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Eliminating Blending Noise Using Fast Apex
Shifted Hyperbolic Radon Transform
A. Ibrahim* (University of Alberta) & M.D. Sacchi (University of Alberta)

SUMMARY
In this work, we adopt the Stolt operator to design a robust and fast Apex Shifted Hyperbolic Radon
Transform (ASHRT) that we can use to eliminate source interferences in blended sources acquisition.
The problem of estimating the interference free data is posed as an inversion problem that utilizes an L1
misfit function that is not susceptible to erratic noise in the data such as blending interferences.
Synthetic and real data examples show that Stolt based ASHRT can be used to eliminate interference noise
efficiently.
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 Introduction

Recently, Ibrahim and Sacchi (2013, 2014) proposed using a robust Apex Shifted Hyperbolic Radon

Transform (ASHRT) to eliminate interference noise in common receiver gathers of blended sources

data. One major disadvantage of the ASHRT transform is its high computational cost. To address this

limitation, Trad (2003) proposed an ASHRT that is based on Stolt migration and de-migration operators

(Stolt, 1978). In this work, we adopt the Stolt operator to design a robust and fast ASHRT that we can use

to eliminate source interferences in blended sources acquisition. Blended sources acquisition reduces

survey cost by shortening the acquisition time and increasing subsurface illumination (Garotta, 1983;

Beasley, 2008; Berkhout, 2008; Ikelle, 2010). Blended data is equivalent to time shifting individual

sources data according to the sources firing times and summing them. Therefore, blended data can be

generated from the single sources data by

b = ΓD (1)

where b is the blended data, D represent the original data cube that would be recorded without source

overlapping and Γ is the blending operator (Berkhout, 2008). Blended data b can be separated using the

adjoint of the blending operator (psuedodeblending operator) as follow

D̃ = ΓT b, (2)

where D̃ is pseudodeblended data cube. Pseudodeblending eliminates sources delays and divide the

long blended data into its equivalent non-overlapping data cube in time, source and receiver coordinates.

However, pseudodeblending does not remove interferences resulting from overlapping sources and pseu-

dodeblended data cube contains undesired interferences that can be eliminated by denoising techniques

(Berkhout, 2008; Kim et al., 2009; Huo et al., 2012; Ibrahim and Sacchi, 2013, 2014). Blending inter-

ferences can be removed by denoising the data in the common receiver gather domain where this noise

is incoherent (Berkhout, 2008).

Stolt operator

Stolt (1978) introduced a migration operator that map the temporal frequency ω to the vertical wavenum-

ber kz in Fourier domain for constant velocity using the following dispersion equation

ω =
( v

2

)√
k2

x + k2
x , (3)

where v is the migration velocity and kx is the horizontal wavenumber. This is followed by scaling the

amplitude by the factor

S =
v
2

kz√
k2

x + k2
z
, (4)

which is associated with obliquity as in Kirchhoff migration. Therefore, the adjoint Stolt (migration)

operator can be written as a concatenation of three operators

LT = FFT−1
kz,kx

MT
ω,kx

FFTt,x, (5)

and similarly the forward (de-migration) operator can be written as

L = FFT−1
ω,kx

Mkz,kx FFTz,x, (6)

where, M is the f −k mapping operator and FFT is the Fast Fourier Transform operator. Although Stolt

operator is derived with constant velocity assumption, it can be used to construct an ASHRT model with

multiple velocities. Stolt model represents one plane inside the ASHRT model cube at constant velocity

as shown in Figure 1. The classical ASHRT operator has a computational cost of O(na ×nτ ×nv ×nx),
where na,nτ ,nv and nx are the numbers of apex locations, apex times, velocities and offsets, respectively.

Assuming that we scan for all possible apex locations and times, then na = nx and nτ = nt . Therefore,
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Figure 1 Stolt operator used to compute ASHRT model.

ASHRT operator cost is O(n2
x × nt × nv). On the other hand, Stolt based ASHRT (without FFT zero

padding) operator has a cost that is of the 2D FFT of the data with size nt × nx followed by f − k
mapping and inverse 2D FFT of the model with size nt × nv × nx. Therefore, the total computational

cost of an ASHRT implemented via Stlot is O([nt log2(nt)+nx log2(nx)][nv +1]+nv ×nkx ×nω), where

nkx and nω are numbers of horizontal wavenumbers and temporal frequencies, respectively. The cost of

the f − k mapping is proportional to nv ×nkx ×nω and we stress that the latter is an upper limit, since in

practice we only scan for a limited band of positive frequencies and use the Fourier domain symmetry

to compute the negative frequencies.

Figure 2a shows the computational times of ASHRT and Stolt operator with and without zero padding.

Zero padding is sometimes required to reduce artefacts associated with f − k interpolation. Figure 2b

shows the improvement in the computational time of Stolt with and without zero padding compared to

ASHRT. It is clear that an implementation of the ASHRT via Stolt operators can lead to a significant

saving in computational costs. This is very important for processing large data set with a large number

of deblended cubes.
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Figure 2 Comparing operators (a) Computation times. (b) Stolt computation times compared to ASHRT.

To estimate ASHRT model, we assume that the data is contaminated with noise and estimate the model

m via the minimization of the cost function

J = ‖d−Lm‖p
p +μ‖m‖q

q. (7)
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Figure 3 Synthetic data common receiver gather. (a) Pseudodeblended gather. (a) Stolt model for one
velocity estimated using p = 1,q = 1 inversion. (c) Data recovered by forward modelling p = 1,q = 1

estimated model. (d) Error in recovered data.

In the cost function, L is the forward ASHRT implemented via the Stolt operator with multiple velocity

panels (Trad, 2003). This is an ill-posed problem and the regularization term ‖m‖q
q is included to esti-

mate a unique and stable model m. By minimizing this cost function using Iteratively Re-weighted Least

Square (IRLS) algorithm, the model of noise free data m is estimated. The parameters p and q represent

the exponent of the p-norm of the misfit and the q−norm of the model regularization term, respectively.

Claerbout and Muir (1973) proposed using p = 1 to estimate a model that is robust to erratic noise in

the data such as the case of blending noise (Ibrahim and Sacchi, 2013, 2014). Since the Radon model is

expected to be sparse, we can also use q = 1 to estimate a sparse model (Sacchi and Ulrych, 1995; Trad

et al., 2003).

Examples

We tested the robust Stolt-based ASHRT with one synthetic and one marine data set from the Gulf of

Mexico. Both data sets are blended numerically with a 50% time reduction compared to the conven-

tional acquisition. The blending scheme represents one source firing with random delays. The data is

pseudodeblended into common receiver gathers to obtain Figures 3a and 4a. Stolt model estimated from

the pseudodeblended common receiver gather via robust inversion scheme for each data set is shown in

Figures 3b and 4b. The data recovered from the robust Radon models is shown in Figures 3c and 4c. The

error of the estimated data is shown in Figures 3d and 4d. The quality of the recovered data is measured

using the following expression

Q = 10Log
‖doriginal‖2

2

‖doriginal −drecovered‖2
2

. (8)

The Q values for the recovered synthetic data common receiver gather is 25.33 dB and for the real data

common receiver gather is 11.55 dB.

Conclusions

We have implemented a fast ASHRT based on Stolt operators to eliminate blending interference noise

that arises in common receiver gathers. We showed that source interferences in common receiver gathers

can be removed via the ASHRT. The ASHRT presented in this article is computationally more efficient
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Figure 4 Real data common receiver gather. (a) Pseudodeblended gather. (a) Stolt model for one
velocity estimated using p = 1,q = 1 inversion. (c) Data recovered by forward modelling p = 1,q = 1

estimated model. (d) Error in recovered data.

than the classical ASHRT. Last, we point out that since the Stolt operator is implemented in f − k
domain, it can be used in conjunction with the non-uniform FT to interpolate missing traces.
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