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Summary

The high resolution Parabolic Radon transform proposed
by Sacchi and Ulrych (1995) entails the utilization of a
regularization technique that leads to an operator that
does not exhibit a Toeplitz structure. In the original for-
mulation of the high resolution Radon transform the op-
erator is inverted using Cholesky decomposition. This is
quite expensive compared to the classical least squares
Radon transform that uses the Levinson recursion to in-
vert a Toeplitz form.

We propose a method to achieve high resolution at a com-
putational cost of the order of the conventional parabolic
least squares Radon transform. This feature makes our
new algorithm quite attractive to process large data sets.

Introduction

The Parabolic Radon transform is a widely accepted tech-
nique for multiple removal (Hampson, 1986). The tech-
nique can be implemented in the frequency domain via
a fast algorithm that exploits the Toeplitz structure of
the least squares Radon operator (Kostov, 1990; Darche,
1990). Recently, Sacchi and Ulrych (1995) proposed
a high resolution algorithm to increment the ability of
the transform to distinguish events with similar moveout
curves. This algorithm is based on a procedure that at-
tempts to �nd a sparse representation of the reections
in the parabolic Radon domain. A similar algorithm has
been proposed by Cary (1998). In this case the Radon
panel is constrained to be sparse in both the Radon pa-
rameter and the intercept time.

The high resolution parabolic Radon transform can be
used to isolate multiples interferences with a few millisec-
onds of residual moveout at far o�set. This is a problem
frequently encountered when dealing with short period
multiple reections generated by carbonate targets in the
Western Canadian Basin (Hunt et al., 1996).

One of the advantages of the high resolution parabolic
Radon transform is that the focusing power of the trans-
form is considerably increased with respect to the classical
least squares parabolic Radon transform. Unfortunately,
the high resolution parabolic Radon transform leads to
the inversion of an operator that is Hermitian but does
not exhibit a Toeplitz structure. The resulting Hermitian
operator is inverted using Cholesky decomposition. The
Cholesky method for solving Hermitian linear systems of
equations requires a number of operations that is propor-
tional to M3, where M is the dimension of the Hermitian
operator.

In this paper we present a strategy to reduce the com-

putational cost of the high resolution Radon transform.
Our technique is based on the inversion of the Hermitian
operator via the method of conjugate gradients with the
addition of a fast matrix times vector multiplication using
circulant matrices.

Least squares Parabolic Radon transform

Common mid point (CMP) gathers after normal moveout
(NMO) correction can be modeled as a superposition of
events with parabolic moveout:

d(xj ; t) =

MX
k=1

m(qk; � = t� qk x
2
j) ; j = 1; N ; (1)

where d(xj; t) denotes the CMP gather, xj the o�set,
m(qk; �) is the Radon panel, qk the discrete Radon pa-
rameter and � the intercept time. The data consist of N
seismic traces which do not need to be regularly sampled.
The Radon parameter is uniformly discretized according
to qk = q0 +�q (k � 1); k = 1; : : : ;M .

Equation (1) is essentially a decomposition of the CMP
gather in terms of parabolic events distributed in the
plane �; q. It is computational more convenient to rewrite
the last equation in the frequency-o�set domain. Taking
Fourier transform with respect to the temporal variable t
we arrive to the following expression

d(xj ; f) =

MX
k=1

m(qk; f) e
i2�fqkx

2

j ; j = 1; : : : ; N : (2)

The calculations can be carried out independently for each
frequency f . Equation (2) can be written in matrix form
as follows:

d(f) = L
~
(f)m(f) : (3)

To avoid notational clutter we will drop the frequency
dependency in equation (3) and write d = L

~
m .

The least squares Radon operator is estimated by mini-
mizing the following cost function.

J = jjd� L
~
m jj2 + �jjmjj2 : (4)

The regularization term �jjmjj2 is used to control the
roughness of the solution. It can be shown that this term
is one of the major sources of amplitude smearing in the
Radon panel (Sacchi and Ulrych, 1995).
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Taking derivatives of J with respect to m and equating
them to zero yields

(L
~

H L
~
+ �I

~
)m = L

~

Hd
= madj :

(5)

In the last equation madj denotes the low resolution
Radon transform obtained using the adjoint or transpose
operator LH . The least squares solution becomes

m = (L
~

H L
~
+ �I

~
)�1madj

= (R
~
+ �I

~
)�1madj :

(6)

At this point some observations are in order. First it is
clear that R

~
= L

~

H L
~
+ �I

~
is a Toeplitz form (Kostov,

1990), with elements given by

fR
~
+ �I

~
gl;m =

NX
k=1

e�i2�f�q(l�m)x2
k + ��l;m : (7)

Solving this equation using the Levinson recursion re-
quires approximately 4M2 + 7M operations, and storage
of only the �rst row of the Toeplitz matrix (Marple, 1987).
This feature yields to a very e�cient algorithm to com-
pute the parabolic Radon transform.

High resolution parabolic Radon transform

In the high resolution parabolic Radon transform the vec-
tor m is retrieved by solving the following equation:

(R
~
+ W

~

H
W
~
)m =madj : (8)

The matrix W
~

is a diagonal matrix with elements that
depend on m (Sacchi and Ulrych, 1995). This leads to
an iterative algorithm whereW

~
is bootstrapped from the

result of a previous iteration. In general, the iterative pro-
cedure is not required if we are able to design W

~
from a

priori information. The matrix of weightsW
~

is a diagonal
matrix with elements given by

fW
~
gl;m = wl �l;m; l;m = 1; : : : ;M : (9)

The elements of the diagonal form R
~
+W

~

HW
~

become:

fR
~
+W
~

H
W
~
gl;m =

NX
k=1

e�i2�f�q(l�m)x2
k + w2

l �l;m : (10)

It is clear that the addition of a diagonal matrix with non-
constant elements has destroyed the Toeplitz structure of
the operator. The above matrix can be inverted by the
Cholesky method in a number of operations proportional
to M3.

From the computational point of view it is more conve-
nient to compute the Radon transform using a constant
diagonal regularization (equation (5)). However, if we
want to estimate a high resolution Radon operator, the
regularization term must be a diagonal form with non-
constant elements (equation (9)). The elements ofW

~
are

used to emphasize the Radon parameters qk that need to
be constrained to be zero. In general, the matrix W

~
is

bootstrapped from the data in an iterative manner. The
aforementioned procedure is described in Sacchi and Ul-
rych (1995).

In our synthetic example, the elements of the diagonal
matrix W

~

HW
~

are given by

w2
k =

�
100: if qk =2 Q
0:0001 if qk 2 Q ;

(11)

where Q indicates the set of parameters qk where the re-
ections are localized. These weights can be interpreted
as the inverse of a variance in model space. If w2

l is large,
1=w2

l is small and therefore, the algorithm will constraint
the areas of no reections in the �; q space to be zero. It
is clear that the resolution is enhanced by inhibiting the
creation of smearing in the Radon panel.

Conjugate gradients and circulant matrices

To solve equation (8) we adopt the method of conjugate
gradients (see for instance, Strang, 1996), which is sum-
marized below.

We want to solve (R
~
+D
~
)m =madj , where D

~
=W

~

HW
~
.

Start with an initial solution m
~
0, set p0 = r0 = madj �

(R
~
+D
~
)m0,

�i+1 = (ri; ri)=(pi; (R
~
+D
~
)pi) (12a)

mi+1 =mi + �i+1pi (12b)

ri+1 = ri � �i+1(R
~
+D
~
)pi (12c)

�i+1 = (ri+1; ri+1)=(ri; ri) (12d)

pi+1 = ri+1 + �i+1pi (12e)

where i = 0; 1; 2; : : : K denotes the iteration number.

The cost of the conjugate gradients algorithm is domi-
nated by the cost of multiplying a matrix by a vector
(12a). In general, matrix times vector multiplication is an
O(M2) process. In our problem we will use the Toeplitz
structure of R

~
to �nd a fast manner to compute the afore-

mentioned operation.

The product (R
~
+D
~
)x can be decomposed into two prod-

ucts: R
~
x+D

~
x. The �rst product can be e�ciently com-

puted using the Fast Fourier Transform (FFT), the second
product involves only 2M operations (M products plusM
additions) and does not substantially increase the compu-
tational cost of the inversion.

The �rst product, y = R
~
x, is evaluated by augmenting

the system as follows:
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�
y
y0

�
= R
~
aug

�
x
0

�
; (13)

where R
~
aug is the original Toeplitz matrix after being

properly folded to become a circulant matrix (Strang,
1986; Schonewille and Duijndam, 1998). The right hand
side can be computed by multiplying the Fourier trans-
form of the �rst row of R

~
aug by the Fourier transform of

vector [x ;0]T , and taking the inverse Fourier transform
of this product. Now our matrix times vector operation
takes O(M 0 logM 0) operations where M 0 is the size of
augmented matrix (M 0 = 2M). We have found that the
conjugate gradients algorithm convergences after a few it-
erations (K �M=5). Therefore, the inversion becomes an
O(KM 0 Log(M 0)) process. This is more e�cient than the
direct inversion of equation (8) by the Cholesky method.

Example

In Table 1 we present a comparison of CPU times in sec-
onds for 3 di�erent algorithms. The times in Table 1
correspond to the total computational cost for 512 fre-
quencies. These simulations were performed on a SGI
Origin 2000.

In both cases we have 4 parabolic events which were
mapped to the Radon domain using the following algo-
rithms:

1. Lev: Classical least squares parabolic Radon trans-
form implemented via the Levinson recursion (equa-
tion (5)).

2. Chol: High resolution Radon transform imple-
mented via the Cholesky decomposition (equations
(8) and (9)).

3. CG+FFT: High resolution parabolic Radon trans-
form implemented via conjugate gradients plus ma-
trix times vector multiplication using the FFT.

Is is clear that the new algorithm can achieved high res-
olution at a computational cost comparable to the one
of the classical least squares Radon transform computed
with the Levinson recursive solution.

In Figure 1 we portray the results obtained for the
256 � 256 simulation. Note that the di�erences between
the high resolution Radon transform computed with the
Cholesky decomposition and the proposed algorithm are
minimal.

Conclusion

We have presented a new algorithm to compute the high
resolution parabolic Radon transform. This algorithm op-
erates at a speed that is comparable to the least squares
Radon operator obtained by the Levinson recursion.

We have also shown the importance of using a non-
constant diagonal regularization matrix to enhance the
focusing power of the parabolic Radon transform. The
e�ciency of the high resolution parabolic Radon trans-
form is improved by an order of magnitude with respect
to the original algorithm based on a direct inversion using
the Cholesky decomposition.
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N �M Lev Chol CG+FFT

128� 128 2 6 3
256� 256 8 42 12

Table 1: CPU times in seconds for the 3 algorithms tested in
this study. N denotes the number of traces and M the number
of q parameters.
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Fig. 1: A synthetic CMP gather composed of 4 parabolic events is used to test 3 di�erent algorithms to compute the Radon transform.
Lev. indicates the classical solution using least squares with a constant damping term (equation(6)); the Levinson algorithm is used
to invert the resulting Toeplitz form. Chol. indicates the high resolution solution using non-constant damping (equation (8)), this
solution is computed by means of the Cholesky decomposition. CG+FFT indicates the proposed fast algorithm to compute the high
resolution Radon transform. In this example the size of the Radon operator is 256� 256. CPU times in seconds are given in Table 1.
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