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Summary

This paper summarizes our experience with 2D/3D least-
squares amplitude versus Angle (AVA) migration. AVA
imaging can be posed as a linear inverse problem. This
provides several advantages. First, we are able to incor-
porate model space weighting operators that improve am-
plitude fidelity in common angle gathers. In addition, the
influence of improperly sampled data can be diminished.
The latter leads to the attenuation of acquisition foot-
prints.

In order to make our problem computationally tractable,
we utilize 3D common azimuth wavefield modeling and
migration operators (Biondi and Palacharla, 1996). The
inversion algorithm uses the method of conjugate gradi-
ents. We show that robust estimates of AVA attributes
can be obtained by properly selecting the model and data
space regularization operators. Finally, it is important
to stress that the inversion of AVA gathers is the first
step toward a robust and accurate estimation of physical
rock properties and fluid indicators from surface seismic
records.

Our numerical implementation of LS wave equation AVA
imaging is tested with a 3-D common azimuth data set
from the Western Canadian Sedimentary Basin.

Introduction

Common image gathers in angle domain (Stolt and We-
glein, 1985; de Bruin et al., 1990) contain valuable an-
gle dependent amplitude information. For this reason,
AVA/AVP migration has gained increasing interest in re-
cent years (Xu et al., 1998; Prucha et al., 1999; Wapenaar
et al., 1999; Mosher and Foster, 2000; Sava et al., 2001).
Kuehl and Sacchi (2001, 2002) showed that regularized
least-squares wave equation migration could be used to
mitigate imaging artifacts and acquisition-induced arti-
facts caused by missing observations.

In this article, we present an extension of the 2D AVA
inversion algorithm proposed by Kuehl and Sacchi (2001)
to the 3D case. We use the common azimuth operator
proposed by Biondi and Palacharla (1996) in conjunction
with a combination of a PSPI (phase shift plus interpo-
lation) and split step correction in order to account for
lateral velocity variations in the 3D macro velocity field
in both the forward (de-migration) and adjoint (migra-
tion) operators that are required by the inversion scheme.
Common azimuth migration permits us for a considerable
reduction of the data size and computational cost of 3D
migration. This is crucial for any attempt to implement
least-squares migration on 3D field data.

3-D common azimuth AVA imaging

Biondi and Palacharla (1996) proposed a phase-shift mi-
gration operator for 3-D common azimuth data. The al-
gorithm downward continues the surface wavefield using
the following propagation scheme:

P (z + dz, ω, kmx, kmy, khx) = (1)

P (z, ω, kmx, kmy, khx) · e
−ikzdz

Where the vertical wavenumber is calculated by a modi-
fied double square root equation:
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v(r, z) and v(s, z) are the velocities evaluated at depth z
and source and receiver lateral locations r and s. These
velocities are replaced with the average velocity vm(z) at
a given depth z . Lateral velocity variation effects can
be alleviated with velocity-correction terms like the pre-
stack split-step correction (Popovici, 1996). For large ve-
locity variations PSPI (Gazdag and Sguazzero, 1984) in
conjunction with split-step is adopted (Kuehl and Sacchi,
2003). The spatial frequencies kmx and kmy are the mid-
point wavenumbers in in-line and cross-line directions, re-
spectively. In addition, khx is in-line offset wavenumber.

The resulting expression for k̂hy is obtained by using the
stationary phase approximation (Biondi and Palacharla,
1996):
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Equations (2) and (3) provide a routine to back propagate
energy to different depths. At each depth, we can image
the wavefield at zero time by considering the following two
steps. First, we use the radial-trace transform (Sava et al,
2001) to compute the contribution to the image of waves
propagating with ray parameter phx . The relationship
between offset ray parameter phx , frequency ω and offset
wavenumber khx is straightforward:
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phx =
khx

ω
(4)

The second step is to sum all traces along radial lines
in (khx, ω) domain with slope phx (Mosher and Foster,
2000). The above algorithm produces Common Image
Gathers (CIG) in the ray parameter domain. These im-
age gathers can be transformed to angle domain by the
following expression:

sinθ =
v(m, z)phx

2cosφ
(5)

where θ is the incident angle, v(m, z) is the velocity at
the midpoint position m and φ is the dip angle of the
interface.

Least-squares wave equation AVA Imaging

We consider seismic data as the result of a linear trans-
formation on an earth model m

d = Lm+ n (6)

where d denotes the observed data, L is the forward oper-
ator, m is common image gather, and n is the noise. Con-
ventional migration entails applying L′ , the adjoint of L,
to the observed data. The anatomy of the operators L
and L′ is described in detail in Kuehl and Sacchi (2003).
In our algorithm, m represent the reflection strengh at
midpoint location x, y and depth z versus ray parameter
phx, whereas d represents common azimuth 3D data.

When the data are properly sampled, the amplitude in
the CIG can be corrected by incorporating the Jacobian
correction Sava (2001). This correction attempts to make
the adjoint operator behave like the inverse operator. In
general, this correction might not be sufficient to achieve
good amplitude fidelity. Sampling and migration artifacts
are not suppressed by this correction. These artifacts can
be attenuated, however, by constraining the solution to
exhibit certain degree of smoothness along the ray pa-
rameter axis. In this case, we adopt the following cost
function to retrieve a migrated image that ”fits” the ob-
servations and, in addition, exhibits smoothness or conti-
nuity along the ray parameter axis:

F (m) = ||W (d− Lm)||2 + λ
2||D1hxm||

2 (7)

where W is a diagonal weighting matrix used to decrease
the influence of ”bad data” (missing observations) in the
migrated image. The operatorD1hx is a first order deriva-
tive operator along the in-line ray parameter-offset direc-
tion. Least-squares migration seeks a model m by mini-
mizing the sum of the two norms. The trade-off parame-
ter λ determines the amount of smoothing. We minimize

the objective function using a conjugate gradients algo-
rithm (Hestenes and Stiefel, 1952). In this case, the algo-
rithm reduces to the sequential application of the follow-
ing operators: migration (L′), de-migration (L), smooth-
ing (D1hx) and, sampling (W ). It is important to stress
that these operators are applied in the flight; in other
words, there is no need of constructing equivalent opera-
tors in matrix form.

Field data example

We tested our least-squares common azimuth migration
algorithm using the Erskine data set provided by Veritas
Geo-services. The data were first binned, and ensembles
of common azimuth were created. The binned data con-
sist of 157 in-lines and 40 cross-lines. The offset dimension
ranges from zero to 3000 meters. The distribution of off-
set is highly uneven (Figure 1). Rather than attempting
to interpolate the data before migration, we have utilized
the least squares migration algorithm outlined in the pre-
vious section. In particular, we have used the diagonal
matrix of weights W to undertone the influence of miss-
ing offset position in each cdp bin.

Figure 2 (A) portrays the AVP gather obtained for mid-
point CMP position crossline#36, inline#71 (Figure 1)
in the inline direction. This AVP image corresponds to
the migration of the binned data without any attempt to
interpolation (zeros traces were assigned to missing off-
set positions). Artifacts along ray parameter, an effect
caused by irregular/incomplete data sampling, are clearly
seen. Figures 2 (B) portrays the least-squares inverted
CIG after 4 iterations. In this case, the influence of the
null traces (that were assigned to missing offset positions)
was reduced by the inclusion of the data weighing matrix
W .

Summary

Least-squares AVA migration for common azimuth data
has potential for deriving high resolution artifact-free CIG
that can be subsequently used to extract rock properties
and/or fluid indicators. It provides high quality common
image gathers in angle domain and, in addition, a mi-
grated image that can be used to reconstruct the seismic
volume (de-migrate).

Our current implementation of LS migration uses the
method of conjugate gradients in its simplest form. We
are currently examining the possibility of using the to-
tal least-squares method (Arun, 1993) in an attempt to
combat modeling operator errors and velocity mismatch
as well as sampling related artifacts.
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Fig. 1: Distribution of offset for the field data utilized to test our least-squares 3D wave equation AVA imaging algorithm.
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Fig. 2: (A) AVP gather obtained via direct migration of the pre-stack volume after binning. Null traces were assigned to missing
offset positions. (B) AVP gather obtained via LS wave equation AVP migration after 4 conjugate gradients iterations.


