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Summary

In this paper we deal with the inversion of large ill-posed
operators which after discretization yields to sparse large
system of equations. In particular, we are in terested on
the numerical inversion of the single-scattering acoustic
appro ximation about a reference medium (Born approxi-
mation).

The proposed algorithm uses the Lanczos bidiagonaliza-
tion to pose the problem into a subspace where the linear
operator is bidiagonal. One of the advan tages of the bidi-
agonalization procedure is that the problem is solved in a
compressed space and, therefore, the computational cost
of the procedure is substantially reduced. T radeo� curves
are e�ciently computed by solving several small inverse
problems in the subspace obtained by means of the bidi-
agonalization procedure.

In troduction

An iterativ e technique based on Lanczos bidiagonaliza-
tion (O'Leary and Simmons, 1981; Bjorc k, 1988) is pre-
sented to invert the forw ardmodeling operator deriv ed
from the linearized Born approximation to the scattered
w ave�eld due to a perturbation of a reference model (We-
glein, 1982; Miller et al., 1987). The forward problem can
be represented b y

L
~
m = d : (1)

where d is anN�1 vector that represents the observations
(N = Nreceivers � Nsources � Nsamples), m is an M � 1
vector of unknowns (M is the total n umber of grid points
used to describe the perturbed model of the subsurface).

The e�ect of the operator L
~
can be evaluated by analyz-

ing m0 = L
~

T d whic h possessesfeatures v ery similar to
those of m. Ho w ever, sinceL

~
is a non-orthogonal oper-

ator (L
~

T 6= L
~

�1), the reconstructed data L
~
m0 will not

properly model the original data.

The least squares solution of equation (1) can be written
as

m̂ = (L
~

T L
~
)�1 L

~

T d

= (L
~

T L
~
)�1m0 :

(2)

The perturbation m0, whic h is obtained by applying the
transpose operator L

~

T to the data, corresponds to the
migrated image of the subsurface (Schuster, 1993). In

next section we describe a bidiagonalization procedure to
compute an approximation to the operator (L

~

T L
~
)�1.

Bidiagonalization

The Lanczos bidiagonalization algorithm factors the
N �M forw ard operatorL

~
into

U
~

T
L
~
Q
~
= B
~
; (3)

where

U
~
: N �N; B

~
: N �M; Q

~
:M �M :

The matrices U
~
and Q

~
are orthogonal

U
~

T
U
~

= I
~
; Q

~

T
Q
~

= I
~
;

and B
~
is bidiagonal:

B
~
=

0
BBBBBBBBBB@

�1 �1
�2 �2

�3 �3
: :

: :
: �M�1

�M

0

1
CCCCCCCCCCA

: (4)

If the factorization is in terms of the �rst k columns of U
~and Q

~
, we can write the following equation

U
~

T
k L
~
Q
~
k
= B
~
k ; (5)

with matrices with the following size

U
~
: N � k; B

~
: k � k; Q

~
:M � k :

No w, the matrixB
~
k is bidiagonal and square

Bk =

0
BBBBB@

�1 �1
�2 �2

�3 �3
: :

: :
: �k�1

�k

1
CCCCCA

: (6)
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The algorithm to retrieve the matrices U
~
, Q
~
and the ele-

ments �i; �i is summarized as follows (O'Leary and Sim-
mons, 1981):

Starting with a vector z1, set the initial elements

q1 = z1
jjz1jj

; y1 = L
~
q1; �1 = jjy1jj; y1 =

y
1

�1

For i = 1; 2; : : : ; k � 1 f

zi+1 = L
~

T ui � �i qi ; �i = jjzi+1jj

qi+1 =
zi+1
�i

yi+1 = L
~
qi+1 � �iui ; �i+1 = jjyi+1jj

ui+1 =
y

i+1

�i+1

g

The algorithm requires tw o matrix multiplications per it-
eration. In eac h iteration we perform one migration (L

~

T )
and one modeling operation (L

~
). The Lanczos scheme is

initiated with m0 = z1 = L
~

Td (the migrated image).

A problem with Lanczos decomposition is its numerical
stabilit y (Kahan and P arlett, 1976). In practice, the
Lanczos vectors may loose orthogonality after a few it-
erations. Di�erent strategies ha vebeen adopted to en-
force orthogonality. One solution is to perform complete
orthogonalization of each vector with all the preceding
vectors. Ho w ever,this re-orthogonalization strategy in-
creases the computational cost of the algorithm. A selec-
tive re-orthogonalization, where the orthogonalization is
carried out with respect to a few preceding vectors (s), is
a substantially more e�cient scheme (O'Leary and Sim-
mons, 1981)

zi = zi � (zTi qj)qj j = i� 1; i� 2; : : : ; i� s (7)

yi = yi � (yTi uj)uj j = i� 1; i� 2; : : : ; i� s (8)

In our problem, w e usually attempt to retrieve a very
small basis (about 10 vectors). In general, we have not
found numerical problems for subspaces where k < 20.

Bidiagonalization and regularization of L

The least squares solution involv esthe inversion of the
operator L

~

T L
~
. Since the inverse of this operator is too

expensive to compute, we recast our inverse problem in a
small subspace obtained by means of the Lanczos bidiag-
onalization.

The original system of equations (1) can be written as
follows,

U
~

T
k L
~
Q
~
k
z = U

~

T
k d (9)

where

m = Q
~
k
z : (10)

Combining equations (9) and (5) we obtain

B
~
k z = g ; (11)

where g = U
~

T d. It can be pro ved that the singular
values of the matrix B

~
k are a good a approximation to

the large and small singular values of L
~
(Scales, 1989). It

is eviden t that some kind of regularization is needed.The
abo ve equation is solved using penalized least squares

z = (B
~

T
k B
~
k + �I

~
)�1B

~

T
g ; (12)

where the parameter � denotes the tradeo� parameter or
hyper-parameter of the problem. Since (B

~

T
k B
~
k+�I

~
) is a

tridiagonal matrix, equation (12) is e�ciently solv ed b y
means of a tridiagonal solv er. The solution to equation
(12) can also be computed by means of the Singular Value
Decomposition (SVD) of the matrix B

~
k. If the aforemen-

tioned strategy is adopted, the solution is given b y

z =
X
�i>�

�
�1
i vi(r

T
i g) ; (13)

where �i are the singular values of B
~
k. The vectors vi and

ri are the eigenvectors ofB
~

T
k B
~
k and B

~
kB
~

T
k , respectiv ely.

The parameter � denotes a threshold value.

In our numerical examples we have used penalized least
squares, in this case the perturbation to the background
model is given b y

mk = Q
~
k
z = Q

~
k
(B
~

T
k B
~
k + �I

~
)�1U

~

T
k d

= Q
~
k
(B
~

T
kB
~
k + �I

~
)�1Q

~

T

k
L
~

T d

= Q
~
k
(B
~

T
kB
~
k + �I

~
)�1Q

~

T

k
m0 :

(14)

By recalling equations (2) and (14) we are no w in condi-
tion of writing

(L
~

T
L
~
)�1 � Q

~
k
(B
~

T
k B
~
k + �I

~
)�1Q

~

T

k
: (15)

It is clear, that instead of invertingL
~

T L
~
, w eprefer to

invert the tridiagonal matrixB
~

T
k B
~
k + �I

~
.

Since k is usually small (k � 10), the v ectorsui, qi and
the elements of the bidiagonal matrix B

~
k can be saved
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and used to accommodate our inversion to a desire mis-
�t v alue. This is achiev ed b y modifying� or b y using a
smaller subspace, i.e., k0 < k. In summary, tradeo� curves
can be e�ciently computed by solving several small prob-
lems of the type giv en b y equations (12) or (13).

For certain problems it might be better to solve

minjjW
~
(L
~
m� d)jj22 ; (16)

where W
~

is a diagonal matrix that accoun ts for the
qualit yof the data or irregular sampling. In this case,
the Lanczos algorithm uses the following inner prod-
uctsW

~
L
~
x (forw ard or modeling operator) andL

~

T W
~

T y
(transpose operator). In the syn thetic sim ulationsthe
matrix W

~
is designed to emphasize the fact that the

sources are irregularly distributed. A similar idea is used
in F eichtinger et al.(1995) in the context of non-uniform
sampling theory. The matrixW

~
may also serv e to remove

the seismic source from the data. In other words, the in-
version can contemplate a wavelet source decon volution
term. This issue is under investigation.

Example

No w,I will consider the problem of recovering the per-
turbation to the background velocity based on observed
seismograms from a multi-source multi-receiv er acoustic
experiment. The total number of grid points in the model
(Figure 1) is M = NX � NZ (NX = 600, NZ = 400).
The number of time samples is NT = 1000. Twelve
sources are located along the surface of the model, ran-
domly spaced from x = 0 to x = 2000m. The array
of receiv ers consists of 64 equally spaced geophones dis-
tributed along the surface of the model. The size of the
operator is N � M where N = 12 � 64 � 1000. The
migrated image is portrayed in Figure 2. This image is
severely con taminated by sampling and aperture artifacts.

The forward modeling operator was in verted using equa-
tion (14) in a subspace composed of 15 Lanczos vectors
(ui; qi; i = 1 : : : 15). The inverted image shows an im-
portan t atten uation of sampling artifacts.

The tradeo� curve of the problem is displayed in Figure
4. The vertical axis is the mis�t error (a measure of how
w ell the in verted image reproduces the observations). The
horizon tal axis is the norm of the inverted perturbation
jjmkjj.

Conclusions

I have presen ted a bidiagonalizationalgorithm to invert
large ill-posed problems whic harise in the con text of
acoustic imaging using the Born appro ximation. T o al-
leviate the computational burden of the inversion, the in-
verse problem is posed in a subspace obtained by means
of the Lanczos bidiagonalization.

Finally, it should be stressed that without m uchprob-

lem, this algorithm can be applied to more complicated
problems as long as the proper inner products exists. An
example is an operator that not only models the data,
but also performs other tasks, i.e, �ltering and/or source
processing.
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Fig. 1: Syn thetic image. The horizontal and v ertical coordi-
nates are in meters.
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Fig. 2: Migrated image using the transpose operator.
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Fig. 3: Inverted image. The in version is performed in a sub-
space composed of k = 15 Lanczos vectors.

Fig. 4: T radeo� curve. The parameter k is the size of the
Lanczos subspace and � a hyper-parameter. The vertical axis
is the mis�t function, the horizontal axis denotes the norm of
the in verted model perturbation.

1998 SEG Expanded Abstracts


