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Summary

We present and develop an algorithm to retrieve harmonic
signals immersed in white noise. The algorithm is applied
in the f � x domain to enhance the signal-to-noise-ratio
of 2D seismic wave�elds.

Classical f � x noise attenuation techniques are based
on autoregressive (AR) modeling. In this problem the
noise is considered a sequence of random innovations
rather than an additive process. We show that lin-
ear events immersed in additive white noise can be
properly represented in the f � x domain by means of
an autoregressive/moving-average (ARMA) model. The
ARMA structure of the signal leads, in the stationary
approximation, to a eigenvalue problem. In fact, the
prediction error �lter (PEF) is obtained from the eigen-
decomposition of the covariance matrix of the noisy sig-
nal. The PEF is applied to the noisy data and �nally,
an estimate of the additive noise sequence is obtained by
self-deconvolving the PEF from the �ltered data. We also
examine the similarities of our algorithm to the projection
�ltering technique proposed by Soubaras (1994, 1995).

Introduction

In 1984 Canales showed how to design prediction error �l-
ters (PEF) in the f �x domain to extract the predictable
part of the signal from the data. This technique is optimal
if the signal in the f �x space can be modeled via an au-
toregressive (AR) model at each frequency f . In this pre-
sentation we show that an optimal model for linear events
in the f�x domain is given by an autoregressive/moving-
average (ARMA) model. These type of models have been
extensively studied in the context of harmonic retrieval
and are associated to the well known Pisarenko harmonic
spectral estimator (Pisarenko, 1973; Ulrych and Clayton,
1976). In this paper we utilize the ARMA structure of
the signal to estimate the PEF, the noise sequence is es-
timated by self-deconvolving the PEF from the �ltered
data.

The signal model

We �rst consider a signal, s(t; x), composed of a single
waveform with constant ray parameter  . The frequency
domain representation of s(t; x) is given by

S(f; x) = A(f) e
i2�f x

; (1)

where A(f) indicates the source spectrum, f the temporal
frequency, and x the spatial variable or o�set. We will
assume that the spatial variable x is regularly discretized

according to x = (k�1)�x ; k = 1 : N . For any temporal
frequency, f , we can write

Sn = Ae
i�n

; n = 1; N (2)

where � = 2�f �x. The signal can be easily predicted
using a �rst order di�erence equation. The following re-
cursion is obtained by combining Sn and Sn�1

Sn = a1Sn�1 : (3)

where a1 = exp(i�). Similarly, it can be shown that the
superposition of p complex harmonics (p linear events in
x� t) can be recursively represented by a di�erence equa-
tion of order p

Sn = a1Sn�1 + a2Sn�2 + : : : apSn�p : (4)

The latter can be written in prediction error form as fol-
lows

pX

k=0

gkSn�k = 0 ; (5)

g0 = 1 and gk = �ak; k = 1; p.

Adding noise ,Wn, to the data gives rise to the following
process

Yn = Sn +Wn ; (6)

substituting Sn�k = Yn�k�Wn�k into equation (5) yields

pX

k=0

gkYn�k =

pX

k=0

gkWn�k = en : (7)

The latter is an ARMA(p,p) process in which the AR and
MA coe�cients are identical. The signal en is used to des-
ignate the non-white innovation sequence

Pp

k=0
gkWn�k.

Ulrych and Clayton (1976) discussed the relationship of
the Pisarenko harmonic spectral estimator to this special
type of ARMA model.

Equation (7) can be written in matrix form as follows:

Yg =Wg = e ; (8)

where Y is the convolution matrix of the signal with en-
tries given by the noisy sequence Yk properly shifted and
padded with zeros in order to express discrete convolu-
tion. Similarly, W is the convolution matrix of the noise
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with entries given by the unknown noise sequence Wk. If
we assume that the noise is a zero mean white process and
that the signal and the noise are uncorrelated, the PEF
g can be estimated by transforming equation (8) into the
following eigen problem:

RY g = �
2
Wg : (9)

The matrixRY is the correlation matrix of the noisy data,
�2W is the variance of the noise. It is intuitively clear that
the desired PEF is the eigenvector that corresponds to the
minimum eigenvalue of RY . The minimum eigenvalue is
an estimate of the noise variance �2W .

Noise estimation

After estimating g the remaining problem is to estimate

the noise sequence Ŵk which will be used to estimate the

\clean" signal Ŝk = Yk � Ŵk. The noise is estimated
by deconvolving the PEF from the non-white innovation
in equation (8). In order to facilitate the algebra we will
rewrite equation (8) by commuting the sequences involved
in the convolution

Gy = Gw = e : (10)

G is now the convolution matrix of the PEF, y and w are
vectors containing the observations and the white noise
sequence, respectively. The noise sequence is estimated
from the colored innovation e = Gw by deconvolving the
PEF,

ŵ = (G
H
G+ �I)

�1
G
H
Gy : (11)

The \clean signal" can be estimated as follows:

ŝ = [I� (G
H
G+ �I)

�1
G
H
G]y : (12)

At this stage some comments are in order. First, we note
that when � = 0, ŵ = y. In other words, we have annihi-
lated the signal (ŝ = 0). If � is too large, ŵ = 0. In this
case there is no snr enhancement (ŝ = y). In general, a
line search procedure is used to determine the value of �
that yields a noise sequence with a mean square error that
agrees with the estimated variance of the noise obtained
after solving equation (9).

In Figure (1) we present a 1D synthetic example. The
time sequence is composed of two real sinusoids immersed
in noise with standard error � = 0:15. The number of sig-
nals in this case is p = 4 (2 real sinusoids are represented
by 4 complex harmonics). We have estimated the signal
using di�erent trade-o� parameters �. It is clear that for
� = 0:001 we do not properly model the signal. When
� = 10 our estimate of the signal is equal to the noisy sig-
nal. The optimum trade-o� parameter is � = 0:01. This
value yields a noise sequence with variance �̂ = 0:14.

In Figure (2) we compare the performance of Canales'
f � x AR �lter using a 10 points PEF and the f � x
ARMA approach using a 4 points PEF (p = 3). It is
clear that the AR �lter cannot properly separate signal
from noise, this is a consequence of using an incorrect
model (AR model) to design the PEF �lter.

Projection Filters

Our approach is similar to the f �x projection �lter pro-
cedure proposed by Soubaras (1994, 1995). However, our
�nal estimator of the noise sequence (equation (11)) is ob-
tained from the ARMA structure rather than by invoking
the concept of quasi-predictivility (Soubaras, 1995).

In fact, the operator (GHG+�I)�1GHG in equation (11)
is a multinotch �lter with an amplitude response given by:

jG(k)j2

jG(k)j2 + �
:

In the last equation k denotes wavenumber and G stands
for the Fourier transform of the PEF. Soubaras (1994)
has indicated that this multnotch �lter is equivalent to a
projection operator that selectively �lters the p wavenum-
bers associated to the deterministic part of the harmonic
model.

Conclusion

We have shown that the correct representation of a su-
perposition of linear events in the f � x domain leads to
an ARMA system. For nonlinear events, the data can
be subdivided into smaller panels where the events are
approximately linear. The signal can be modeled via a
special type of ARMA process in which the autoregres-
sive and the moving-average coe�cients are identical.

The ARMA coe�cients are computed after solving an
eigenvalue problem. We have shown that the PEF is also
the eigenvector associated to the minimum eigenvalue of
the data covariance matrix. The noise attenuation pro-
cess consists of two stages. First, we apply the PEF to
the noisy data to estimate a colored noise sequence or �l-
tered sequence. Finally, the PEF is deconvolved from the
�ltered sequence to estimate the additive noise.

It is clear that the second stage of our algorithm is
equivalent to the projection �ltering technique proposed
by Soubaras (1994,1995). However, our equations are
directly derived from the ARMA representation of the
signal rather that by invoking the concept of quasi-
predictivility. In Soubaras' technique the PEF is esti-
mated from the data using an iterative process. In our
approach the PEF is computed by solving an eigenvalue-
eigenvector problem.

Finally, it is important to mention that the proposed
model can be extended to a superposition of damped har-
monics of the form e��x+ikx. In this case, the covariance
matrix of the problem corresponds to the non-Toeplitz or
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Blackman-Tukey estimator. This estimator has been ap-
plied to the analysis of the Earth's free oscillations (Hori
et al, 1989; Ulrych and Sacchi, 1995).
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Fig. 1: The true signal sk and the noisy signal yk are displayed together with the estimated \clean signal" as a function of the tradeo�
parameter � (equation (12)). The optimum tradeo� parameter � = 0:01 yields a noise sequence with standard error �̂ = 0:14. The
standard error of the original noise sequence used to generated yk is � = 0:15.

Fig. 2: Top: SNR enhancement using f�x prediction error �lters assuming an AR model (Canales, 1984). Bottom: SNR enhancement
using an ARMA model. In both �gures we portray the noisy data (left), the �ltered data (center), and the residual panel (right).
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