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SUMMARY

The Exponentially Weighted Recursive Least Squares (EWRLS)
method is adopted to estimate adaptive prediction filters for F-X seis-
mic interpolation. Adaptive prediction filters are able to model signals
where the dominant wave-numbers are varying in space. This concept
leads to a F-X interpolation method that does not require windowing
strategies for optimal results. Synthetic and real data examples are
used to illustrate the performance of the proposed adaptive F-X inter-
polation method.

INTRODUCTION

Spitz (1991) introduced a seismic trace interpolation method that uti-
lizes prediction filters in the frequency-space (F-X) domain. Spitz’s
algorithm is based on the fact that linear events in time-space (T-X)
domain map to a superposition of complex sinusoids in the F-X do-
main. Complex sinusoids can be reconstructed via prediction filters
(autoregressive operators); this property is used to establish a signal
model for F-X interpolation (Spitz, 1991) and F-X random noise at-
tenuation (Canales, 1984; Soubaras, 1994; Sacchi and Kuehl, 2000).

Spitz (1991) showed that prediction filters obtained at frequency f can
be used to interpolate data at temporal frequency 2 f . Prediction fil-
ters estimated from the low-frequency (alias-free) portion of the data
are used to interpolate the high-frequency (aliased) data components.
Several modifications to Spitz’s prediction filtering interpolation have
been proposed. For instance, Porsani (1999) proposed a half-step pre-
diction filter scheme that makes the interpolation process more effi-
cient. Gulunay (2003) introduced an algorithm with similarities to F-X
prediction filtering with a very elegant representation in the frequency-
wavenumber F-K domain. Recently, Naghizadeh and Sacchi (2007)
proposed a modification of F-X interpolation that allows to reconstruct
data with gaps.

Seismic interpolation algorithms depend on a signal model. F-X in-
terpolation methods are not an exception to the preceding statement;
they assume data composed of a finite number of waveforms with con-
stant dip. This assumption can be validated via windowing. Interpola-
tion methods driven by, for instance, local Radon transforms (Sacchi
et al., 2004) and Curvelet frames (Herrmann and Hennenfent, 2008)
assume a signal model that consists of events with constant local dip.
In addition, they implicitly define operators that are local without the
necessity of windowing. This is an attractive property, in particular,
when compared to non-local interpolation methods (operators defined
on a large spatial aperture) where optimal results are only achievable
when seismic events match the kinematic signature of the operator.
Examples of the latter are interpolation methods based on the hyper-
bolic/parabolic Radon transforms (Darche, 1990; Trad et al., 2002) and
migration operators (Trad, 2003).

As we have already pointed out, F-X methods require windowing strate-
gies to cope with continuous changes in dominant wave-numbers (or
dips in T-X). In this article we propose a method that avoids the ne-
cessity of spatial windows. The proposed interpolation automatically
updates prediction filters as lateral variations of dip are encountered.
This concepts can be implemented in a somehow cumbersome process
that requires classical F-X interpolation in a rolling window. In this pa-
per we have preferred to use the framework of recursive least squares
(Honig and Messerschmidt, 1984; Marple, 1987) to update prediction
filters in a recursive fashion. Following Spitz (1991), prediction filters

estimated at temporal frequency f are used to reconstruct data at fre-
quency 2 f . We made a fundamental modification to Spitz’s method,
the interpolation stage of the algorithm uses local filters obtained via
adaptive estimation with EWRLS.

THEORY

Problem definition

We consider spatial data in the F−X domain. The data at one monochro-
matic temporal frequency f are indicated by the length-N discrete
signal x = [x1,x2,x3, . . . ,xN ]T . We assume local prediction filters of
length M. The forward prediction equation is written as follows

xM+n = p1(n)xM+n−1 + p2(n)xM+n−2 + . . . pM(n)xn + εM+n (1)

where p(n) = [p1(n), p2(n) . . . pM(n)]T denotes the adaptive predic-
tion filter at spatial sample n. The quantity denoted ε indicates the in-
novation term. The latter can be viewed as a non-stationary autoregres-
sive model. In other words, an autoregressive model with time(space)-
variant coefficients. It is important to point out that such a model
can also be used to estimate evolutionary spectra for time-frequency
(space-wavenumber) analysis (Priestly, 1988).

Adaptive prediction filters are estimated by minimizing the following
weighted error function:

J(n) =
n

∑
i=1

λ
n−i|xi+M −

M

∑
k=1

pk(n)xi+M−k |2, (2)

where 0 < λ < 1 is the forgetting factor. This parameter is used to
reduce the contribution of data samples far away from the estimation
point n.

Defining the following auxiliary vector u(i)= [xi+M−1,xi+M−2, . . . ,xi]T

and scalar d(i) = xi+M , the solution that minimize the error function is
given by

p(n) = (
n

∑
i=1

λ
n−iu(i)u(i)H)−1

n

∑
i=1

λ
n−iu(i)d(i)

= [Φ(n)]−1
ψ(n) , (3)

where

Φ(n) =
n

∑
i=1

λ
n−iu(i)u(i)H (4)

ψ(n) =
n

∑
i=1

λ
n−iu(i)d(i) . (5)

Adaptive estimation via EWRLS

One possible solution of the adaptive prediction problem given by
equation (2) involves solving (3) for each spatial position n. The lat-
ter will require the inversion of the matrix Φ(n) at spatial position n.
We will circumvent the inversion of Φ(n) by using a recursive scheme
where p(n) is obtained from p(n−1) and the data point x(n).
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The development of the recursive scheme (EWRLS) can be found in
Honig and Messerschmidt (1984) and can be summarized as follows:

Let R(n−1) = Φ
−1(n−1)

Update p and R

ω(n) =
λ−1R(n−1)u(n)

1+λ−1u(n)H R(n−1)u(n)

α(n) = d(n)−u(n)H p(n−1) (6)

p(n) = p(n−1)+ω(n)α(n)

R(n) = λ
−1R(n−1)−λ

−1
ω(n)u(n)H R(n−1) .

It is evident from equation (6) that in order to initiate the recursive
algorithm p(1) and R(1) are required. Our current implementation
of the EWRLS algorithm estimates these variables from a backward
(recursive) prediction model.

Interpolation using local prediction filters

In order to interpolate the data we consider spatial samples of a specific
frequency f with their associated prediction filter estimated from fre-
quency f /2 Spitz (1991). Consider, for instance, a prediction filter of
length M = 3, the equations for local forward and backward prediction
associated to the i-th filter are given by



p3(i) p2(i) p1(i) −1 0 0 0
0 p3(i) p2(i) p1(i) −1 0 0
0 0 p3(i) p2(i) p1(i) −1 0
0 0 0 p3(i) p2(i) p1(i) −1
0 0 0 −1 p∗1(i) p∗2(i) p∗3(i)
0 0 −1 p∗1(i) p∗2(i) p∗3(i) 0
0 −1 p∗1(i) p∗2(i) p∗3(i) 0 0
−1 p∗1(i) p∗2(i) p∗3(i) 0 0 0



×



xi
x 2i+1

2
xi+1

x 2(i+1)+1
2

xi+2
x 2(i+2)+1

2
xi+3


≈



0
0
0
0
0
0
0
0


.

(7)

The rational indexes indicate the desired (interpolated) samples. We
first build equations similar to (7) for all possible samples i. The data
samples are divided into vectors containing known samples

xk = [x1,x2,x3, . . . ,xN ]T

and unknown samples

xu = [x3/2,x5/2,x7/2, . . . ,x(2N−1)/2 ]T

to finally obtain the following over-determined system of equations

Axu ≈ Bxk . (8)

The matrices A and B depend on the adaptive prediction filters esti-
mated with EWRLS. The last system of equations is solved via the
method of least squares

xu = (AH A)−1 AH Bxk . (9)

In our numerical examples we have used the method of Conjugate Gra-
dients to solve for the unknown samples xu.
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Figure 1: Comparison of Sptiz’s F-X interpolation and adaptive F-X
interpolation with operators computed with Exponentially Weighted
Recursive Least Squares (EWRLS). a) Original data. b) Decimated
data. c) Interpolation with Spitz’s FX interpolation using the full data
aperture. d) Difference between c) and a). e) Interpolated data using
adaptive F-X interpolation with λ = 1. f) Difference between e) and
a) . g) Interpolated data using windowed Spitz’s F-X interpolation. h)
Difference between g) and a). i) Interpolated data using adaptive F-X
interpolation with λ = 0.15. j) Difference between i) and a). Length
of prediction filter is M = 4 for all frequencies and panels.
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TESTS

Synthetic example

In order to examine the performance of the adaptive F-X interpola-
tion method we present two synthetic examples. In our first synthetic
example we simulate a seismic gather composed of four hyperbolic
events (Figure 1a). The synthetic gather is decimated (Figure 1b) and,
finally, interpolated using different strategies. Figure 1c shows results
obtained via F-X interpolation with the original algorithm proposed by
Spitz. This example is quite unfair to Spitz’s F-X interpolation because
the dip of the reflection is rapidly varying with offset and windowing
is required for optimal results. Figure 1e portrays results via adaptive
F-X interpolation with forgetting factor λ = 1. The simulation with
λ = 1 fails to interpolate the data. In this case, the algorithm equally
weights all the observations and therefore, the prediction filters can-
not adapt to changes in the local dip. As we have already mentioned,
Sptiz’s F-X method must be applied in windows to validate the as-
sumption of constant dip waveforms. The latter is shown in Figure 1g.
Figure 1i portrays the results obtained with adaptive F-X using forget-
ting factor λ = 0.15. The adaptive interpolation produces reasonable
results. The algorithm heavily down-weights (forgets) the influence
of samples far away form the estimation point allowing flexibility to
changes in local dips. Figures 1d, 1f, 1h and 1j show error sections.
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Figure 2: Synthetic example with conflicting dips. a) Original data.
b) Interpolated data using adaptive F-X interpolation with forgetting
factor λ = .3 and prediction filter length M = 4. c) and d) illustrate the
original data and interpolated data in the F-K domain.

The next synthetic example consists of parabolic events with conflict-
ing dips (Figure 2a). The original data were interpolated using adap-
tive F-X interpolation with λ = 0.3. The result is shown in Figure 2b.

Figures 2c and 2d provide the F-K spectra of the data before and af-
ter interpolation. This example shows that adaptive F-X interpolation
can also resolve conflicting space-variant dips. It is important to stress
that an important amount of aliased energy is visible in the original
data. The adaptive F-X interpolation has properly resolved the alias as
indicated by the F-K panels.

Real data example

Figure 3a shows a near offset section from the Gulf of Mexico. The
section was interpolated using adaptive F-X interpolation with λ =
0.2 and prediction filters of length M = 4. The final interpolation is
shown in Figure 3b. It is evident that curved diffracted events were
properly interpolated. Similar results were obtained using classical
F-X interpolation with small overlapping windows of 7 traces.

PARAMETER SELECTION

For optimal results we require an automatic process for the selection
of the forgetting factor λ and filter length M. We have adopted the
following heuristic strategy for parameter selection. The data are first
decimated. From 3 temporal frequencies we compute the average re-
construction error for different values of M and λ . The minimum re-
construction error provides optimal values Mopt and λopt for the deci-
mated data. When the algorithm is used to interpolate the original data
we use M = Mopt and λ = λ

1/2
opt . The above-described strategy was

adopted for parameter selection in the synthetic and real data exam-
ples shown in this article.

CONCLUSIONS

In this paper we introduced an efficient and easy-to-implement method
to interpolate seismic records. We consider the problem of interpolat-
ing waveforms with variable dip by re-writing F-X interpolation as an
adaptive process. The method eliminates the need of selecting window
parameters (window size and amount of overlapping between adjacent
windows).

The proposed adaptive F-X interpolation algorithm is robust under
strong changes of curvature. In addition, the method performs quite
well in the presence of conflicting dips with alias as illustrated by our
examples. Adaptive F-X interpolation depends on two parameters: op-
erator length (as in the classical F-X interpolation scheme) and an extra
parameter, the forgetting factor, that controls adaptability to changes
in local dip. We have also proposed an heuristic method to determine
the operator length and forgetting factor.
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Figure 3: Real data example portraying the interpolation of a near offset section from the Gulf of Mexico. a) Original section. b) Interpolated
section using adaptive F-X interpolation with forgetting factor λ = 0.2 and prediction filter length M = 4.
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