (10.33)

where Hc and gc are the cross-talk components of the source-encoded Hessian and gradient,

respectively. Hc will map model perturbations into gc. If δm is computed using first-order gradient

techniques, i.e. by neglecting Ĥa, estimates of δm will exhibit erroneous inter-parameter mappings

associated with gc. To verify that source encoding can be used to suppress cross-talk in the Hessian,

we perform an analysis that involves probing the multi-parameter Hessian.

10.3.3 Hessian probing

In the vicinity of the true model, the resolvability of a model perturbation can be assessed by

computing

H−gHδmtrue = δm (10.34)

where H−g is the generalized inverse of the Hessian, δmtrue is a true model perturbation, and δm is an

estimated model perturbation (Fichtner and Trampert, 2011b). H−gH acts as a resolution operator

and H−gHδmtrue is as a point spread function (PSF) that describes how model perturbations

are smeared in space. After replacing H−g by an identity, the Hessian acts as a conservative
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approximation to the true resolution operator. Likewise, Hδmtrue provides an estimate of the true

PSF (Fichtner and Leeuwen, 2015). Henceforth, we use the term PSF to refer to the approximate

PSF Hδm. PSFs can be interpreted as resolution proxies in the vicinity of the true model or, more

generally, as weighted row averages of H in the discrete case.

For fixed δm, we define a realization of Ĥδm as the PSF computed for a particular set of random

encoding functions. When the encoding functions satisfy eq. (10.17), the expected PSF in SEFWI is

E[Ĥδm] = E[Ĥ]δm = Hδm. (10.35)

The convergence of Ĥ→ H was noted by Tang (2009) and used for efficient access to the Hessian in

mono-parameter acoustic migration/FWI. The expected PSF is estimated from an ensemble average

over N random realizations of Ĥδm,

E[Ĥδm] ≈ 1

N

N∑

i=1

Ĥ(i)δm. (10.36)

As a numerical test, we compute expected PSFs for perturbations in a homogeneous background

model. The test focuses on the two parameter case where m(x) = [α(x), β(x)]T . The model is

discretized on a 100 x 100 grid with a spacing of 10 m. 16 sources and 50 receivers are evenly

distributed along the surface. We use model perturbations of the form

δm(x) = [δα(x), δβ(x)]T =





[c, 0]T , for x = xc

[0, 0]T , otherwise

where xc is the central grid point and c is a constant value, taken as 1% of the background model

in this example. Perturbations are applied to one parameter at a time thereby allowing us to

target individual block elements of the Hessian operator (10.28). We compute PSFs with the

sequential-source Hessian for reference.

Figure 10.1 depicts PSFs associated with H and Ĥ. For a small numbers of random realizations,

prominent cross-talk artefacts are apparent in the expected PSFs. As the number of random

realizations increases, E[Ĥδm] increasingly resembles Hδm. For 64 realizations, the expected PSF

is almost identical to the reference PSF. We notice some spurious oscillations in Hαβ (fig. 10.1 (e))

that are not corrected even with 64 realizations. We attribute these oscillations to boundary related

artefacts that result from the relatively small grid size.

Figure 10.2 displays the growth of c-SNR as a function of random realizations in an ensemble. The

PSFs associated with the different block components of Ĥ exhibit similar convergence behaviour
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Figure 10.1: A comparison of point spread functions generated for a point scatterer (x = z
= 0.5 km) using different block components of the (a) conventional and (b-e) source-encoded
Hessian: (top row) Hαα, (middle row) Hββ, (bottom row) Hαβ. The ensemble averaged
PSFs are presented for a varying number of realizations of the source-encoded Hessian. As
the number of realizations increases, cross-talk artefacts are suppressed and the expected
PSFs approach the PSFs associated with the conventional Hessian.
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Figure 10.2: PSF c-SNR (solid line) as a function of the number of random realizations in
an ensemble. The mean c-SNR for 20 independent trials is plotted with errors bars (solid
blue line). The mean c-SNR grows approximately ∝

√
N (red dashed line). The error bars

represent one standard deviation. Each panel is normalized to have c-SNR=1 at the first
iteration.
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and approximately follow the ∝
√
N relation defined by Schuster et al. (2011). The bias in the

Hαβ PSF is attributed to the propagation of numerical errors mentioned previously. Hessian-vector

products were computed using a finite difference approximation for convenience.

Certain conclusions can be drawn from figures 10.1 and 10.2. Since the cross-talk terms in the

Hessian can be attenuated through SEFWI iterations, the parameter trade-off in SEFWI should

be comparable to that of FWI. Furthermore, as the cross-talk terms in Ĥ are attenuated at the

same rate as those in ĝ, the number of iterations does not need to be extended to correct for

inter-parameter mappings of cross-talk noise. The PSFs corroborate prior studies that claimed the

resolution of SEFWI was also comparable to FWI. Due to the property E[Ĥδm], SEFWI should

not exhibit any further sensitivity to model parametrization than already present in FWI.

10.3.4 On the number of inversion parameters

Multi-parameter FWI can invert for independent model parameters sequentially or simultaneously.

Sequential inversion can be necessary with Earlier studies opted for sequential inversion when the

resolvability of select parameters was limited (Shipp and Singh, 2002). In such cases, inversion

strategies prioritise the reconstruction of parameters that have a primary influence on the kinematics.

A drawback of sequential inversion is the potential to introduce strong artefacts that result from

uncorrected parameter trade-offs. The source of these artefacts was established in earlier discussions

on equations 10.29-10.30. If one parameter remains fixed, the value δm does not decrease during

the inversion thereby leading to stronger inter-parameter mappings.

10.4 NUMERICAL EXPERIMENTS

We conduct a series of numerical experiments to interrogate specific components of the SEFWI

algorithm. Initially, we test the efficiency gain offered by SEFWI when coupled with various

optimization algorithms. In a subsequent test, we seek to verify the claim that parameter trade-off

in SEFWI is comparable to FWI. Tests with noisy data and early termination are performed to test

the sensitivity of the algorithm.
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Figure 10.3: A comparison of (b, d) sequential and (c, e) simultaneous inversion of multiple
parameters using FWI and SEFWI: (top row) α, (middle row) β, (bottom row) ρ. The
impact of parameter trade-off can vary depending on the inversion strategy selected. In
general, SEFWI exhibits very similar parameter trade-off to FWI for a particular strategy.
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10.4.1 Inversion procedure

The inversion procedure described in this section is applicable to every experiment unless stated

otherwise. ‘Observed’ and synthetic data are generated using 2D time-domain, P -SV finite difference

modelling (fourth order in space, second order in time) (Virieux, 1986; Levander, 1988). Convolutional

perfectly matched layers are implemented to simulate absorbing boundaries at the edges of the

numerical grid (Komatitsch and Martin, 2007). The free surface is replaced with an absorbing

boundary. Source inversion is not performed and the true source wavelet is available in all trials.

Elastic models are parametrized in terms of seismic velocities and density. Density is not included

as an inversion parameter and is updated empirically via Gardener’s relation (ρ = 310α0.25) where

appropriate (Gardner et al., 1974). Nondimensionalization is applied to the inversion parameters via

rescaling of the form m′p = mp/m0 (Prieux et al., 2013a). The scaling values m0 are taken as the

mean values of the starting models. The gradient associated with the nondimensionalized parameters

is g′p = m0gp. Inversion results are presented in terms of physical parameters. A square-root of

depth preconditioner is implemented to compensate for inadequate illumination in deeper regions of

the model. We avoid Hessian based preconditioners due to the differences between H and Ĥ.

Restart versions of NLCG and L-BFGS are restarted after every 3 and 5 iterations, respectively.

The source encoding is altered after every restart. SD and NLCG employ a bracketing line search,

whereas conventional and restart versions of L-BFGS use a backtracking line search. Used in

conjunction with L-BFGS, the backtracking line search can provide step-lengths at almost no

additional cost (Modrak and Tromp, 2016). The line search satisfies the Armijo condition (first

Wolfe condition) (Nocedal and Wright, 2006). We do not require the curvature condition (second

Wolfe condition) be satisfied as it requires additional gradient computations for each trial step.

Source-encoded inversions are performed 5 times to account for the variability introduced by the

random source encoding.

10.4.2 Diagnostic quantities

Before proceeding to the examples, we define diagnostic quantities that enable comparisons between

SEFWI and FWI. The efficiency gain η is defined as η = N̂S/NS and represents the ratio between

the total number of simulations performed in SEFWI (N̂S) and FWI (NS). A simulation refers to

any numerical solution of the forward or adjoint wave-equation during gradient computations or the

line search. The convergence behaviour of each algorithm is included implicitly in η.
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The relative model error is defined for each independent parameter as

merr
p =

‖m∗p −mk
p‖

‖m∗p‖
, (10.37)

where m∗p is the true model for parameter p. Repeated trials in SEFWI are used to compute the

mean and local covariances of inverted models in SEFWI. The mean m̃p(x) is computed over N

independent trials (Castellanos et al., 2015),

m̃p(x) =
1

N

N∑

i=1

m(i)
p (x). (10.38)

The local covariance i.e. diagonals of the covariance matrix, are obtained via

Σpq(x,x) =

N∑

i=1

(m
(i)
p (x)− m̃p(x))(m

(i)
q (x)− m̃q(x))

N − 1
. (10.39)

In the absence of noise and regularization, the covariances act as a proxy for the cross-talk noise.

This assumes that the mean inverted model is largely devoid of cross-talk artefacts.

10.4.3 Efficiency gain

Inversions are performed on a 20 km x 4.5 km, 2D section of the 3D acoustic SEG/EAGE overthrust

model (Aminzadeh et al., 1997). Scaling relations are used to synthesize density (ρ = 310α0.25) and

S-wave velocity (β = α/
√

3) models. Starting models are obtained by convolving the true models

with a Gaussian kernel (σx = σz = 700 m). True and initial α models are displayed in figure 10.4.

The seismic experiment consists of 96 explosive sources (∆xs = 200 m, zs = 25 m) recorded at 264

multi-component receivers (∆xr = 75 m, zr = 25 m). All 96 sources are combined into a single

encoded source in SEFWI. The source wavelet is a Ricker wavelet with a dominant frequency of

5 Hz, corresponding to a bandwidth of 0-15 Hz. Inversions are performed using SD, NLCG, and

L-BFGS and terminate after 100 non-linear FWI/SEFWI iterations. We invert the full bandwidth

data as multi-scale methods are not required in this case. Model regularization did not lead to a

discernible improvement in the inverted models for this experiment and is therefore not included.

The convergence behaviour of FWI and SEFWI is summarized in table 10.1 and figure 10.5. For a

particular optimization algorithm, SEFWI exhibits slower convergence, per iteration, in data misfit

and model error when compared to FWI. The slower convergence is attributed to the presence
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Figure 10.4: SEG/EAGE overthrust model: (a) true and (b) initial α models. Corresponding
β and ρ models are synthesized from α using empirical scaling relations.

Iterations No. simulations η
Optimization FWI SEFWI FWI SEFWI vs FWI vs FWI (L-BFGS)

SD 59 98 44160 568 77.7 8.6
NLCG 33 48 16416 341 48.1 14.4
L-BFGS 24 76 4896 266 18.4 18.4

Table 10.1: SEG/EAGE overthrust inversion. A comparison of the computational resources
required by FWI and SEFWI to achieve αerr = 0.65. Efficiency gain (η) describes the ratio
between the total number of simulations required by FWI and SEFWI. As an additional
comparison, efficiency gain is computed relative to the most efficient FWI implementation
(FWI w/ L-BFGS).
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Figure 10.5: Comparison of convergence behaviour for (normalized) misfit, α and β model
errors, as a function of (a-c) iterations and (d-f) total number of simulations. Dashed
and solid coloured lines are used to display results for FWI and SEFWI, respectively. For
SEFWI, lines correspond to mean values of misfit/model error from 5 random trials; the
error bands represent one standard deviation. FWI exhibits higher per iteration convergence
rates; however, the cost of an FWI iteration is greater than its SEFWI equivalent.
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Figure 10.6: A comparison of the (a) mean inverted α model and (b-c) local covariances
obtained after: (top row) 10, (middle row) 50, and (bottom row) 100 steepest descent
iterations. The local standard deviation and covariances decrease in magnitude with an
increasing number of iterations, implying that cross-talk artefacts are being attenuated.

of cross-talk noise in the gradient and is well established from prior studies (Moghaddam et al.,

2013; Anagaw and Sacchi, 2014; Castellanos et al., 2015). Efficiency gain and further performance

comparisons are evaluated at a target model error αerr = 0.65. At the target model error, the

largest efficiency gain is demonstrated by SD SEFWI (η = 77.7). NLCG and L-BFGS offer reduced

efficiency gains of η = 48.1 and η = 18.4, respectively. The reduced effectiveness of NLCG/L-BFGS

is due to an increased sensitivity of the algorithms to cross-talk noise. A similar observation was

documented by Castellanos et al. (2015). Despite exhibiting reduced efficiency gains, NLCG and

L-BFGS still outperform SD in SEFWI, requiring fewer iterations and simulations to reach the

target model error (panel (b), figure 10.5). L-BFGS requires a greater number of iterations (76)

than NLCG (48) to reach the desired model error; however, the more efficient line-search results

in fewer overall simulations despite the disparity in iterations. Relative to our most efficient FWI

implementation (L-BFGS + backtracking line search), the efficiency gain of SEFWI algorithms is

more modest. This is an indication that the computational gain provided by SEFWI may be offset

by the more sophisticated optimization algorithms available in FWI.

Figures 10.6 and 10.7 display mean inverted models and local covariances. As the inversions are

devoid of noise and regularization, the local covariances may be interpreted as a proxy for the

strength of the cross-talk artefacts. Figure 10.6 displays the evolution of α̃, Σ
1/2
αα , and |Σαβ|1/2

over the course of SD SEFWI iterations. The standard deviation of β (Σ
1/2
ββ ) is not included, but

follows trends consistent with the other terms of the local covariance matrix. The local covariances

reduce in magnitude at later iterations indicating that the cross-talk artefacts are being suppressed.

Figure 10.7 displays a similar comparison, but compares α̃, Σ
1/2
αα , and |Σαβ|1/2 after 100 iterations
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Figure 10.7: A comparison of the (a) mean inverted α model and (b-c) local covariances
obtained after 100 iterations using: (top row) SD, (middle row) NLCG, and (bottom row)
L-BFGS. SD randomizes the source-encoding at each iteration, whereas NLCG and L-BFGS
randomize the source-encoding every 3 and 5 iterations, respectively. The strength of
cross-talk artefacts is tied to the frequency with which the source-encoding is reset.

for the 3 different optimization methods. Figure 10.5 displays that NLCG and L-BFGS reach

lower model errors than SD. While SD exhibits small local covariances, the models inverted using

NLCG/L-BFGS are better resolved. The strength of the local covariances is directly related to the

frequency with which the source-encoding is randomized within an algorithm. In these trials the

restart intervals are 1, 3, and 5 for SD, NLCG, and L-BFGS, respectively. The restart version of

NLCG appears to provide the best compromise between model resolution and mitigating cross-talk

artefacts in the final model.

10.4.4 Parameter trade-off

The Marmousi II model is a fully elastic synthetic model with multiple hydrocarbon layers and

complex faulting (Martin et al., 2006). Shallow shale layers in the original model exhibit low shear

wave velocities (300-400 m/s) that require fine grid spacing to avoid dispersion related artefacts in

the data. Reduced grid spacing increases the the computational cost forward/adjoint simulations

due to a larger computational domain and considerations of numerical stability. To reduce the

computational burden, S-wave velocities in the shale layers are replaced by β = α/
√

3; density

in these layers is rescaled via Gardener’s relation. Adjusting the shale layers alone preserves

heterogeneities exclusive to α or β. In this case, an exclusive heterogeneity refers to instances where

one parameter demonstrates a significant perturbation from background, while the other parameter

does not. Some examples are identified with white arrows in figure 10.8. Heterogeneities exclusive
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Figure 10.8: Modified Marmousi II model: (a, c) True and (b, d) initial α and β models.
The original β model has been altered to increase β in the shale layers. A heterogeneous ρ
model is used, but not displayed. Hydrocarbon reservoirs appear as distinct perturbations
in α/β, some examples are indicated with white arrows.

to the α/β models serve as positional markers that are used to examine parameter trade-off. The

water layer in the original model is removed to simulate land acquisition.

Initial models (fig. 10.8) are derived by convolving the true models with a Gaussian kernel

(σx = σz = 800 m). The seismic experiment is composed of 112 explosive sources (∆xs = 80 m, zs

= 10 m) and 296 receivers (∆xr = 30 m, zr = 10 m). 112 sources are reduced to Ne = 2 encoded

sources, with each encoded source containing 56 individual sources. The source wavelet is a Ricker

wavelet with a dominant frequency of 10 Hz. A 3 Hz highpass filter is applied to the data and source

to remove some of the low frequency information. The starting model is sufficiently far from the

true model that full-bandwidth FWI fails and converges to a local minima in the objective function.

The multi-scale approach of Bunks et al. (1995) is implemented to circumvent cycle-skipping. The

frequency bands used for inversion are informed by the selection criteria of Sirgue and Pratt (2004).

Inversions are performed using low-pass cutoff frequencies of 3 Hz, 5 Hz and, 8 Hz. Multi-scale

inversions are performed using only SD to allow for a more direct comparison. The source encoding

is randomized at every iteration and inversions are terminated after 75 SD iterations at each scale.

We include damping regularization in the form of eq. (10.27). For inversions on noise-free data

γ = 1× 10−4 and γ = 1× 10−3 for the noisy data example.

The final inverted α and β models are displayed in figure 10.9. The SEFWI example corresponds to 1

of the 5 random trials conducted. Qualitatively, both inversion methods produce comparable results
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models do not exhibit any discernible parameter trade-offs related to cross-talk
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Figure 10.10: Pseudo well logs of α and β taken at (a-b) x = 2.5 km, (b-d) 4.0 km, and
(e-f) 6.4 km. Models inverted with FWI display marginally better amplitude recovery at
intermediate depths. Perturbations distinct to α or β do not appear to map into the other
parameter, suggesting that the parameters are well resolved in both methods.
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Figure 10.11: A comparison of mean α, mean β, and local covariances for SEFWI (a) with
noiseless data, (b) noisy data (SNR=10 dB), and (c) early termination (noiseless data). (a)
and (b) use 75 SD iterations whereas (c) undergoes early termination after 30 SD iterations.

and no cross-talk artefacts are noticeable in the SEFWI models. Hydrocarbon layers, indicated by

arrows in figure 10.8, appear to be well resolved in α and β, with no perceptible trade-off between

parameters. Further confirmation is provided by pseudo well-logs taken at different points in the

model. For example, at x = 2.5 km the well intersects a hydrocarbon layer a distinct signature

only in the β model. Conventional FWI provides a marginal improvement in the estimation of true

model perturbations.

Sensitivity to random noise

To test the sensitivity of SEFWI to noise, we add random noise to the Marmousi II data. Gaussian

white noise arrays are generated for each component of each shot record. The variance of the noise

array is set by selecting a desired signal-to-noise ratio (SNR), defined as

SNR (dB) = 10 log10

(
a2
rms

σ2

)
, (10.40)
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and solving for the required variance σ2. a2
rms is the root mean square amplitude of the shot record.

For any given shot, the noise arrays of both components (x, z) have equal variance which results

in different SNRs for the two components. We pick a2
rms from the z-component data and refer

to the SNR of the z-component data in the text. The noisy data used for inversion has SNR =

10 dB. The inversion procedure follows the noise-free example with an increase to the regularization

hyperparameter (γ = 1× 10−3). This is done to damp high-frequency contributions from the noise

to the model update.

Figure 10.11 (b) displays the mean inverted models and the local covariances. The inversion results

are largely similar to the noise-free case. A small increase in the magnitudes of the local covariances

is observed.

Sensitivity to early termination

Model updates that occur during the the later stages of FWI i.e. when the data misfit has largely

flattened out, can still generate appreciable reductions in the model error despite producing only

small reductions in the data misfit (e.g. figure 10.5, panels (a-c)). In realistic applications of 3D FWI,

it may not be feasible to extend an inversion to a large number of iterations due to considerations

of time or computational expense. In such cases, practitioners may terminate the inversion after

a set number of iterations, before the optimization has truly converged. Early termination may

also be prompted by strong noise in the data. In the presence of noise, the least-squares waveform

misfit will converge to L2 norm of the noise. Once the data misfit has flattened out, it is difficult to

ascertain whether subsequent model updates are fitting the data or the noise. Early termination

serves as a precautionary measure to prevent overfitting the data. In SEFWI, the later iterations

are used to further reduce the imprint of cross-talk artefacts.

We perform a test to investigate the effect of early termination in SEFWI. The inversion procedure

follows the earlier multi-scale inversion performed on noise-free Marmousi II data, but with the

number of SD iterations reduced from 75 to 30 at each scale. The mean inverted models and the

local covariances are depicted in figure 10.11 (c). Early termination does not appear to destabilize

the inversion, rather it demonstrates two predictable results. Firstly, the mean inverted models are

not as well resolved as equivalent inversions run to a greater number of iterations (figure 10.11 (a)).

Secondly, early termination increases the magnitude of the local covariances, consistent with the

expectation of increased cross-talk artefacts.
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10.5 Conclusions

Source encoding has been applied to elastic isotropic full waveform inversion. The theory of

source-encoded FWI was extended to the general multi-parameter case, with an emphasis placed

on understanding the influence of source encoding on parameter trade-off. The behaviour was

determined by analysing the source-encoded multi-parameter Hessian. The convergence of the

expected source-encoded Hessian towards the conventional FWI Hessian, was verified via Hessian

probing techniques. When cross-talk artefacts are suppressed, the properties of the source-encoded

Hessian ensure that the parameter trade-off in SEFWI is comparable with FWI. Furthermore,

SEFWI exhibits similar sensitivities to model parametrization and inversion schemes as FWI.

Numerical tests were conducted to evaluate the performance of SEFWI. Tests sought to assess: effi-

ciency gain, parameter trade-off, and sensitivity to noise and early termination. For all optimization

algorithms, SEFWI required significantly fewer overall simulations to reach a target model error.

The efficiency gain was on the order of the number of individual sources in an experiment. We

observed that a hybrid-CG algorithm outperformed SD or L-BFGS alternatives. While SD generated

SEFWI models with the lowest variances, both CG and L-BFGS converged to a smaller model error

in the same number of iterations. The increased model variance observed with hybrid CG/L-BFGS

algorithms is due to less frequent randomization of the source encoding. A test on the Marmousi II

model corroborated the claim that the parameter trade-off in SEFWI is comparable to that of FWI.

Spatially inconsistent P− and S-wave velocity models were well resolved in both methods. The

presence of noise or early termination did not exacerbate the inversion results significantly. Early

termination resulted in models that were less resolved and exhibited greater model variances.

Our results indicate that source encoding is feasible in multi-parameter FWI; however, there

are concerns that hinder the use of source encoding in real data applications. The fixed-spread

assumption impedes the use of source encoding in data-driven workflows that require extensive data

pre-processing. Alternative misfit functions may be useful in such cases, as demonstrated by the

application of SEFWI to streamer data (Routh et al., 2011; Choi and Alkhalifah, 2012). Ultimately,

the applicability of source encoding on real data, multi-parameter FWI is entirely dependent on the

dataset. Source encoding may also be a useful tool to access the multi-parameter Hessian in a more

economical manner.
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Seismic.jl: status and examples

F. Carozzi1

Abstract

The Signal Analysis and Imaging Group (SAIG) released a package named Seismic.jl

that provides tools to read, write and manipulate seismic data. The package is coded in

julia, a new language that is being developed under the MIT license. For this reason,

Seismic.jl has undergone several upgrades and modifications since its release in 2015.

Besides their constant evolution, julia and Seismic.jl are open-source codes and have

proved to be useful tools for research and teaching.

This report presents a brief introduction to some outstanding functionalities of Seismic.jl.

Through simple explanations and examples, it is intended as a help document for begin-

ners as well as a leading point for discussion on future development.

11.1 Introduction

julia (Bezanson et al., 2017) is a modern dynamic programming language specially designed

to fulfill the needs of high-performance data science and numerical analysis applications. It was

originally released in 2012 under the MIT license, and it is still a developing language.

Among its numerous functionalities, the most outstanding ones include multiple dispatch func-

tion definitions, a dynamic type system, parallelism, cloud computing functionalities, and simple

adaptability to C and Fortran functions.

1Email: carozzi@ualberta.ca

241



242

Since 2015, SAIG has been developing the Seismic.jl package (Stanton and Sacchi, 2016), written

with julia language. Seismic.jl is an open source software consisting of more than ten modules that

allow conventional seismic data manipulation. Its most unique characteristic resides in its approach

towards multidimensional arrays and its capability to handle and process this type of data. The full

package is periodically maintained and updated to the last stable version available for julia. Its

latest version is always distributed through https://github.com/SeismicJulia/Seismic.jl.

Seismic.jl can be downloaded and installed on the julia command line by typing Pkg.add("Seismic").

As not always the last version is the one registered as a julia package, it is highly recom-

mended that, after installation, the user performs Pkg.checkout("Seismic") which updates the

installation to the master branch of the package. Any developer interested in contributing to

the package is welcomed to do so. To that end, please follow the instructions on the tutorial

https://seismic.physics.ualberta.ca/docs/develop SeismicJulia.pdf.

The main features of Seismic.jl can be summarized as follows

• Reading & Writing

• Modelling

• Processing tools

• 5D binning and data manipulation

• Imaging

• Tools

being “Tools” a combination of basic functions, wavelets, and windows used to support the needs of

other functions from the package. The aim of this report is to present working examples that lead

to a friendly approach towards the basic usage of Seismic.jl and its dependencies.

11.2 Reading and Writing - SEIS Format

Seismic.jl presents a particular format where headers and data are kept in separate files. This

characteristic allows a dynamic manipulation of the seismic data based only on headers values.
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The package is capable of reading either SEGY or SU format and convert the file to the internal

Seismic.jl format, SEIS. After such process data remains stored in three independent files.

The initial file, where the actual traces are stored, has the extension @data@. The second file holds

the headers information with the extension @headers@. Both files are stored in binary format.

Finally, a third file without extension is created. This file has text format and holds the extent

information which is most important for the correct internal process of reading and writing seismic

data. That is, Seismic.jl can work without the headers of the data but many of its core functions

will not work properly if the extent information is missing. Furthermore, the extent file saves the

location of the files containing the corresponding data and headers.

In addition, two custom types, Header and Extent, are defined allowing powerful imaging and

processing workflows for 5D data. The Header type includes the following 31 fields

• tracenum: Trace number

• o1: Initial value for the first dimension (time/depth)

• n1: Number of samples in the first dimension

• d1: Sample interval for the first dimension

• sx, sy, gx, gy: source and receiver coordinates

• mx, my, hx, hy, h, az, ang: midpoint coordinates, offset, azimuth and angle

• isx, isy, igx, igy: source and receiver calculated grid nodes after binning

• imx, imy, ihx, ihy, ih, iaz, iang: midpoint, offset, azimuth and angle grid nodes after binning

• selev, gelev: receiver group and source elevation

• sstat, gstat: source and group static correction

• trid: Trace identification code, based on SU indexing.

Moreover, the Extent type includes

• n1,n2,n3,n4,n5: Number of samples in each dimension

• o1,o2,o3,o4,o5: Initial value for each dimension
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• d1,d2,d3,d4,d5: Sample interval in each dimension

• 5 positions for labeling the information contained in the dimensions considered above

• 5 positions for indicating the units in which the information is provided.

Both composite types and the types corresponding to each field inside them are defined in

Seismic.jl/src/ReadWrite/Header.jl.

The functionalities for reading, writing and format conversion included in Seismic.jl are SegyToSeis,

SeisRead, SeisReadHeaders, SeisHeaderInfo, SeisWrite, SeisWriteHeaders, SeisCopy, SeisRemove,

and SeisToSegy. A brief description of the capabilities of such functions is included below.

11.2.1 SegyToSeis

Converts SEGY or SU data to SEIS format. This function considers the endianness definition of

the file through the keyword argument “swap bytes”. The endian-format of a file is defined by the

order in which the bytes are saved. Big-endian format stores the byte with the most significant bit

in the first place. In contrast, little-endian format stores it in the final position. In addition, it

considers the floating point definition of the file (either “IBM” or “IEEE”) (Meisinger, 2004).

Both considerations, endianness and format of a file can have a big impact in a proper or improper

reading of the data. These are characteristics that should be considered before reading any file.

11.2.2 SeisRead and SeisReadHeaders

Once the data is converted to the SEIS format, if we need it to be stored in the memory we should

read it using SeisRead. SeisRead offers two possibilities, either reading all the information or only

traces and extent. In order to use the resources of the computer optimally, these two options should

be considered before reading information.

Given the presence of the extent file, the data read by SeisRead will be shaped according to its

proper dimension.

Furthermore, the option of reading only headers is also available through SeisReadHeaders. This

is a faster, computationally less expensive alternative, that allows the user to calculate statistics,

visualize geometry, and manipulate data among others.
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11.2.3 SeisHeaderInfo

Without storing the information in the computer memory, Seismic.jl offers a tool to compute

header statistics. This is done via SeisHeaderInfo. The output is a comparison of minimum,

maximum and mean values for each of the field composing the Header type.

11.2.4 SeisWrite, SeisWriteHeaders, SeisCopy, SeisRemove and SeisToSegy

The remaining functionalities allow the user to write the calculated data, or just headers, to disk.

This can also be done through SeisToSegy if SU or SEGY files are needed. Finally, if a SEIS file is

to be removed, it is recommended that it is done using SeisRemove.

11.2.5 Reading & writing example

Several small files in SU format are loaded to http://seismic.physics.ualberta.ca/data for

reading and format conversion testing. For any of these files, the steps needed to convert the data

and read it in Seismic.jl are

1. using Seismic, PyPlot

2. download("http://seismic.physics.ualberta.ca/data/gom cdp nmo.su","gom cdp nmo.su");

3. SegyToSeis("gom cdp nmo.su","gom cdp nmo",format="su",input type="ieee",swap bytes=true)

4. d,h,ext=SeisRead("gom cdp nmo");

5. SeisPlot(d)

The first line loads two packages: Seismic and PyPlot. PyPlot is required by Seismic for plotting

purposes.

The second line uses a julia function to download the data from a web link to our computer. It

will be saved as gom cdp nmo.su in the current folder.

Following, SegyToSeis performs the conversion from SU to SEIS format. At this point, three files

are generated with the names gom cdp nmo, gom cdp nmo@data@ and gom cdp nmo@headers@. The
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Figure 11.1: A read and plot example.

first one is the extent file, the second one includes the proper information in the traces and the third

one incorporates the header information. Even though these are three different files, Seismic.jl will

allow the user to refer to the information as gom cdp nmo without having to consider the partitioning

of the data.

Next, the data is loaded into memory. Three variables are defined in order to save such information.

d is an array of type Float32 with the number of dimensions according to the extent information. h

is an array of type Seismic.Header, the custom type described in the introduction to this section.

ext is a constant of type Seismic.Extent, also defined in this section of the report. In order to

check these types, the user can write typeof(d) in the julia prompt.

Finally, the data in d is ploted using SeisPlot, a Seismic.jl function for plotting needs (Figure

11.1).
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11.3 Core packages

Once the data is available in the SEIS format, the user can work with the core modules of the

package. A list of the functions in each module is available in Table 11.1. In addition, a collection

of tests and examples are available in the following webpage

https://github.com/SeismicJulia/Seismic.jl/tree/master/examples .

Documentation and help on usage of each of the functions are available by writing in the julia

prompt a question mark, followed by the name of the function. For example

julia > ?

help? > SeisLinearEvents

will prompt the particular information to model seismic linear events. In addition, the webpage

http://SeismicJulia.github.io/Seismic.jl/ provides extra documentation on the package and

modules.

Most Seismic.jl functions have two types of arguments, regular arguments and keyword argu-

ments. Keyword arguments in julia are function arguments that are identified by name instead of

position. This feature of julia, and by inheritance Seismic.jl, ease the use of complex interfaces.

Keyword arguments have default values, that is they need to be defined only when necessary. For

example, continuing with SeisLinearEvents, the function can be called as

julia > d,ext = SeisLinearEvents();

which will create seismic linear events with default parameters.

In the case the user is interested in defining specific modelling parameters, the keyword arguments

can be passed in the function call as

julia > d,ext = SeisLinearEvents(dt = 0.002, nt = 500, ox1 = 0, ox2 = 0, dx1 = 10,dx2 = 10,

dx3 = 10, dx4 = 10, nx1 = 20, nx2 = 20, nx3 = 20, nx4 = 20, tau = [1./4., 1./3., 0.7],

p2 = [−.001, 0.002, 0.0015], p1 = [0.0, 0, 0.0], p3 = [0.0, 0, 0.0], p4 = [0.0, 0, 0.00], amp = [1.0,−0.7, 0.5],

f0 = 20.0 );
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which creates a tailored volume that meets the specific needs. In the previous case, there are

4 dipping events. To plot the volume

julia > SeisPlot(d[:,10,:,10,10], style="wiggles", dy=0.002, xlabel="Trace number",

ylabel="Time (s)")

which plots the traces for a 2D slice of the previously created volume with proper axis; see

Figure 11.2.
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Figure 11.2: Seismic Traces created with function SeisLinearEvents.

Regular and keyword arguments with their default assignment are described in the julia prompt

help and the documentation webpage.
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11.4 Utils module - 5D data

A particular emphasis is needed on the Utils module, the section that deals with most of the

functions that handle and process multilinear arrays. The functions that integrate such module are

listed on Table 11.1, and the corresponding documentation and help are available as described in

the previous section.

The capabilities of this module will be explained through a simple example using seismic prestack

data. The script to the example consists of the following main commands

1. Download

2. SegyToSeis(‘‘file su’’, "file seis", format="su", input type="ieee")

3. SeisGeometry(‘‘file seis’’; param1...)

4. SeisBinHeaders(‘‘file seis’’,’’file bin’’; param2...);

5. SeisBinData(‘‘file seis’’,’’file bin’’; param2...);

6. patch out,npatch=SeisPatch(‘‘file bin’’,"patch"; param3... );

7. SeisUnPatch(‘‘patch out’’,’’file final’’; nt=1000,param3...);

Following are the explanations to each line.

1. SegyToSeis is the function that converts formats from SU, SEGY or Madagascar to SEIS. In

this case, the input file is file su and the output file will be named file seis. As explained

in the Reading and Writing section of this report, file seis is actually composed of three

files, two with binary data and a text file containing the extent information. In this example,

the input data is a SU file with IEEE format.

2. SeisGeometry updates the headers with geometry information. param1 is a dictionary contain-

ing the parameters needed for the case. In the example provided in the link, the parameters

considered are the stepsize for common midpoint coordinates, offset and azimuth.
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3. SeisBinHeaders and SeisBinData are the functions calculating the new binned volume. The

functions are independent in order to be able to quality control the parameters for the binning

using the header information, prior to the calculation of the complete volume.

The parameters needed for these steps should be common. In the provided example, they are

the minimum and maximum node value for the binned volume plus the stepsizes used for

SeisGeometry. In every case, the binning style should be defined between a provided selection.

The termination of SeisBinHeaders will provide two files file bin with the extent information

and file bin@headers@ with the headers.

4. SeisBinData effectively calculates the traces of the binned volume and saves them to the file

file bin@data@

5. SeisPatch generates the patches from the original volume. The outputs of this function are

patch out, a string array containing the name of the files where each patch is saved, and

npatch a constant containing the number of generated patches. This constant can be used for

different processes applied to each individual section of data.

The parameters needed for SeisPatch include style, minimum and maximum grid nodes to

consider, length of each dimension for the patches and overlapping traces.

6. SeisUnPatch reclusters the patched information into a unique volume. The parameters are

common to those used for SeisPatch, including the number of time samples of the final

volume.

A working example with a subsection of the data used in this report can be found in the following

links https://tinyurl.com/ybwmn38c , and https://tinyurl.com/ycr37c6c . In addition, the

function SeisPatchProcess performs a complete process with big volumes, that is, it patches the

initial data, applies functions to the individual sections, and finally unpatches the seismic volume

from the partial resulting sections.

11.5 Conclusions

Seismic.jl is the young, open sourced package developed by SAIG that provides tools to read,

write and process seismic data. Coded in the new julia language, it fully benefiting from its

capabilities specially designed for high-performance data management.
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Figure 11.3: Data acquisition geometry.
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Figure 11.4: Original data gathers and one slice after binnig.
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Figure 11.5: CMP and offset distribution after binning.
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This report introduces the Seismic.jl most outstanding features as its efficiency in handling header

information and multidimensional data. In addition, it provides a brief description of core modules

and their documentation. Finally, an example processing 5D data is provided.

To conclude, this report is intended to be a document for inexperienced beginners as well as a

benchmark for discussion on future developments.
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