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SUMMARY

Research in the area of data analytics and recommendation
systems have lead to important efforts toward solving the prob-
lem of matrix completion. The latter entails estimating the
missing elements of a matrix by assuming a low-rank ma-
trix representation. The aforementioned problem can be ex-
tended to the recovery of the missing elements of a multilin-
ear array or tensor. Prestack seismic data in midpoint-offset
domain can be represented by a 5th order tensor. Therefore,
tensor completion methods can be applied to the recovery of
unrecorded traces. Furthermore, tensor completion method-
ologies can also be applied for multidimensional signal-to-
noise-ratio enhancement. We discuss the implementation of
the Parallel Matrix Factorization (PMF) algorithm, an SVD-
free tensor completion method that we applied to 5D seismic
data reconstruction. The Parallel Matrix Factorization (PMF)
algorithm expands our first generation of 5D tensor completion
codes based on High Order SVD and Nuclear norm minimiza-
tion. We review the PMF method and explore its applicability
to processing industrial data sets via tests with synthetic and
field data.

INTRODUCTION

In recent years, the development of recommendation systems
has become an important area of research for data scientists
(Koren et al., 2009). A recommendation system (or recom-
mender system) is an algorithm that attempts to predict the
rating that a user or costumer will give to an item. Recom-
mendation systems have become quite popular in e-commerce
for predicting ratings of movies, books, news, research articles
etc. In Figure 1, we provide a simplified example of a data
matrix with ratings of a series of movies. It is clear that rec-
ommendation systems use thousands of users to rate thousands
of items and that our figure is merely for illustrative purposes.
A rating of 5 means that the user liked the movie, a rating of 1
means that he/she did not like the movie. Question marks are
used to indicate that the movie has not been rated by the user.
This is a table (matrix) where one can immediately infer that
the data could be predicted by simple examination of patterns
or relationships between users and movies. For instance, users
who liked romantic movies appear not to like action movies.
The main task for the recommendation algorithm is to extract
patterns that might exist in the data and use them to predict the
rating a user would have given to an item he/she did not rate.
The unknown ratings can be found by solving the so called
Matrix Completion problem (Recht, 2011). A similar problem
is also present in seismic data processing (Kreimer and Sacchi,
2011). Figure 2 presents a simple example of data recovery via
matrix completion. For this particular example we adopted a
reduced rank matrix completion algorithm that operates in the

t− x domain. However, it is clear that seismic data are much
more complicated than the example portrayed in Figure 2. Re-
construction methods based on rank-reduction techniques for
prestack seismic data must operate on full 5D patches of seis-
mic data. Techniques that can cope with multidimensional
seismic data reconstruction can mainly be divided into two cat-
egories. One category of methods applies rank reduction to
block Hankel matrices formed by the entries of observed seis-
mic data in the frequency-space domain. Methods in this cate-
gory are often named Cadzow (Trickett et al., 2010) or Multi-
channel Singular Spectrum Analysis reconstruction (Oropeza
and Sacchi, 2011; Gao et al., 2013). A second category of
methods are based on dimensionality reduction of multilinear
arrays or tensors. Examples of the latter are High Order SVD
(HOSVD) reconstruction (Kreimer and Sacchi, 2011, 2012),
Tucker decomposition (Herrmann and Silva, 2013), the nu-
clear norm minimization method (Kreimer et al., 2013) and
the tensor SVD method (Ely et al., 2013). The common fea-
ture of these method is that they all utilize the SVD algorithm
to reduce the rank of the data tensor. For large-scale seismic
data reconstruction problems, the cost of the SVD algorithm
prevents the use of low rank tensor completion methods for
industrial applications.

In this paper we analyze the Parallel Matrix Factorization (PMF)
algorithm proposed by Xu et al. (2013). The PMF method does
not utilize SVDs. We show that PMF is an effective algorithm
to recover missing traces from large 5D volumes.
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THEORY

The PMF tensor reconstruction method is implemented in midpoint-
offset frequency domain. We denote the data by D(ω,x,y,hx,hy),
where x, y, hx and hy indicate the spatial coordinates and in the



Figure 2: Seismic data reconstruction can be posed as matrix
completion problem. From left to right: Complete data, deci-
mated data, recovered data and recovery error. In this example
we used a projected gradient algorithm where a rank reduction
and a lateral smoothing constraint were simultaneously applied
to recover the data.

inline midpoint, cross-line midpoint, in-line offset and cross-
line offset. After binning the data into a midpoint-offset grid,
a frequency slide can be denoted as D(ω,x,y,hx,hy) . The lat-
ter can be represented by a 4th-order tensor D with elements
Di1,i2,i3,i4 , where i1, i2, i3, i4 are bins indices for the spatial co-
ordinates x,y,hx and hy, respectively. We remove the depen-
dency on ω to simplify the notation. The reconstructed data
are obtained by minimizing the following cost function

Φ = ΦC +µ ΦM , (1)

where, ΦM is the data misfit term, ΦM = 1
2‖P ◦Z −D‖2

F ,
P is the Nth-order sampling operator tensor with elements 1
for the observed samples and 0 for the missing samples. The
tensor Z is the Nth-order low rank tensor representing the re-
constructed data (the unknown of our problem). The functional
ΦC is the low-rank constraint term

ΦC =
1
2

N∑
k=1

‖X(k)Y(k)−Z(k)‖2
F , (2)

where, Z(k) is the mode-k unfolding matrix of the tensor Z .
Figure 3 portrays the process of unfolding and folding an arbi-
trary tensor X . A low-rank matrix factorization is applied to
each mode unfolding of Z by seeking matrices X(k) ∈ CIk×rk

and Y(k) ∈ Crk×I1...Ik−1Ik+1...IN such that Z(k) ≈ X(k)Y(k) for
k = 1, . . . ,N, where rk is the rank of the unfolding matrix Z(k).
In order to solve X(k), Y(k) and Z , we minimize the cost func-
tion Φ via an alternating least-squares algorithm:

Xi+1
(k) = Zi

(k)(Y
i
(k))

H , k = 1, . . . ,N, (3a)

Yi+1
(k) = ((Xi+1

(k) )
HXi+1

(k) )
†(Xi+1

(k) )
HZi

(k), k = 1, . . . ,N, (3b)

Z i+1 = (I −αP)◦C +αD , (3c)
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Figure 3: Process of unfolding a tensor into a matrix and fold-
ing back a matrix into a tensor. This figure exemplifies the
process for a 3rd-order tensor.

where, the parameter α = µ

N+µ
, I is the Nth order tensor with

all entries equal to 1 and C is given by

C =
1
N

N∑
k=1

foldk[Xi+1
(k) Yi+1

(k) ] . (4)

The preceding analysis corresponds to the case where data are
contaminated with noise. The noise-free data reconstruction
case is tackled by finding the minimum of the following cost
function

Φ =< W ,P ◦Z −D >+ΦM (5)

where <A ,B>=
I1∑

i1=1
. . .

IN∑
iN=1

Āi1...iN Bi1...iN . Using the method

of Lagrange multipliers, the solution of equation 5 is given by

Z = (I −P)◦C +D . (6)

Expression 6 is equal to expression 3c for the particular case
when α=1. Interestingly, 3c resembles the typical imputation
algorithm used for reconstruction via POCS (Abma and Kabir,
2005) and Cazdow (Trickett et al., 2010; Gao et al., 2013)
methods.

SYNTHETIC EXAMPLES

The first example is a 5D seismic data that consist of I1 ×
I2× I3× I4 spatial traces with Ik = 6,8,10,12,14, k = 1,2,3,4
and 301 time samples per trace. The data include three linear
events and S/N = ∞. We randomly remove 50% of the traces
and perform the reconstruction using the proposed PMF algo-
rithm, the HOSVD algorithm and the nuclear norm minimiza-
tion method. For the PMF and HOSVD methods, we adopt a
rank rk=3 for all modes (k = 1,2,3,4), the maximum number
of iterations is set to Niter = 100, and an iteration stopping er-
ror tol = 10−4 is adopted for each frequency, respectively. For
the nuclear norm method, we set Niter=100, tol = 10−4 and
the parameters λ = 2.5, β = 15 (see, Kreimer et al. (2013))
Table 1 shows the comparison of the computational cost of the



Ik
Cost (secs)

PMF HOSVD Nuclear norm
8 49.8 814.1 74.1

10 74.7 919.3 159.3
12 117.9 1077.1 307.4
14 195.1 1259.4 569.6

Table 1: Computational time comparison of the proposed PMF
reconstruction method, the HOSVD method and nuclear norm
method for different 5D volumes with size of 301× I1× I2×
I3× I4, Ik = 8,10,12,14, k = 1,2,3,4.
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Figure 4: Recovery of a 5D volume via the PFM method. One
slice of the 5D volume is shown (SNR = ∞)

three methods. For each iteration, the computational cost of
the PMF method is O(N(3mnr + mr2 + 2nr3

3 )). For the nu-
clear norm method, the cost is O(N(2m2n+ 2m3)) per itera-
tion and for the case of the HOSVD, the cost is O(N(4m2n+
13m3 +mr3(N−1))). Where m = Ik = max{I1, I2, . . . , IN}, r =
rk = max{r1,r2, . . . ,rN}, n = I1I2 . . . Ik−1Ik+1 . . . IN and N rep-
resents the order of seismic data tensor. From table 1, we ob-
serve that the PMF algorithm is faster than the nuclear norm
minimization algorithm and the HOSVD algorithm. We also
choose a synthetic data model containing 12× 12× 12× 12
traces in the spatial directions and 301 time samples per trace
which is also used in Table 2 to examine the reconstruction
quality of the proposed PMF algorithm, HOSVD reconstruc-
tion and the nuclear norm minimization reconstruction method.
We define the reconstruction quality via the expression Q =

10 log10 (
‖D true‖2

‖D true−D recon‖2 ) where D true and D recon represent the
true noise-free complete data and reconstructed data in the
time-space domain. Table 2 shows the comparison of the re-
construction quality versus the percentage of missing traces.
From Table 2, we find that the reconstruction quality obtained
by the proposed PMF method and HOSVD algorithm are very
similar. They both perform better than the nuclear norm min-
imization method. For the third example, we synthesize a
noise-free data with four events with strong curvature. The
spatial size of the data is 12×12×12×12 with 301 time sam-
ples per trace and S/N = ∞. We randomly decimated 90% of
the traces and set the rank r1 = r2 = r3 = 5 for modes 1,2,3
and r4 = 4 for mode 4. We also set Niter = 300, tol < 10−4 and
α = 1. Figure 4 shows the reconstruction result. From error
section in Figure 4, one can observe that missing traces were
accurately recovered. We also add random noise to the noise-
free data in Figure 5 to analyze the reconstruction capability
our the algorithm in the presence of noise. In this example, we
set S/N = 1, Niter = 300, tol < 10−4 and α = 0.51.

Decimation [%]
Reconstruction quality Q

PMF HOSVD Nuclear norm
60 62.6 62.7 16.8
70 61.1 61.3 9.7
80 60.6 60.7 6.5
90 39.9 31.3 3.0

Table 2: Reconstruction quality Q versus percentage of miss-
ing traces for the PMF, HOSVD and Nuclear norm reconstruc-
tion methods with data size Ik = 12.
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Figure 5: Recovery of a 5D volume via the PFM method. One
slice of the 5D volume is shown (SNR = 1)

FIELD DATA EXAMPLE

Based on the above synthetic data analysis, we tested the per-
formance of the PMF reconstruction method on a land data set
obtained from a heavy oil field in the WCB (Figure 6). The
data are first binned on a 5m× 5m CMP grid and a 100m×
100m offset-x-y grid prior to interpolation. The fold map of
the survey is shown in Figure 7. The reconstruction area in-
cludes 300 CMPx bins and 220 CMPy bins. We divide the
whole survey data into 2640 overlapping blocks. Each block
has about 85% missing traces. We set rk = 4, k = 1,2,3,4,
Niter = 100 and α = 0.40 for the PMF reconstruction. Figure
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B
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Figure 6: Field data example (WCB). Distribution of sources
and receivers.

8 shows the input and reconstructed data for a slice of the 5D
volume where we fixed CMPy, offset x and offset y (near off-
set) versus CMPx. Similarly, in Figure 9 we fixed CMPx and
selected mid range offset bins x and y and display the data
versus CMPy. Finally, Figure 10 displays a fixed CMPx bin



versus CMPy for fixed far offset bins x and y.
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Figure 7: Field data example (WCB). Fold map.

CONCLUSIONS

We have presented a SVD-free method for multidimensional
seismic data reconstruction. The proposed PMF method ap-
plies low rank matrix factorization to mode unfoldings of the
seismic data tensor and applies an alternating minimization al-
gorithm to estimate the complete data tensor. Contrary to other
low rank reconstruction methods, PMF does not require the
SVD algorithm. The latter makes the PMF algorithm attractive
for industrial implementations. We compared the proposed
method to two methods developed by our group (HOSVD and
minimum Nuclear Norm reconstruction). We conclude that
the proposed 5D data completion PMF method is faster than
our previously reported algorithms for tensor completion. We
stress that one of the main obstacles that might prevent in-
dustrial applications of tensor reconstruction methods is the
computational cost of classical factorization methods based on
the SVD. Our current research focuses on the randomized QR
decomposition methods to gain further efficacy in our tensor-
based 5D reconstruction techniques.
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Figure 8: Near offset gather for a constant CMPy versus
CMPx. (a) Observed data. (b) Reconstructed data.
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Figure 9: Mid offset range gather for a constant CMPx versus
CMPy (a) Observed data. (b) Reconstructed data.
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Figure 10: Far offset gathers for a constant CMPy versus
CMPx (a) Observed data. (b) Reconstructed data.
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