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Simultaneous source separation using a robust Radon transform

Amr Ibrahim™ and Mauricio D. Sacchi, University of Alberta

SUMMARY

The robust Radon transform is presented as an alternative to
eliminate incoherent noise that surges in simultaneous source
processing. The robust Radon transform is designed by utiliz-
ing an L; misfit that permits to estimate data predictions that
are invulnerable to erratic noise. Seismic data obtained by sim-
ulations source techniques contain erratic noise in common-
receiver domain. This presentation examines the removal of
erratic noise in common-receiver domain via the robust Radon
transform.

INTRODUCTION

Simultaneous acquisition have been proposed to reduce the
acquisition cost of seismic surveys. However, most seismic
processing techniques are designed to handle data with non-

overlapping sources. Therefore, the separation of blended sources

into their equivalent non-overlapped sources is an important
step prior to classical processing sequences. Blending is equiv-
alent to time-shifting each individual source data and summing
according to certain scheme (encoding). Blending can be ex-
pressed mathematically as

b=TId (1)

where b is the blended data, d indicates the data cube we would
have liked to record in the absence of source overlapping and
I" is the blending operator. The blending operator in the fre-
quency domain can be expressed via the following expression

(@)

where 7;; is the delay of i-th source firing time with respect to
the detector j. In order to compute the de-blended data one
can follow two different approaches. In the first category of
methods, deblending is posed as an inverse problem where one
minimizes a cost function that includes a data misfit and a reg-
ularization term. In addition, rather than inverting directly for
d one must invert for the representation of d in terms of coeffi-
cients ¢ in an auxiliary domain. In other words, if the data are
represented in terms of coefficients ¢ in a basis @, such that
d = ®Pc, the goal is to estimate ¢ by minimizing the following
cost function

[T]ij = '

J = |b—Tde|3 +pz(e) 3)
The regularization term Z(c) is needed because I is a non-
invertible operator. Algorithms in this category include sparse
Radon inversion (Moore et al., 2008; Akerberg et al., 2008) ,
iterative f — k filtering (Mahdad et al., 2011; Doulgeris et al.,
2012) and curvelet-based source separation (Wason et al., 2011;
Lin and Herrmann, 2009). The inversion process can also be
posed via a projected gradient optimization algorithm (Abma
etal., 2010). All these methods attempt to retain coherent sig-
nal in common receiver gathers by imposing simplicity (spar-
sity) in c.

SEG Houston 2013 Annual Meeting

An alternative strategy is to estimate d directly from the pseudo-
deblended _
d=Tr"p )

via denoising methods (Huo et al., 2012; Berkhout, 2008).
Pseudo de-blending is equivalent to applying shifts and divid-
ing long blended records in those that one would have obtained
via standard non-overlapping acquisitions. However, pseudo
de-blending does not remove interferences resulting from the
overlapping of different sources and deblended records con-
tain a considerable amount of interferences. Interferences are
coherent in common source gathers and incoherent in common
receiver gathers.

In this work we propose to use the robust Radon transform
(Ji, 2006, 2012) to eliminate incoherent noise in common re-
ceivers gathers that were obtained by application of the pseudo
deblending operator (Equation 4) to simultaneous acquisition
data.

RADON TRANSFORMS

In our analysis we consider data organized in common receiver
gathers that have been obtained via pseudo-deblending. To
avoid notational clutter, we will designate these data in com-
mon receiver gathers as d(¢,h) or in vector form d with ¢ time
and h source-receiver distance. Radon transforms in both fre-
quency and time domains have been utilized to model seismic
reflections and to attenuate coherent noise. For instance, the
parabolic Radon transform (Hampson, 1986) has been widely
used for multiple suppression in common mid point gathers
after normal moveout correction correction. Similarly, Hy-
perbolic Radon transforms have been used to attenuate mul-
tiples in uncorrected common mid point gathers. Radon trans-
forms with apex terms have been proposed to attenuate diffrac-
tions (Trad et al., 2003) and to reconstruct seismic gathers
(Hokstad and Sollie, 2006) for 3D surface related multiple
elimination. Many studies have proposed to improve the res-
olution and computational efficiency of both frequency do-
main and time domain Radon transforms. Thorson and Claer-
bout (1985) were the first authors to cast Radon transform as
an inversion problem. They also proposed a sparse inversion
method to obtain highly focused Radon gathers in the time do-
main. The original frequency domain parabolic Radon trans-
form proposed by Hampson (1986) was modified by Sacchi
and Ulrych (1995) to incorporate sparsity as well. robust and
high resolution Radon transforms have been explored by Ji
(2006, 2012).

Transforms that map images and signals into new domains like
the Radon transform is a subject of intense research. In gen-
eral, data are transformed to a new domain to facilitate separa-
tion of its components and to differentiate signals from noise.
The Radon transform is an integral transform that in its dis-
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crete form can be expressed via the following two expressions

’71(%6,]') = Zd(t = a(’[,h,é),/’l), ©)
h

d(t,h) =Y m(t=9(t,h,€),8), ©)
g

where d(h,t) denotes the data (common receiver gather in this
article) , m(q, &) is Radon coefficients that one can obtain us-
ing the adjoint Radon operator. The parameter & is the Radon
parameter that depends on the type of integration path that
one adopts for the Radon integral. Popular alternatives are the
linear, parabolic and apex-shifted hyperbolic transforms with
travel-time integration paths provided in table (1). Equations
(5) and (6) define linear operators that can be represented us-
ing the language of linear algebra. For instance, the action of
the adjoint Radon operator on the data can be expressed via
matrix times vector multiplication

m =L"d (7
similarly, the action of the forward Radon operator on the model
m can represented by

d =Lm. ®)

In general, we use equation (8) to estimate m via an inversion
procedure and then, the estimated Radon model is used to re-
construct an improved version of d.

Table 1: Radon operators: HRT: Hyperbolic Radon ransform.
ASHRT: Apex Shifted Hyperbolic Radon Transform. PRT:
Parabolic Radon Transform. ASPRT: Apex Shifted Parabolic
Radon Transform. LRT: Linear Radon Transform. h: Offset.
v: Velocity. hg: Apex. g: Curvature . p: dip.

Operator & o(t,h,&) o(t,h,&)
HRT E=v r:(rz+%)‘/2 r:(rz—f‘%)‘/z
ASHRT £ = [wh] r=(2+ 7“”:;0)2 )i/2 =@ 7(’7:f;0’2 )I/2
PRT E—q t=1+qh” T=1—qh?
ASPRT & =1[q,ho] t=1+q(h—hp) T =1t—q(h—hy)?
LRT E=p t =1+ ph T=1—ph
ROBUST INVERSION

We assume data contaminated with noise and therefore, we
pose the estimation of m via the reduction of the residuals

r=d—Lm. ()]

The problem can be formulated in terms of the minimization
of a cost function given by

J = |r][p+ pim]|. (10)

where the first term on the right hand side indicates the misfit
term whereas the second term is used to indicate the regulariza-
tion term. By minimizing the cost function with respect to the
unknown vector of Radon coefficients m one finds a solution
that reproduces the observations d. The regularization term is
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used to impose desired characteristics to the unknown vector
of Radon coefficients. The parameters p and g (1 < g,p <2)
represent exponent of the p-norm of the misfit and the g—norm
of the model regularization term, respectively. In essence, we
adopt p =2 for data contaminated with Gaussian noise. On the
other hand, we prefer p = 1 when the data are contaminated by
erratic noise. The regularization term can be used to retrieve
minimum norm solutions when ¢ = 2 or sparse solutions when
q = 1. We also represent the p (and ¢) norm by the following
expression

Ixlls =" belll? 2l = [Waxl3 ()
i
where [Wy];; = \/ﬁ

The norm is analytically correct and valid for x; = 0. However,
our algorithm will treat the variable x; in the denominator and
that on the numerator as two independent variables during the
iterative process adopted to minimize J. Therefore, we modify
the matrix of weights for m as follows

] .
—  ifm; > &y
(Wi =< Vim? — (12)
T itm; <§g,.

Similarly, we define the matrix of weights for the residual as
follows

l .
= ifrj > ¢
Weli=< Vil (13)
N if r; <eg.

With the latter in mind, we can now replace the non-quadratic
optimization problem (Equation 10) by a sequence of quadratic
optimization problems where we minimize the cost function

J' = ||WPr||3+ p||Wiml3. (14)

The constants &, and &, represent the transition from an L; to
an L; minimization problem. Holland and Welsch (1977) used
robust statistics to estimate the value of &,

MAD(r)
0.6745 "’
where MAD indicates the median absolute deviation of the
residuals r. The parameter b, is a tuning parameter. Holland

and Welsch (1977) recommended using b, = 1.345. The pa-
rameter &, is computed via the following expression

& =b, (15)

max(m)
100

where b, is a tuning parameter that in our simulations was
selected in an heuristic fashion and set to b,, = 0.5.

En = bm

Expression (14) is minimized via the method of conjugate gra-
dients followed by an update of the matrices of weights Wy
and Wy, (Trad et al., 2003). In essence, we have an internal
iteration to minimize Equation (14) via the method of conju-
gate gradients and an external iteration to update the weights.
The method of conjugate gradient is stopped when the change
in misfit between iterations is less than a pre-defined tolerance
value (tolerance = 0.01). The external group of iterations was
set to 5. Notice that when p =2 and ¢ = 2 we have the clas-
sical least-squares Radon transform with quadratic regulariza-
tion that can be directly solved with the method of conjugate
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gradients because Wy, and W, are identity matrices. When

p =1 and g = 2 we have the high resolution (sparse) Radon ‘ ‘ ‘ ‘ 2 B socuappagton o0
transform (Trad et al., 2003). o R
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We tested the robust Radon transform with a marine data set zsoooo ot o P
. . * 4
from the Gulf of Mexico. The data were numerically blended * @Qg&*@ . L #H*
with 50% time reduction compared to the conventional acqui- = o7 Hoo w0

sition. The source firing times versus source location are dis-
played in Figure 1. Four moving sources were used to simulate
a practical blended acquisition survey. Each source fires while
it is moving along the same line and in the same direction as
other sources.

Figure 1: Sources firing times for a blending experiment.
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The original data utilized for the experiment is portrayed in (a)
Figure 2a. These data were numerically blended and pseudo-
deblended to obtain Figure 2b. The data recovered by for-
ward modelling with the Radon operator (apex shifted hyper-
bolic Radon operator) are shown in Figure 2c. In this exam-
ple, the Radon transform model was individually estimated for
each common receiver gather using the robust Radon trans-
form (p = 1, ¢ = 2). The difference cube in Figure 2d displays
the reconstructed error.
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The Radon model was estimated using least squares (p = g =
2, sparse (p =2, g = 1) and robust inversion (p = 1, ¢ =2) and
the resulting comparison of Radon panels (in time, apex, ve-
locity space) are displayed in Figure 3. Clearly, in this test we
used the apex shifted hyperbolic Radon transform because in
common receiver domain one does not have a priori knowledge
of the position of the apexes. Figure 4 shows the common re-
ceiver gather retrieved by each type of inversion after forward
modelling the Radon panels in Figure 3. To quantitatively de-
termine the accuracy of the data estimated by our processes we
define, Figure 2: Real data example. (a) Original. (b) Pseudo de-
||d0riginal||% blended. (c) Data recovered by forward modelling with the
(16) robust Radon transform p = 1 and ¢ = 2. (c¢) Difference be-

tween the estimated and the original common receiver gather.
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0 =10Log .
||doriginal - dretrieved | ‘%

The Q value for the recovered common receiver gather using
least squares, sparse and robust transforms are are 10.71, 7.18

and 14.28, respectively. In addition, Figure 5 shows a close (@) (b) (©

. A Velocity (fts) O Velocity (ftls) W8 Velocity (fts)
look at. the results of Figure 4. These figures conﬁm that *5‘\«\\ " - *s\\‘“k o - *5‘\«\\ " -
modelling the data via the robust Radon transform is an ef- W - ¥

fective mean to remove interferences. The exercise also shows
the importance of equipping the design of the Radon operator
with a robust misfit functional. We were surprised to find out
in our numerous tests that that robustness is more important
than sparsity in this particular type of experiments. Solving the
problem with p = ¢ = 1 does not lead to better solutions than
those obtained with p = 1 and ¢ = 2. In fact, adding sparsity to
the Radon solution in addition to robustness is not as simple as
one might think because the algorithm becomes quite sensitive
to the selection of &, and &,,. Recent results in the area of ro-
bust deconvolution that include sparsity constraints (Gholami
and Sacchi, 2012) suggest that more sophisticated algorithms
are needed to obtain solutions that are not prone to failure due
to incorrect parameter selection. Figure 3: Radon panels obtained via inversion with (a) p = 2
andg=2,(b)yp=2andg=1and,(c) p=1and g=2.
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CONCLUSION

Interferences in common receiver gathers can be removed us-
ing robust Radon transforms. Treating blending noise as out-
liers and modelling the data with a Radon transform equipped
with a robust misfit functional is an effective way of remov-
ing interferences caused by simultaneous shooting acquisition.
Our tests showed that using a robust misfit (p = 1) with simple
quadratic regularization (¢ = 2) produces better results than
imposing sparsity on the model (g = 1).
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Figure 4: Common receiver gather. (a) Original data. (b)
Blended data. (c) Data retrieved using p =2 and ¢ = 2. (d)
Data retrieved using p =2 and ¢ = 1. (e) Data retrieved using
p=1and g =2. (f), (2) and h) Error displays for (c), (d) and
(e), respectively.
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Figure 5: Close up of the real data example. (a) Original un-
blended data. (b) Blended data. (c) Data estimated using p =2
and g = 2. (d) Data estimated using p =2 and g = 1 (e) Data
estimated using p = 1 and ¢ = 1. (f), (g) and h) Error displays
for (c), (d) and (e), respectively.
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