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SUMMARY

Singular Spectrum Analysis (SSA) or Cadzow reduced-rank
filtering is an efficient method for random noise attenuation
when the data are contaminated by Gaussian noise. SSA starts
by embedding the seismic data into a Hankel matrix. Rank-
reduction of this Hankel matrix followed by anti-diagonal av-
eraging is utilized to estimate an enhanced seismic signal. The
rank-reduction step in the SSA filter is often implemented
via the truncated Singular Value Decomposition (TSVD). The
TSVD is a non-robust matrix factorization that often leads
to suboptimal results when the seismic data are contami-
nated by erratic noise. We propose to adopt a robust matrix
f actorization that permits to utilize the SSA filter in situa-
tions where the data are contaminated by noise bursts, outliers
and/or isolated anomalous traces.

INTRODUCTION

The improvement of the signal-to-noise ratio of seismic records
is an important topic in seismic data processing. Incoherent
noise attenuation can be carried out via prediction error filters
in f -x (Canales, 1984) and t-x (Abma and Claerbout, 1995)
domains. Incoherent noise can also be attenuated via rank-
reduction methods. Rank-reduction methods can be grouped
into several categories. For instance, eigenimage filtering (Freire
and Ulrych, 1988), similar to filtering via the Karhunen-Loeve
transform (Al-Yahya, 1991; Ulrych et al., 1999) can operate
directly on the seismic data in the t-x, f -x or f -x-y domains
(Trickett, 2003). Recently, the Singular Spectrum Analysis
(SSA) method (Sacchi, 2009; Oropeza and Sacchi, 2011), also
known as Cadzow filtering (Trickett, 2008), was introduced
to attenuate incoherent noise and as an alternative to f -x pre-
diction error methods. SSA operates in the frequency-space
domain ( f -x) by embedding spatial data at a given monochro-
matic temporal frequency into a Hankel matrix. Then the ideal
Hankel matrix that one would have formed in the absence of
noise is found via the low rank approximation of the Hankel
matrix of the noisy observations (Oropeza and Sacchi, 2011).

In this article, we propose a robust SSA method for removing
Gaussian and erratic noise. Rank-reduction is implemented
via robust matrix factorization. The Hankel matrix of the data
is approximated by the product of two low-dimensional fac-
tor matrices. The bisquare function is used to obtain a ro-
bust metric to approximate the Hankel matrix by a matrix of
lower rank. The Iteratively Re-weighted Least Squares (IRLS)
method (De la Torre and Black, 2003; Maronna and Yohai,
2008) is used to optimize the two low rank factor matrices.
Our synthetic and real data examples show that the new robust
SSA method can easily cope with non-Gaussian erratic noise.

THEORY

Singular Spectrum Analysis

This section provides a short review of the basic idea of the
SSA method, which is also called Cadzow filtering. Details
pertaining the implementation of SSA for seismic noise attenu-
ation and seismic data reconstruction can be found in (Oropeza
and Sacchi, 2011). We discuss the 2-D (t-x) implementation
of SSA. However, we stress that SSA for 3D and 5D volumes
have been extensively discussed in Oropeza and Sacchi (2011)
and Gao et al. (2011), respectively. Seismic data in a small
window can be represented in the frequency-space domain via
the superposition of plane waves

D j(ω) =

K∑

k=1

Ak(ω)eiωPk j∆x, (1)

where i =
√
−1, j = 1,2, ...,N is the trace index in the spa-

tial axis and ω represents temporal frequency. In this equa-
tion we assume that the data are composed of K linear events
with distinct ray parameters Pk. We denote Ak(ω) the complex
amplitude of the k-th plane wave and ∆x indicates the spatial
interval between seismograms. The SSA method constructs a
trajectory matrix by embedding spatial data at one frequency,
i.e. D(ω) = [D1(ω),D2(ω), · · · ,DN(ω)]T into the following
Hankel matrix

M(ω) = H [D(ω)]

=




D1(ω) D2(ω) · · · DN−L+1(ω)
D2(ω) D3(ω) · · · DN−L+2(ω)

...
...

. . .
...

DL(ω) DL+1(ω) · · · DN(ω)


 , (2)

where the symbol H is used to indicate the Hankel opera-
tor. For convenience, we choose L = bN

2 c+ 1 to make the
Hankel matrix approximately square (Trickett, 2008), Mω ∈
CL×(N−L+1). We will omit the symbol ω and understand that
the analysis is carried out for all frequencies. For a superposi-
tion of K plane waves one can show that rank(M) = K (Hua,
1992). Additive noise in D will increase the rank of matrix
M. Then, one way of attenuating additive noise is via Rank-
reduction. The SSA filter can be represented via the following
expression

D̂ = A [RK [H [D ] ] ] , (3)

where A is the anti-diagonal averaging operator, RK [M] is
the rank-reduction operator that approximates M by a rank-K
matrix and H is the Hankel operator. The operator A trans-
forms back a Hankel form into a vector by averaging across
anti-diagonals. It is important to stress that a similar analysis is
valid for multidimensional signals where one must adopt block
Hankel matrices and block anti-diagonal averaging operators
(Trickett, 2008). The rank-reduction step (RK) of the method
can be implemented via the truncated SVD (Trickett, 2008),
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the randomized SVD (Oropeza and Sacchi, 2011) or by fast al-
gorithms that adopt Lanczos bidiagonalization and fast Fourier
Transforms for matrix-times-vector multiplications (Gao et al.,
2011, 2013). All these Rank-reduction methods are non-robust
and therefore, they are prone to degradation in the presence of
outliers.

The `2 Low Rank Approximation

The rank K approximation of the matrix M can be found by
solving the following problem

MK = RK(M) = argmin
M̂
‖M−M̂‖2

F ,

subject to rank(M̂) = K,

(4)

where ‖·‖F is the Frobenius norm, ‖E‖F =
√∑m

i=1
∑n

j=1 |ei j|2
of the matrix E ∈Cm×n. The problem in expression (4) has an
unique analytic solution (Srebro and Jaakkola, 2003). This so-
lution is given by the truncated singular value decomposition
(TSVD)

MK =RK(M) = UKSKVH
K

=UKUH
K M,

(5)

where UK ∈ Cm×K and VK ∈ Cn×K are matrices containing
singular vectors associated to the first K-largest singular values
s j, j = 1 . . .K which are also the diagonal elements of the ma-
trix SK ∈RK×K . The latter is also known as the Eckart-Young
theorem (Eckart and Young, 1936). Rank-reduction via TSVD
is quite simple to implement and solution is unique. However,
the quadratic misfit functional makes the solution quite sen-
sitive to non-Gaussian noise. This drawback could limit the
application of the SSA method in situations where the data are
contaminated by outliers. In this article, we investigate a ro-
bust measure of distance between the matrices M and MK and
an algorithm to estimate a low-rank approximation under the
new distance.

Robust Low Rank Approximation

We now propose to replace the Frobenius metric for distance
between two matrices in equation (4) by a robust metric. The
new problem becomes

MK = RK(M) = argmin
M̂
‖M−M̂‖ρ

subject to rank(M̂) = K,

(6)

where ||M− M̂||ρ =
∑m

i=1
∑n

j=1 ρ(mi j−m̂i j
σ ), mi j is the ele-

ment at i-th row and j-th column of M, σ is a scale parameter
for function ρ . When ρ is non-quadratic, the problem (Equa-
tion (6) ) is non-convex. We have tried different metrics for
robust estimation and concluded that good results are attain-
able via Tukey’s bisquare function (Beaton and Tukey, 1974)

ρ(u) =





1
6

α2



1−

[
1−
( |u|

α

)2
]3


 |u| ≤ α

1
6

α2 |u|> α

. (7)

The bisquare functional is portrayed in Figure 1 in conjunction
to the classical `2 metric utilized by the Frobenius norm. The
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Figure 1: Dashed line is the quadratic function 1
2 |u|2. Solid

line is Tukey’s bisquare robust metric adopted in this article
for robust matrix factorization.

constant α is a tuneable parameter. Holland and Welsch (1977)
recommend to take α = 4.685 for Tukey’s bisquare function.
The value ασ performs as a transition point that permits to
distinguish outliers from inliers. Smaller ασ will penalize the
outliers more heavily which results in a more robust estima-
tion.

The low rank approximation problem given by equation (6)
can be addressed by representing the unknown matrix via the
factorization M̂ = XYH where X∈Cm×K , Y∈Cn×K (Gabriel
and Zamir, 1979) and solving

(
X̃, Ỹ

)
= argmin

X,Y
‖M−XYH‖ρ . (8)

The problem (8) is solved via Iteratively Reweighted Least
Squares (IRLS) (De la Torre and Black, 2003; Maronna and
Yohai, 2008). The iterations for updating model weights are
referred to as external iterations. The weighting function for
bisquare function is

w(r) =





[
1−
( |r|

ασ

)2
]2 ∣∣ r

σ
∣∣≤ α

0
∣∣ r

σ
∣∣> α

, (9)

where r is residual. In each external iteration, the two un-
knowns X and Y are still coupled together. This can be ad-
dressed by the alternating minimization method (Gabriel and
Zamir, 1979; Roweis, 1997; Tipping and Bishop, 1999). The
iterations for alternating minimization are referred to as inter-
nal iterations. In t-th external iteration, the alternating min-
mization algorithm (internal iterations) is briefly expressed as
follows

Yl
t = argmin

Yt

||W
1
2
t−1� (M−Xl−1

t YH
t )||2F ,

Xl
t = argmin

Xt

||W
1
2
t−1� (M−XtYl

t
H
)||2F ,

(10)

where t indicates external iteration index, l indicates internal
iteration index, Wt−1 is weighting matrix calculated from (t−
1)-th external iteration, � indicates elementwise product oper-
ator, 1

2 indicates elementwise square root operator. The inter-

nal iterations are performed until ‖Xl
t Yl

t
H −Xl−1

t Yl−1
t

H‖F ≤
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ε . The robust scale parameter σ can be estimated from the
residuals (difference between the matrix M and XYH ) via the
expression

σ = 1.4826 MAD = 1.4826 med | r−med | r ||, (11)

where MAD indicates the median absolute deviation and r are
the residuals in vector form (Holland and Welsch, 1977). We
choose to adopt a random initialization of the factor matrices
X and Y to start the robust matrix factorization algorithm and
we update σ using equation (11) in each external iteration.

EXAMPLES

We present synthetic examples and also a real data example
to illustrate the proposed algorithm. We compared the per-
formance of the robust SSA method with the performance of
classical SSA and f -x deconvolution.

Synthetic Example

The synthetic example is used to test the algorithm robustness
with respect to outliers. Figure 2 (b) shows a 2-D t-x data
set, which has 40 traces and a total time of 1.2 s with sam-
pling interval 0.004 s. It contains Gaussian noise with signal
to noise ratio (SNR) equal to 1, and isolated noisy traces. The
amplitude of the erratic noise traces is 3 and 2 times of the
maximum amplitude of the uncorrupted data. The processing
frequency band ranges from 1 to 40 Hz. We select the size of
subspace of the reconstructed data to be K = 3. The algorithm
is started with a random initialization of the factor matrices X
and Y. We choose the number of external iterations (for up-
dating weights) equal to 10 and number of internal iterations
(for alternating minimization) equal to 5. The results of f -x
deconvolution, SSA and robust SSA are compared. The length
of prediction filter in f -x deconvolution is 10, the trade-off pa-
rameter is 0.001. Figure 2 (a) is the noise free data, Figure 2
(b) is the contaminated noisy data and Figure 2 (c) is the added
noise. Figure 3 (a) shows the result of f -x deconvolution, we
can see that the result is not very good because large amplitude
noise leaks over several traces in the output panel. Figure 3 (b)
shows the result of the classical non-robust SSA implemented
via the SVD. Again, we observe that the erratic noise has not
been properly removed and noticeable artifacts are present in
the output gather. The robust SSA method is shown in Figure
3 (c). In this case, the Gaussian and erratic noise were suc-
cessfully suppressed. We evaluate the denoising performance

by evaluating the factor Q = 10 log
||d0||2F
||d0− d̂||2F

, where d0 is

the noise free data, d̂ is the reconstructed data. Larger value of
Q means better denoising performance. The Q value of f -x de-
convolution is Q f x = 7.7, the Q value for SSA is Qssa =−2.8
and the Q value of robust SSA is Qrssa = 12.4. These values
indicate that the robust SSA method offers a good alternative
to SSA and f -x deconvolution when the data are contaminated
by erratic noise.

Field Data Example

The proposed robust SSA algorithm is also tested on a real
data set. The data are CDP stack gathers with 800 traces. The
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Figure 2: The synthetic data with three linear events. (a) Clean
data. (b) Data with Gaussian noise and erratic spatial noise.
(c) The noise added to the data.
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Figure 3: (a) Data in Figure 2(b) after f -x deconvolution. (b)
Data after classical SSA filtering. (c) Data after robust SSA
filtering.

time sample interval is 0.002 s, and the total recorded time is
3 s. Figure 4 (a) shows this field data set. Figure 4 (b) and (c)
shows the data in the left and right rectangular windows in Fig-
ure 4 (a), respectively. We divide the data set into overlapping
windows, process each window and then add them back. This
operation is used to speed up the method and also to preserve
details in the data. The size of the window is 1500 time sam-
ples times 80 CDP gathers. The processing band for all test
ranges from 1 Hz to 80 Hz. The rank K of the reconstructed
low rank matrix is chosen to be 2 for both SSA and the robust
SSA method. The external iteration number of the robust SSA
method is set to 10 and the internal iteration number is set to
5. The length of prediction filter in f -x deconvolution is set to
10 and the trade-off parameter is set to 0.001. We show the
results for data in two windows highlighted Figure 4(a). The
results for window to the left in Figure 4(a) are shown in Fig-
ure 5. The results for window to the right of Figure 4(a) are
shown in Figure 6. We observe that the robust SSA method
has successfully removed noise bursts present in the data.

CONCLUSIONS

In this paper, we propose a robust version of the SSA method
which can remove Gaussian and non-Gaussian (erratic) noise.
The robust matrix factorization is used in the new method in-
stead of the truncated SVD. Synthetic and real data examples
were used to analyze the performance of the new algorithm.
One possible concern is the computation cost of the robust
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Figure 4: Poststack field data. (a) The whole data set. (b) The
data in the left rectangular window. (c) The data in the right
rectangular window.
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Figure 5: The comparison of results of the data in the left rect-
angular window by three different methods. (a) Data after f -x
deconvolution filtering. (b) Data after classical SSA filtering.
(c) Data after robust SSA filtering.

algorithm. Computational time can be reduced by adopting
windowing strategies to minimize the size of the Hankel ma-
trices to factorize. Another strategy is to truncate the num-
ber of iterations of the alternating minimization algorithm and
IRLS solvers in a way that an inexact factorization is esti-
mated. We have noticed that an inexact factorization can yield
better results than conventional non-robust Rank-reduction via
the truncated SVD.
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Figure 6: The comparison of results of the data in the right
rectangular window by three different methods. (a) Data af-
ter f -x deconvolution filtering. (b) Data after classical SSA
filtering. (c) Data after robust SSA filtering.
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