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SUMMARY

Linear prediction filters are efficient for reducing random seis-
mic noise but not for removing erratic noise. We propose
a robust f -x projection filtering scheme for simultaneous er-
ratic noise and Gaussian random noise attenuation. Instead
of adopting the `2 norm, as commonly used in the conven-
tional design of f -x filters, we utilize the hybrid `1/`2 norm
to penalize the energy of the additive noise. The estimation of
the prediction error filter and the additive noise sequence are
performed in an alternating fashion. First, the additive noise
sequence is fixed and the prediction error filter is estimated
via the least-squares solution of a system of linear equations.
Then, the prediction error filter is fixed and the additive noise
sequence is estimated through a cost function containing hy-
brid `1/`2 norm that prevents erratic noise to influence the
final solution. Synthetic and field data examples are used to
evaluate the performance of the proposed algorithm.

INTRODUCTION

The f -x prediction filtering methods for random seismic noise
reduction have been widely used in industry. Canales (1984)
proposed the f -x prediction technique for seismic random noise
reduction. This method implicitly utilizes the autoregressive
(AR) model to represent data in the f -x domain. The method
is often named f -x deconvolution (Gulunay, 1986).

f -x deconvolution is known to damage the signal if the signal-
to-noise ratio (SNR) is low. A large order AR model can be
used to better represent the data (Ulrych and Sacchi, 2005).
However, long AR filters will also model the noise and there-
fore, one will not be able to attenuate random noise. Harris
and White (1997) suggests to “clean up” the correlation ma-
trix that is required to estimate the prediction error filter via the
truncated SVD, a methodology first described in Tufts and Ku-
maresan (1982). Soubaras (1994, 1995) proposed the f -x pro-
jection filtering technique. The latter utilizes the additive noise
model and the concept of quasi-predictability to estimate addi-
tive random noise. The additive noise is estimated via the ap-
plication of an autodeconvolved prediction error filter (called
the projection filter) to the data. Sacchi and Kuehl (2001)
pointed out that the model for seismic data in f -x is actually
a special autoregressive moving-average (ARMA) model (Ul-
rych and Clayton, 1976) in the sense that the parameters of the
AR portion are identical to the parameters of the MA portion
of the model. The prediction error filter in Sacchi and Kuehl
(2001) is the solution of an eigen-decomposition problem. The
additive noise is estimated by a least-squares procedure equiv-
alent to the method outlined by Soubaras (1994).

The aforementioned methods are based on the least-squares
approach. They are efficient for Gaussian noise elimination.
However, it is well known that the least-squares estimation is

very sensitive to erratic noise (non-Gaussian errors). Unfortu-
nately, seismic data often contain erratic noise such as noise
bursts, power-line noise, traffic noise, swell noise, etc. Sev-
eral methods based on outlier detection have been proposed
to denoise seismic data contaminated by erratic noise. For in-
stance, in each frequency slice or frequency band, the traces
containing impulsive noise are first detected, invalidated and
then interpolated by f -x projection filters (Soubaras, 1995) or
f -x prediction filters (Schonewille et al., 2008). Instead of out-
lier detection techniques followed by least-squares estimation,
we propose to apply direct robust estimation. The proposed
robust f -x projection method can simultaneously remove ran-
dom Gaussian noise and erratic noise. The misfit between
the observed data and the modeled signal is measured by the
hybrid `1/`2 norm (Bube and Langan, 1997) instead of the
classical `2 norm. The estimation of the prediction error filter
and the clean signal is a nonlinear problem because these two
are coupled together as convolution. In this article, the afore-
mentioned problem is tackled by an alternating minimization
scheme where the noise sequence and the prediction error filter
are alternately updated.

THEORY

Additive noise model

The seismic signal is usually corrupted with seismic noise re-
sulting from various sources. We will consider the situation
where a signal in the f -x domain is corrupted by not only
Gaussian noise but also erratic (impulsive) noise. In each fre-
quency slice, the observed seismic data can be represented by
an additive noise model (Ulrych and Clayton, 1976; Soubaras,
1995; Sacchi and Kuehl, 2001)

yn = xn +nn + in, (1)

where yn is a wide-sense stationary random process, process xn
represents the clean signal, nn is the complex white Gaussian
noise and in is a stationary process representing erratic noise.
The signal xn, the Gaussian noise nn and the impulsive noise in
are assumed to be mutually independent. We use en = nn + in
to represent the mixture of additive noises. Equation 1 can be
rewritten as

yn = xn + en. (2)

We will use lower case bold fonts to indicate the realizations
of random processes in vector form. For instance, y is a real-
ization of process yn expressed in a column vector form.

Signal model: quasi-predictability

A seismic signal that contains p linear events with distinct dips
manifests itself as a superposition of p complex sinusoids in
the f -x domain. The signal in the channel n at angular fre-
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Robust f -x filter

quency ω can be represented by

xn(ω) =

p∑

k=1

ak(ω)e−iωηk(n−1)∆s, (3)

where ak(ω) is the Fourier transform of the source wavelet
corresponding to the kth event, ηk is the kth dip and ∆s is the
spatial interval between two channels, and i =

√
−1. For con-

venience, we will omit the symbol ω and understand that the
analysis is carried out for all frequencies. The exponential sig-
nal is represented by line spectra consisting of p impulses in
the wavenumber domain. It can be shown that the exponential
signal satisfies the pth-order homogeneous difference equation

xn + f1xn−1 + f2xn−2 + . . .+ fpxn−p = 0 . (4)

In other words, xn is perfectly predictable based on it preced-
ing values. Clearly, the series xn is completely deterministic.
The elements f0 = 1, f1, f2, . . . , fp are the coefficients of the
so-called prediction error filter. In this particular case, the pre-
diction error filter is also the annihilator of xn. This complex
sinusoidal process is equivalent to a “special AR process” with
innovation equal to zero (Kay and Marple, 1981).

In realistic cases, the noise-free f -x seismic signal cannot be
perfectly modeled as a sum of a finite number of exponentials.
The concept of quasi-predictability (Soubaras, 1995) will al-
low us to cope with situation where the innovation of the spe-
cial AR process is not equal to zero. The deterministic process
xn in equation 4 is approximated by an AR process

xn =−
p∑

k=1

fkxn−k +un, (5)

where fk,k = 1,2, . . . , p are the AR coefficients and un indi-
cates white noise sequence (innovation). The random process
xn is quasi-predictable from its preceding samples. Substitut-
ing xn = yn− en into equation 5 leads to

p∑

k=0

fkyn−k =

p∑

k=0

fken−k +un. (6)

The above equation is an ARMA process similar to the model
studies by Ulrych and Clayton (1976) and Sacchi and Kuehl
(2001), however, the process now contains innovation term.
The ARMA parameter estimation problem is nonlinear (Kay
and Marple, 1981). We tackle it via an alternating minimiza-
tion scheme. First, the additive noise sequence is fixed and the
prediction error filter is estimated. Then, the prediction error
filter is fixed and the additive noise sequence is estimated. The
two stages are iterated until reaching convergence.

Additive noise sequence and PEF estimation
Random process yn is observed over an interval of N in space
that results in a N-point data sequence y. In this paper, we
adopt the forward and backward prediction method (modified
covariance method) (Ulrych and Clayton, 1976). In matrix
vector form, the forward and backward prediction can be ex-
pressed as

F(y− e) = u (7)

where F is a convolutional matrix containing the elements of
the unknown filter coefficients. Our task is to estimate the pre-
diction error filter f and the noise sequence e. It is a nonlinear
problem. We will first simplify the problem by assuming that
the prediction error filter is known. The estimation of e from
equation 7 is an ill-posed problem. Soubaras (1994) solved the
problem via the damped least-squares method resulting in the
well-known Tikhonov regularized least-squares solution. In
this paper, we propose to adopt a constraint that minimizes the
hybrid `1/`2 norm of the noise sequence e. The estimation of
the noise sequence reduces as minimizing the cost function

J =
1
2
||F(y− e)||22 +λH (e), (8)

where λ = ξ 2/σ is a trade-off parameter, ξ is the standard
deviation of the innovation and σ is the scale parameter for
the noise sequence e. The functional H (e) =

∑N
i=1 h(ei) is

the hybrid `1/`2 norm of the complex vector e with the hybrid
function given by

h(e) =
√

σ2 + |e|2−σ . (9)

Bube and Langan (1997) recommended to choose σ approxi-
mately equal to 0.6 times the standard deviation of the random
variable e. Setting ∂J (e)

∂e∗ = 0, leads to the “nonlinear normal
equations” (

FHF+λW
)

e = FHFy, (10)

where W is a N×N diagonal weight matrix with diagonal el-

ements given by W j j = 1/
√

σ2 + |e j|2. The nonlinear equa-
tions can be solved by the iteratively reweighed least-squares
(IRLS) algorithm (Bube and Langan, 1997). The kth itera-
tion is solved with weights computed from the iteration k−1,
Wk−1

W (k−1)
j j = 1/

√
σ2 + |e(k−1)

j |2, j = 1,2, . . . ,N . (11)

The iterative solution is given by

e(k) =
(

FHF+λW(k−1)
)−1

FHFy . (12)

Now we turn our attention to the estimation of the filter f.
Clearly, once we have estimated the noise sequence e, we can
compute an estimation of the clear signal x = y−e. Moreover,
given that the regularization term does not depend on f, the
problem of estimating f reduces as minimizing

J =
1
2
‖Fx‖2

2 . (13)

Given the commutative property of the convolution operator,
minimizing ‖Fx‖2

2 is equivalent to minimize ‖Xf‖2
2 where X

is the matrix containing the elements of the x and representing
the convolution of f with x. Given that f0 = 1, we estimate the
prediction filter g

ĝ = (X̄H X̄)−1X̄H x̄, (14)

X̄, x̄ are the partitioned matrix and vector of X such that X =(
x̄|X̄
)
. Finally, the estimated prediction error filter is given by

the vector
f̂ = (1,−ĝT )T . (15)
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Robust f -x filter
Iterative algorithm, hyperparameter selection and stop-
ping criteria

The algorithm is applied to each temporal frequency with spe-
cial attention paid to Fourier domain symmetries to save com-
putational cost. The algorithm can be summarized as follows

1. Initialize the signal x and compute an initial noise term
e = y−x.

2. Estimate of the prediction error filter f via equation 14
and 15.

3. Estimate of the noise sequence e by minimizing cost
function 8.

4. Iterate steps 2 to 3 until convergence.

For a given temporal frequency slice, the signal component x
is initialized by the estimated signal x from the preceding fre-
quency slice. The solution at the first frequency slice, x, is
generated by the traditional least-squares f -x projection (Sac-
chi and Kuehl, 2001). The parameter σ is fixed and the trade-
off parameter λ is tuned by examining the residuals. This is
similar to the strategy often used in f -x deconvolution for pa-
rameter selection. The algorithm has two groups of iterations:
an internal iteration (IRLS) to estimate e and an external iter-
ation for alternating minimization. We have two convergence
criteria to stop to reduce the number of iterations. We moni-
tor the cost function J and terminate the external loop when
the relative change of the cost function between two consecu-
tive iterations is less that a tolerance tol1. A second tolerance
tol2 is used to control the number of IRLS iterations that are
required to estimate e.

EXAMPLES

Synthetic example

Our algorithm is first tested with a synthetic example. We com-
pare the results of robust f -x projection, f -x deconvolution and
the conventional f -x projection. The f -x deconvolution used
here averages the forward and backward predicted values and
uses prediction matrix corresponds to transient-free formula-
tion. The conventional f -x projection filter used here is a mod-
ification of Sacchi and Kuehl (2001)’s method that uses the
modified covariance method. Figure 1a shows a 2-D synthetic
data with noise. The central frequency of the Ricker wavelet
is 30 Hz. Figure 1b shows the Gaussian noise with signal to
noise ratio (SNR) equal to 1.2 (SNR is defined as the ratio
of the maximum amplitudes of signal and noise). Figure 1c
shows the high amplitude erratic noise. The maximum am-
plitude of the erratic noise is approximately 5 times the max-
imum amplitude of the signal in Figure 1a. The processing
frequency band ranges from 0 to 100 Hz. The length of the
prediction error filter for the robust f -x projection filtering is
set to 4. The scale parameter σ and the trade-off parameter
λ are 6 and 0.1, respectively. The two stopping criteria are
tol1 = 10−8 and tol2 = 10−8. The length of prediction error
filter of the f -x deconvolution is 9. The length of prediction
error filter in the conventional f -x projection filtering method
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Figure 1: (a) Noisy synthetic data (after clipping). (b) Gaus-
sian noise with SNR = 1.2. (c) Erratic noise. (d) Denoising via
robust f -x projection. (e) Denoising via f -x deconvolution. (f)
Denoising via least-squares f -x projection. (g) Difference sec-
tion for robust f -x projection. (h) Difference section for f -x
deconvolution. (i) Difference section for f -x projection filter.

is 4 and the trade-off parameter is 3. The filtered data by ro-
bust f -x projection, f -x deconvolution and least-squares f -x
projection are shown in Figure 1d, Figure 1e and Figure 1f,
respectively. Only the robust f -x projection filter was able to
suppress the erratic noise and Gaussian noise. Difference sec-
tions (noise free data minus filtered data) in Figure 1g, Figure
1h and Figure 1i show that the robust f -x projection preserves
the original signal. On the other hand, f -x deconvolution dam-
ages the signal. We evaluate the performance of the algorithms

in decibels via the expression Q = 10 log ‖D0‖2
F

‖D0−D̂‖2
F

, where D0

denotes noise-free data, D̂ denotes filtered data and ‖·‖F is the
Frobenius norm of a matrix. Larger value of Q means better
denoising performance. The Q value for the robust f -x projec-
tion filter is 7.6. The Q value for the f -x deconvolution is -3.3.
The Q value for the f -x projection is -19.9.

Field data example

We tested our proposed algorithm on a post-stack field dataset
from the Western Canadian Sedimentary Basin (WCSB). The
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Robust f -x filter

performance of robust f -x projection, f -x deconvolution and
conventional f -x projection are compared. Figure 2a is a post-
stack data section with erratic noise and random Gaussian noise.
The complete data are divided into overlapped windows. All
windows are processed and then added back. In the spatial di-
rection, each window has 50 traces and the overlap between
two adjacent windows is 25 traces. In the temporal direction,
each window has 300 samples (0.6 s) and the overlap between
two adjacent windows is 100 samples (0.2 s). All the three
filtering methods are applied for frequencies in the band of
1-80 Hz. We choose the length of the prediction error filter
for robust f -x projection filtering as 4. The scale parameter σ
and the trade-off parameter λ are 2 and 0.4, respectively. The
two stopping criterion values are tol1 = 10−6 and tol2 = 10−5.
The length of prediction error filter for the f -x deconvolution
is 7. The length of perdition error filter for the conventional
f -x projection filter method is 4, and the trade-off parameter
is 0.1. We show the results for data in two windows that are
highlighted in Figure 2a. The results for the window to the left
in Figure 2a are shown in Figure 3. Figure 4 shows the results
of the window on the right. It is clear that the robust f -x pro-
jection has performed better than the classical projection filter
and the f -x deconvolution.

CONCLUSIONS

In this paper, we propose a robust f -x projection denoising
method that is robust to erratic noise. The method is also ef-
ficient for Gaussian noise attenuation. Instead of using the
`2 norm of the additive noise, we adopted the hybrid `1/`2
norm to penalize the energy of the additive noise in order to
promote robustness to erratic noise. The estimation of the
noise sequence and the estimation of the prediction error fil-
ter are conducted via an alternating minimization algorithm.
Synthetic data examples and a field data example show that
the proposed robust algorithm can remove erratic noise with a
minimal degradation of the signal.
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Figure 2: (a) Poststack data from WCSB with erratic noise and
random Gaussian noise. (b) The data in the left rectangular
window. (c) The data in the right rectangular window.
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Figure 3: The comparison of filtered results of the data in the
left window. (a) The result of robust f -x projection. (b) The
result of f -x deconvolution. (c) The result of f -x projection.
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Figure 4: The comparison of filtered results of the data in the
right window. (a) The result of robust f -x projection. (b) The
result of f -x deconvolution. (c) The result of f -x projection.
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