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SUMMARY

We propose to adopt the apex-shifted hyperbolic Radon trans-
form to improve the signal-to-noise ratio of microseismic
records. For this purpose, we design an algorithm that oper-
ates in two stages. First, the normalized average envelope of
the multicomponent data is transformed to the Radon domain.
The coefficients that reconstruct the average envelope are esti-
mated via a threshold criterion. These coefficients are used to
define the region of support that is used to denoise individual
components by a second application of the apex-shifted hyper-
bolic Radon transform to individual component gathers.

INTRODUCTION

Hydraulic fracture stimulation and microseismic monitoring
are standard processes in nowadays unconventional resources
studies (Maxwell, 2011). Although the technique was orig-
inally developed to favor the oil production, map the frac-
ture growth, secondary recovery and waste injection opera-
tions (Maxwell and Urbancic, 2001), microseismic studies are
currently being used for a continuously growing set of appli-
cations (Kendall et al., 2011). The standard data processing
involves event detection and hypocenter location in order to
control fracture’ dynamics and reservoir development (Eisner
et al., 2009). However, over the last years microseismic data
are processed to study and analyze additional information such
as source mechanisms and fault plane sizes (Baig and Urban-
cic, 2010; Eisner et al., 2011).

In this work we propose a novel strategy to denoise micro-
seismic data obtained with a single vertical three-components
receiver array without using a velocity model. The technique,
which is devised to be applied after event detection, can be
summarized as follows. First, we consider Michaud and Leaney
(2008) ideas and combine the envelope’s energy of the three
components to obtain an attribute that is independent of the
source radiation pattern. Next, we define an apex-shifted hy-
perbolic operator to represent this attribute in a 4D domain
aimed to stack the microseismic signal energy. This repre-
sentation is posed as an inverse problem, and the inversion is
achieved adding a sparsity condition to the cost function and
minimizing the misfit. The problem is solved via a Conjugate
Gradients method with preconditioning (P-CG) using Iterative
Re-weighted Least-Squares (IRLS). This mapping allows us to
identify the hyperbola parameters that best represent the mi-
croseismic signal (and not the noise) in the transformed do-
main. Then, a second inversion process is carried out for the
x−, y− and z−components separately, but now the inversion is
restricted in the transformed domain to the sub-domain iden-
tified in the previous stage. Finally, once the data is inverted

0 100 200 300 400 500

−400

−300

−200

−100

0

100

Surface

Receivers

Source

offset (m)

z
(m

)
−350 −300 −250 −200 −150

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

z (m)
t 

(s
)

 

 

t(z)

Figure 1: (a) Typical downhole microseismic monitoring sur-
vey. (b) Expected arrival times for a constant velocity model.

for each component, we transform back to the data domain
thus obtaining the data predicted by the latter inversion. As
a consequence, the signal-to-noise of the predicted data is en-
hanced. The proposed algorithm is illustrated using a synthetic
and a field data example. The results show that this inversion
technique is very useful to denoise microseismic events signals
detected in downhole monitoring.

ALGORITHM DESCRIPTION

Apex-shifted hyperbolic transform

Let us consider a vertical array of receivers deployed in a bore-
hole close to the reservoir and a constant velocity 2D medium
as shown in Figure 1a. The arrival time for a seismic event
occurring at coordinates (xs,zs) is given by

t(z) = t0 +

√
(x− xs)2

v2 +
(z− zs)2

v2 , (1)

where t0 is the time of the event relative to the origin of the
recording time, v is the P or S-wave velocity of the medium and
(x,z) indicates the coordinates of the 3-component receiver
(Figure 1a).

We can rewrite Equation (1) as follows

t(z) = t0 +

√
t2
a +

(z− zs)2

v2 (2)
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where ta = (x−xs)/v. Equation (2) represents an apex-shifted
hyperbola in the t−z domain with the apex position given by zs
and the time of the apex relative to the origin of the recording
time given by t0+ ta. Thus, using Equation (1) we can map the
data into an apex-shifted hyperbolic domain in terms of Radon
coefficients that depend on (t0,xs,zs,v).

Microseismic data are recorded with multicomponent arrays
of receivers. The amplitude of the recorded events are affected
by the source radiation pattern. If the three-component data
are denoted by dx(t,z),dy(t,z) and dz(t,z), we compute the
individual envelopes of each component ex(t,z), ey(t,z), and
ez(t,z), respectively. After normalization by dividing the en-
velopes by their maximum, we calculate the average normal-
ized envelope (Michaud and Leaney, 2008):

d(t,z) =
1
3
[ex(t,z)2 + ey(t,z)2 + ez(t,z)2] , (3)

denoted as d(t,z) to stress that this is our input data to the
apex shifted hyperbolic Radon transform. Then we define an
adjoint apex-shifted hyperbolic operator (from now the adjoint
operator) via the following sum

ma(t0,xs,zs,v) =
∑
x,z

d(t0 +

√
(x− xs)2

v2 +
(z− zs)2

v2 , z). (4)

Similarly, the forward apex-shifted hyperbolic operator (from
now the forward operator) is defined via

d(t,z) =
∑

xs,zs,v
m(t−

√
(x− xs)2

v2 +
(z− zs)2

v2 , xs, zs, v) . (5)

We now require to devise an algorithm to estimate the coeffi-
cients m(t0,xs,zs,v) that represent the data in the transformed
domain. One possibility is to use the adjoint operator given
by (4) to estimate low resolution coefficients ma(t0,xs,zs,v).
A more convenient approach entails adopting (5) to synthesize
d(t,z) in terms of m(t0,xs,zs,v). In other words, we pose the
estimation of the transformed domain as an inverse problem
(Thorson and Claerbout, 1985). This approach is commonly
used in reflection seismology to estimate high-resolution Radon
transforms for multiple attenuation.

Let us now switch notation and simplify the problem by adopt-
ing the language of linear algebra. The average envelope d(t,z)
is organized in a vector d. Similarly, the Radon coefficients
m(t0,xs,zs,v) are also organized into a vector m. Equation (5)
can then be written in matrix form as

d = Lm+n (6)

where L represents the forward operator given by Equation (5).
Notice that we have also included an additive noise term n to
consider observational errors, inaccuracies that could arise by
the constant velocity model approximation and variations of
amplitudes. Using a similar argument, Equation (4) can be
written as

ma = L′d, (7)

where the operator L′ is the adjoint or transpose of L (Claer-
bout, 1992). The group of coefficients that represent the data

are estimated by imposing sparsity on the solution m. The
Radon coefficients m are estimated via the minimization of an
l2-l1 cost function

m̂ = argmin
m

[‖Lm−d‖2
2 +µ‖m‖1 ] . (8)

The misfit is minimized to guarantee that the modeled average
envelope energy Lm̂ honors the observed data d. At the same
time, we ask the transform domain to be highly focused to fa-
cilitate the identification of a microseismic event. The latter is
achieved by imposing sparsity on m through l1 regularization.

The cost function (8) can be minimized via a variety of meth-
ods including Iterative Re-weighted Least-Squares (IRLS) (Scales,
1987; Sacchi and Ulrych, 1995; Daubechies et al., 2010), Iter-
ative Soft-Threshold Algorithm (Figueiredo et al., 2007), etc.
In this work, we adopt IRLS with preconditioning to turn min-
imization of the non-quadratic cost function 8 into the min-
imization of a sequence of quadratic cost functions via the
method of Conjugate Gradients (Hestenes and Stiefel, 1952).
This methodology was previously adopted to solve Fourier re-
construction problems by Liu and Sacchi (2004) and least-
squares regularized migration by Wang and Sacchi (2007). For
this purpose, the non-quadratic regularization term in expres-
sion (8) is replaced by

‖m‖1 ≈ ‖Wm‖2
2, (9)

where W is a diagonal matrix with terms that are given by
Wi i = 1/(|mi|+ ε)1/2 with ε � 1. We also define a new vari-
able m = Pu with diagonal matrix (pre-conditioner) P = W−1

and solve a sequence of quadratic problems

uk = argmin
u

[‖LPk−1u−d‖2
2 +µ‖u‖2

2 ] , (10)

mk = Pk−1uk , k = 1 . . .K ,

where k is the iteration number and Pk−1 is the matrix of weights
computed with mk−1. The final solution is m̂ = mK where K
indicates the maximum number of iteration or the iteration at
which the algorithm converges. Equation (10) is solved using
the Conjugate Gradients method (Hestenes and Stiefel, 1952).

Data denoising

Once we have estimated all the coefficients m of the apex-
shifted hyperbolic transform, we need to select those coeffi-
cients that stack the microseismic signal energy. High val-
ues of stacked energy can be given either by the P- or the
S-wave velocity. As d(t,z) was previously normalized, in an
ideal scenario, when stacking exactly over an hyperbolic event,
the ma(t0,xs,zs,v) value obtained by Equation (4) will reach a
maximum equal to the number of available channels ng. Then,
we re-scale the inverted coefficients m with

η1 = max [ma] (11)

η2 = max [m̂] (12)

ν =
η1

η2
(13)

so that (m = ν m̂) and now the closer the rescaled radon coef-
ficients are to ng, the greater the probability that the transform
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Figure 2: Synthetic dataset example. The x−, y− and z−records (dx, dy and dz, respectively) and the averaged envelope energy
used for the first inversion (d).

is stacking over a microseismic event. To this end, we define a
threshold criterion to discern which coefficients correspond to
microseismic signal and which do not. We used

T = ng/2−1 (14)

By this means, we identify the quadruplets (t0,xs,zs,v) that
correspond to those m̂ coefficients greater than T and form a
subset in the transformed domain. Notice that although the
threshold is arbitrary, the final denoising results will not be
controlled by T only, but also by the sparsity imposed in the
second term of the cost function 8. In other words, the sub-
domain determined by T will just help for the sparsity inver-
sion of the data.

The denoised representation of each component is obtained
following the same idea. However, we restrict the summation
of the forward and adjoint operators (L and L′) to the param-
eters (t0,xs,zs,v) of that where above threshold. Finally, the
three-components noise-attenuated data are calculated trans-
forming back to the time domain using the forward operator
L:

d̂x = Lm̂x

d̂y = Lm̂y (15)

d̂z = Lm̂z.

This completes our algorithm description.

SYNTHETIC DATA EXAMPLE

In order to test the proposed algorithm, we generated a syn-
thetic microseismic dataset registered with a 3C vertical array
of 8 receivers with the same scheme shown in Figure 1. The
3C clean dataset ux(t,z),uy(t,z) and uz(t,z) was generated by
a double-couple source mechanism. Bandpass limited random
noise was added to the data so as to obtained the simulated
records dx(t,z),dy(t,z) and dz(t,z) with signal-to-noise ratio
equal to 1.2. In Figure 2 we show the noise-contaminated syn-
thetic data for each component together with the averaged en-
velope energy obtained by means of Equation (3). As we have
already anticipated, the microseismic signal is barely distin-
guishable in some channels: try to perceive the S-wave in dy

or the P-wave in dz in Figure 2. Nevertheless, in the enve-
lope panel the microseismic signal energy became clearer as
expected, especially for the S-wave, which is less attenuated
than the P-wave.

The final results of the proposed technique are shown in Fig-
ure 3 against the clean data ux, uy and uz. Although the data
was severely contaminated with noise, the waveform and am-
plitudes of the signal were denoised with a remarkable exac-
titude in most cases. However, the algorithm exhibits some
problems trying to denoise low amplitude signals as those given
by the side-lobes of the microseismic wavelet (see Figure 3).
This problem is hardly avoided considering two factors: (1)
any hyperbola going over low amplitude side-lobes will prob-
ably stack not enough energy to satisfy the threshold criterion,
and (2) the noise amplitude can totally mask the signal in these
cases.

FIELD DATA EXAMPLE

The algorithm was finally tested with a field dataset. Again, the
first inversion process was carried out over the averaged enve-
lope energy of the 3C data and the second inversion problem
was solved for each component to denoise the data. We show
the final results in Figure 4. Of course, the clean data is not
available in this case, and the denoised traces are plot against
the raw data. The P-wave is below the noise level in this ex-
ample, and only S-wave arrivals were identified and denoised
by the method. Notice that in the z−component the signal-to-
noise ratio is good, but it is poor in the x− and y−component,
especially for the receivers 1, 2 and 3. Also, the 5th receiver
for the x− component exhibits some problem. Nevertheless,
the microseismic event was well denoised in most traces and it
was also reconstructed by the inversion for the 5th receiver for
the x−component.

DISCUSSION

There are some aspects that should be noted and discussed
about the proposed denoising approach. We are making a strong
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Figure 3: Synthetic data example results. In gray lines the
clean synthetic data components (ux, uy and uz) and in black
lines the denoised data (d̂x, d̂y and d̂z).

hypothesis: the velocity model is constant. Although this as-
sumption is not realistic, lets take into account the deviations in
the hyperbolic signal arrival that a non-constant velocity model
will cause. If these biases are not very large, they are consid-
ered in our strategy since a big set of hyperbola parameters
(t0.xs,zs,v) are allowed to pass by the threshold criterion. It is
worth mentioning that there exist other algorithms devised for
microseismic data processing that rely in on a constant veloc-
ity model assumption (e.g., (Michaud and Leaney, 2008)).

The proposed denoising algorithm was presented for a 2D model
and for a downhole monitoring scenario. However, the method
could be extended either for a 3D model or for surface micro-
seismic monitoring data. The main concern about this exten-
sion is related to the computational cost that this would require,
since the adjoint operator (Equation (4)) will depend on 5 vari-
ables (t0, xs, ys, zs and v) in both cases.

CONCLUSIONS

We devised an algorithm that significantly enhance the signal-
to-noise ratio of microseismic events. The denoising is pre-
sented as an inverse problem which is solved in two stages. In
the first stage, the envelope energies of 3C data are combined
and inverted to represent the data in the transformed domain.
By means of this representation the parameters that best rep-
resent the microseismic arrivals are obtained in the hyperbolic
domain. These parameters, together with a sparsity imposi-
tion, are used to solve the second inverse problem which is
aimed to denoise the data.

The method presented in this paper performed very well de-
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Figure 4: Field data example results. In grey lines the raw data
(dx, dy and dz) and in black lines the denoised data (d̂x, d̂y and
d̂z).

noising synthetic data with low signal-to-noise ratio, although
some amplitudes where not perfectly recovered. The algorithm
could not identified and denoise the P-wave arrivals of the real
dataset since the signal was below the noise level. However,
the method succeeded reconstructing the microseismic arrival
for a single channel that was corrupted by noise. Therefore,
we believe this method represents an useful technique to be ap-
plied immediately after the event detection when dealing with
noisy microseismic data to favor the subsequent data analysis
(e.g., hypocenter localization, seismic moment tensor inver-
sion) even when a few channels are corrupted.
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