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Summary
Linearized inversion of seismic data entails minimizing a cost function of the form

������� ���
	�������� where
�

denotes the forward modeling operator that maps an angle dependent reflection strength
�

to a measurable
seismic wavefield

�
. Minimizing the cost function

�
, in the least squares sense, leads to the so-called least-

squares migration methods. Migration algorithms, on the other hand, are capable of estimating a blurred
version of

�
by using the adjoint operator

���
(or a modified version of it). Migration methods, in general,

do not attempt to fit the seismic data. Moreover, they have little control on the achievable resolution besides
the one provided by the data. One way of improving resolution is by incorporating model space constraints.
In this case, the cost function becomes

������� ����	
��������������� ��� , where � is the regularization term
utilized to force the solution to exhibit desirable characteristics. We discuss the implementation of quadratic
and non-quadratic constraints to generate seismic images with enhanced lateral and vertical resolution.

Introduction
Linearized inversion of seismic data requires the solution of the following problem:

������� �! #" (1)

where
�

indicates the multi-source multi-receiver seismic experiment,
�

denotes an Earth model that consist
of physical model perturbations or an angle dependent reflectivity, the operator

�
is a linearized one-way

forward modeling operator computed on a known background model (macro-model), and  denotes coherent
plus incoherent noise.

Rather than attempting to invert
�

via direct (analytical) methods, it has been proposed to invert
�

using
a fitting procedure like the least squares method (Nemeth et al., 1999). What is the advantage of such a
procedure? First, we can include covariance matrices in both model and data spaces, in other words the
problem can be treated as a Bayesian inference problem where a priori correlations among parameters and
observations can be included. Secondly, weighting matrices in data space can be used to minimize the
influence of missing observations (Kuehl and Sacchi, 2003). An finally, we have the ability of obtaining
figures of confidence for our final estimates of model parameters.

Quadratic and non-quadratic regularization
Regularization methods provide a procedure to guarantee the stability and uniqueness of the solution of an
inverse problem. In general, we minimize a cost function of the form:

�������%$'& � �(�)	*�+�,��� �� �-����� ���/. (2)

The first term is the data misfit for a class of inference problems where we have considered Gaussian (and
possible correlated) errors. In equation (2)

$!&
is a matrix of weights proportional to the inverse data

covariance matrix. The interesting term in equation (2), � , is often called the regularization term. This
term, when obtained via the Bayesian framework, is associated to the a priori distribution of parameters.
Model parameters that are normally distributed and correlated lead to quadratic regularization terms of the
form ��� ���0�����%$21��!��� �� �3�54�$21�4�$21��6. (3)

In general, it is possible to approximate the often unknown structure of the covariance matrix by weighting
matrices that control the generation of undesired features in the solution. For instance, one can penalize
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roughness by replacing
$'1

by a first or second order derivative operator.

Non-Gaussian a priori distributions of model parameters lead to non-quadratic regularization terms of the
form (see for instance; Sacchi, 1997)

��� � ��� � �������
	�� � � � ���� � ��� Cauchy��� � ��� � ��� � � � �
Laplace

(4)

In the first case ����� ��� is the Cauchy regularization term introduced in geophysics by Sacchi and Ulrych
(1995) as a mean to achieve high resolution Radon panels for velocity analysis and de-multiple. The second
selection is the ��� criterion � � � ��� that can be derived by assuming a double exponential (Laplace double
exponential) distribution as a priori distribution of parameters. This class of regularization terms leads to
sparse solutions. A feature that is quite often desirable when dealing with Radon transforms and problems
that involve the retrieval of a parsimonious basis to represent a signal or an image. An example of the afore-
mentioned idea is the retrieval of a finite number of harmonics from a time series immersed in white noise.
In this case, imposing a sparse representation via a finite (small) number of basis functions (undamped com-
plex exponentials) serves to reduce the spectral broadening caused by unavoidable windowing effects. It is
clear that such a regularization is not the optimal one when dealing with random processes with a contin-
uous spectral signature. These ideas are presented in Sacchi et al. (1998) with very interesting extensions
provided by Giovanelli and Idier (2001) who studied the canonical problem of mixed power spectral density
estimation from a finite length stationary time series.

Quadratic regularization of the migration / inversion problem
When the inverse of

�
represents a focusing operator that attempts to collapse certain class of events to

points (i.e., Linear or Parabolic Radon Transform), � can be chosen to be a measure of sparseness, entropy or
simplicity. Let us analyze the case where

�
represents a forward modeling operator that maps the distribution

of physical properties to measurable seismic wavefields. In this case, a sparse solution is only valid for an
Earth model that consists of a sparse distribution of isolated scatterers. This might be a good framework for
certain non-invasive imaging problems in material and medical sciences but not a realistic one for seismic
exploration problems. In exploration seismology, we are interested in the distribution of the reflectivity as an
expression of geological boundaries. We expect certain degree of spatial continuity of reflectors with well-
defined vertical and horizontal scales. All the above is complicated by the addition of structural elements
like faults, folds, and unconformities. Therefore, it is clear, that a regularization term capable of expressing
desirable geological features will first involve obtaining quite an important amount of information about the
unknown distribution of physical properties.

A way of avoiding the aforementioned shortcoming entails parameterizing
�

as an angle dependent reflec-
tivity (de Bruin et al., 1990; Prucha et al., 1999). In this case rather than having an operator

�
that maps

physical properties that are independent of the seismic experiment ([ ��� " ��� "�� ]) to measurable data
�
, we

map unknown data expressed in a new domain (the angle domain) to measurable data. We will see that the
latter simplifies the selection of the regularization term. AVA migration entails applying

� �
, the adjoint of�

, to the observed data. When the data are properly sampled, the amplitude in the CIG can be corrected
by incorporating the Jacobian correction Sava et al. (2001). This correction attempts to make the adjoint
operator behave like the inverse operator. In general, this correction is not sufficient to achieve good ampli-
tude fidelity. Sampling and migration artifacts are not suppressed by this correction. These artifacts can be
attenuated by constraining the solution to exhibit certain degree of smoothness along the ray parameter axis.
We have adopted the following cost function to retrieve a migrated image that fits the observations and, in
addition, exhibits smoothness or continuity along the common image gather

�������%$'& � �(�)	*�+�,��� �� �-� ���  � �!��� � (5)

The model space weights
$ 1��! � are given by the first order derivative operator acting along the ray

parameter (Kuehl and Sacchi, 2003) or offset (Duquet, 2000). At this point it is important to mention that it
is unpractical to attempt to form the normal system of equations and invert the resulting operator. We prefer
to directly minimize the objective function using a conjugate gradients algorithm (Hestenes and Stiefel,
1952).
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Figure 1: a) Migrated image and associated CIG gather at cross-line position # 10. b) Inversion with quadratic
regularization to impose smoothness along the ray parameter axis.

We have compared migrated versus inverted images obtained by minimizing equation (5) with a 3-D real
data set from the Western Canadian Sedimentary Basin (Wang et al., 2003). The data consists of

�����
in-

lines and ��� cross-lines. The CMP gathers are quite sparse as the result of binning. The forward and adjoint
operators are computed using a combination of common azimuth propagators (Biondi and Palacharla, 1996)
and split-step correction for lateral velocity variations.

In Figure 1 we show a detailed of the migrated and inverted structural images (stacked AVP gathers) with
the associated AVP gather at cross-line position #

� � . It is clear that the inversion has produced a result with
a considerable improvement of vertical resolution. By imposing smoothness to the inverted AVP gathers,
we are able to stack individual traces in a more coherent manner. In particular, some of the smearing
produced by aperture limitations (non-flatness at high ray parameters) are attenuated and, therefore, the
stacked common image gather can better preserve the high frequencies. At this stage our migration schemes
are able to operate with quadratic regularization strategies that can provide an important enhancement of the
lateral continuity of inverted AVP gathers.

Non-quadratic regularization of the migration / inversion problem

An important enhancement of vertical resolution can be achieved by incorporating a Cauchy regularization
term that forces sparsity in depth. This approach offers a bridge between well-known sparse-spike inver-
sion methods (Oldenburg et. al, 1983) for impedance recovery and migration / inversion methods. This
methodology can play an important role in the identification of thin layers and subtle stratigraphic targets;
a problem often encountered in the exploration and development of new and existing plays in the Western
Canadian Sedimentary Basin.

In Figure 2 we have computed 20 shot gathers in a 2D velocity model. We have estimated common image
gathers via migration (adjoint operator), quadratic regularization (least squares migration with smoothing
along the offset axis), and non-quadratic or high resolution imaging (smoothing along the offset axis plus
sparseness in depth). Common offset Kirchoff migration and de-migration codes were used to synthesize
the operators

� �
and

�
, respectively. The resulting CIGs are depicted in Figure 2.
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(a) (b)
Figure 2: a) Synthetic 2D data set. b) Comparison of three migration/inversion algorithms. Top figure is the result
of migrating the data in panel (a) using the adjoint operator. The central panel is the inversion with quadratic
regularization used to impose horizontal smoothness in the CIG gather. The bottom panel is the high resolution
solution where a Cauchy prior is used to impose sparseness in the vertical (depth) direction.

Discussion
Imaging/inversion with the introduction of quadratic and non-quadratic constraints could lead to a new class
of imaging algorithms where the resolution of the inverted image can be enhanced beyond the limits imposed
by the data (band-width and aperture). This is not a completely new idea. Exploration geophysicists have
been using similar concepts to invert post-stack data (sparse spike inversion) in an attempt to construct highly
resolved impedance profiles. What constitutes an optimal regularization strategy for imaging problems is an
open research problem. Smoothing the common image gather (along offset or ray parameter) in conjunction
with a vertical sparseness constraint constitute a regularization goal that it is non-informative with respect
to the structural image and consistent with the estimation of high resolution common image gathers for
subsequent AVA/AVO studies.
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