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Summary

Least-squares migration reduces migration artifacts and,
in general, produces very accurate seismic images. In-
stead of mapping the seismic data into an image using
a migration algorithm, the image is recovered from the
data using an inversion procedure. The inversion then is
implemented using the conjugate gradients method.

In this paper we propose to obtain least-squares images
using the split-step migration operator and the split-step
modeling operator (the adjoint of the split-step migration
operator). These operators are formulated in terms of
the Hartley transform. The use of the real-valued Hartley
transform avoids the Hermitian symmetry inherent in the
Fourier transform and allows to write algorithms that are
highly optimized in both computing time and memory
requirement.

In numerical simulations, we have found that the least
squares image can be e�ciently retrieved in a few itera-
tions of the conjugate gradients method. The proposed
algorithm can be easily implemented in parallel architec-
ture. These features make the algorithm very attractive
for inverting large data sets.

Introduction

Least-squares migration using Kirchho� operators is an
e�ective method to reduce migration artifacts (Nemeth
et al., 1999). When the algorithm is implemented using
the conjugate gradients (CG) method (Hestenes, Stiefel,
1952), the computational cost of imaging is N times the
cost of applying the forward modeling operator and the
migration operator, where N is the number of iterations
required by the CG algorithm to achieve convergence. It
is clear that to migrate seismic data in a cost e�cient
way, the forward and migration operators need to be op-
timized.

Phase-shift migration (Gazdag, 1978) is a spectral tech-
nique that is widely used in migration/modeling and is
known for its computational e�ciency and accuracy. The
major shortcoming of phase-shift migration, however, is
its restriction to media with laterally constant velocities.
Phase shift plus interpolation (PSPI) migration (Gazdag,
Squazzero, 1984) and split-step migration (Sto�a et al.,
1990) partly overcome this limitation and can accurately
handle smooth lateral variations in the velocity �eld.

In this presentation we favor the split-step method over
the PSPI migration since split-step migration requires
fewer Fourier transforms (in our case fewer Hartley trans-
forms). Another advantage is that the adjoint, the mod-
eling operator, can be easily coded.

To reduce the computing time and storage requirements
we propose to use the real-valued Hartley transform
(Bracewell, 1986) instead of the complex Fourier trans-
form. The Hartley transform circumvents the Hermitian
symmetries of the Fourier transform and leads automat-
ically to highly optimized computer codes. The Hartley
transform is suitable for implementation in parallel archi-
tectures.

Split-step migration and modeling

The use of the conjugate gradients algorithm for least-
squares migration requires the forward operator and its
adjoint. Interpreting migration layerwise, the split-step
operator L can be symbolically decomposed into three
linear operations P; C and S. With the seismic wave�eld
P (x; z; !) at depth z transformed to the frequency domain
the downward continuation step from z to z+4z consists
of two linear operations. First the phase-shift term P is
applied to the wave�eld in the (k; !) domain:

P1(k; z; !) = P (k; z; !)eikz04z
; (1)

where

kz0 = !u0
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and u0 is the mean slowness for the layer interval 4z.
The second step is to apply the slowness perturbation
correction term C in the (x;!) domain. This correction
is a time shift that accounts for the lateral slowness vari-
ations 4u(x) = u(x)� u0:

P (x; z +4z; !) = P1(x; z; !)e
i!4u(x)4z

: (3)

Finally, by summing over all frequencies (imaging prin-
ciple) split-step migration can be expressed in terms of
three cascaded linear operators:

L = SCP; (4)

where S denotes the summation operator. To construct
the adjoint of (4) the order of the �rst and last operator
is interchanged and the individual adjoints are taken:

L0 = P 0C0S 0: (5)

The summation, S, becomes a `spraying' operation, S 0,
(Claerbout, 1992). The `spraying' operator S 0 distributes
the image I(x; z) at a given location (x; z) over all fre-
quencies of P (x; z; !). The signs of the phases in equa-
tions (1) and (3) are reversed to continue the wave �eld
upward from the earth's interior to the surface.
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The Hartley transform

Since the wave �eld P (x; z; t) is real, its Fourier trans-
form carries Hermitian symmetry. Hence a brute-force
implementation of the split-step operators L and L0
leads to ine�cient computer codes. Expressed as a
time-frequency transformation, the Hartley transform is
de�ned as (Bracewell, 1986):

H(!) =
1p
2�

Z
f(t)cas(!t)dt; (6)

f(t) =
1p
2�

Z
H(!)cas(!t)dt; (7)

with the real-valued kernel cas(!t) = cos(!t) + sin(!t).
The Hartley transform encodes the information about
amplitude and phase of the wave�eld in a single real func-
tion and the backward and forward transformations are of
exactly the same form. For e�cient coding of the Hartley
transform we adopt a split-radix Fast Hartley Transform
(FHT) that has been developed by Sorensen et al. (1985).

The phase-shift operator P from equation (1) in terms of
the Hartley transform becomes:

P1(k; z; !) = P (k; z; !) cos(kz04z)

�P (�k; z; !) sin(kz04z): (8)

The slowness perturbation correction operator C from
equation (3) is now written as

P (x; z +4z; !) = P1(x; z; !) cos(!4u(x)4z)

�P1(x; z; !) sin(!4u(x)4z):(9)

The procedure to compute the modeling migration oper-
ator L and its adjoint L0 using the Hartley transform is
summarized in the owcharts in Figures 1 and 2.

Since the operators L and L0 are not given as matrices,
adjointness of the algorithms in Figures 1 and 2 needs to
be veri�ed. A valuable proof that one algorithm is the
adjoint of the other is the dot-product test (Claerbout,
1992). The operators have to satisfy the following rela-
tion:

y
0
~y = ~x

0
x; (10)

where ~y = Lx, ~x = L0y. The input vectors x and y are
loaded with random numbers. The algorithm presented
here satis�es equation (10) down to the least signi�cant
bit.

Example

Figure 3 illustrates the image enhancement obtained by
least-squares migration. To test the algorithm a band
limited reectivity model with a laterally varying velocity
is generated. The forward split-step modeling operator is
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Fig. 1: The owchart for the split-step migration using the Hartley
transform. The wave �eld P (x; z = 0; t) = D(x; t) is propagated
from the surface of the earth to depth z in steps 4z. The seismic
image I(x; z) is constructed by applying the imaging principle .
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Fig. 2: The owchart for split-step modeling using the Hartley
transform. The wave �eld P (x; z; t = 0) = I(x; z) is propagated
from the interior of the earth to the surface z = 0 where the data
D(x; t) is generated.
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applied to obtain the data. The standard migration using
the adjoint operator yields a seismic image with strong
migration artifacts and a partly incorrect reectivity
distribution. After �ve iterations the least-squares
migration using conjugate gradients produces a high
resolution image with attenuated migration artifacts. It
is also important to note that the di�erence between
the estimated reectivity and the true reectivity are
minimal.

Conclusions

We have developed a technique to perform least-squares
migration using split-step migration and its associated
adjoint operator. Care has been taken in order to
minimize the computational cost of the migration and
the adjoint operator. In particular, we have posed
our algorithms in the Hartley domain which leads to
algorithms that are highly e�cient in computing time
and memory requirement.

The use of conjugate gradients for least-squares split-step
migration improves the quality of seismic images. In gen-
eral, a small number of iterations is enough to obtain
a good image. A parallel implementation of the spatial
Hartley transform makes the least-squares split-step mi-
gration an attractive method to process large data sets, a
feature that becomes crucial in prestack migration.
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Fig. 3: A reectivity model convolved with a Ricker wavelet is used to test the least-squares split-step migration. The interval velocities
are given in meters per second. The data is generated using the forward split-step modeling operator. The split-step migrated section
shows typical migration artifacts. In the least squares migrated image the artifacts are widely removed and the reectivity is closer to
that of the true model after only �ve iterations of the conjugate gradients scheme.
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