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Summary

The Radon transform is a powerful technique that has
been primarily used to remove coherent and incoherent
noise from seismic records. In addition, it has a long his-
tory in image processing as a tool for feature extraction.
In exploration seismology, however, a major shortcoming
is the requirement of simple integration paths that
often do not quite well approximate the spatio-temporal
signature of real seismic events.

The purpose of this presentation is twofold. First, we in-
troduce a generalized convolution that allows us to com-
pute Radon transforms with any class of integration path.
Secondly, we present a strategy to utilize generalized con-
volution to represent seismic data via a Local Wavefield
Decomposition (LWD). This is a parametric decomposi-
tion of the data in terms of local wavefield operators. The
latter can be used to filter undesired events and interpo-
late aliased data.

Introduction

A chief problem in seismic data processing is the filtering
of unwanted events like ground roll and multiples. Meth-
ods to deal with this problem often exploit move-out
or curvature differences between offending events and
the events one would like to preserve (primaries). In
particular, removal of multiples based on move-out dis-
crimination can be attained via parabolic and hyperbolic
Radon transforms. In the parabolic transform, seismic
data after normal-moveout correction is assumed to
be composed of a superposition of parabolas; in the
second case, data are assumed to be a superposition of
hyperbolas.

Methods exists to enhance the resolution of both the hy-
perbolic Radon transform (Thorson and Claerbout, 1985)
and the parabolic Radon transform (Sacchi and Ulrych,
1995). In both cases, the operator capable of inverting
the Radon transform is constructed in such a way that
the Radon panel exhibits minimum entropy or maximum
sparseness (synonymous used to describe a distribution of
isolated events in the Radon panel). The sparseness as-
sumption might not be optimal when there is a mismatch
between the integration path of the Radon operator and
the spatio-temporal signature of the seismic event. Am-
plitude variation with offset can further complicate the
problem, as described by Spagnolini (1994). One solution
to this problem is to design operators that accurately re-
produce both the kinematic and amplitude signature of
the data. An example of the latter is the Focal trans-
formation recently introduced by Berkhout et al. (2004).
An alternative solution entails adopting local wavefield

operators (LWO) and therefore, achieve a match between
operator and data for only a small data aperture.

Local Wavefield Decomposition (LWD)

We start by defining a Local Wavefield Operator (LWO)
via the following template:

b̂(ω, x, p) = ŝ(ω)h(x) e−i ωφ(p,x) , −a ≤ x ≤ a . (1)

In this expression a defines the operator half-aperture,
h(x) is spatial taper and, ŝ(ω) the Fourier transform of the
wavelet. Ideally, we choose ŝ(ω) as close as possible to the
seismic wavelet embedded in the data. The parametric
integration path φ(p, x) defines the kinematics of the local
wavefield. For instance, φ(p, x) = p x defines a local linear
Radon operator of ray parameter p. Similarly, we could
have chosen a parabolic template p x2. We now define the
LWO as the inverse Fourier transform of equation (1),

b(t, x, p) = F−1[b̂(ω, x, p)] . (2)

It is clear that b(t, x, p) is a small compact operator, a
scaled and shifted version of it can be written as

Ab(t− t0, x− x0, p) . (3)

The coefficient A corresponds to the amplitude of a single
LWO shifted in time and space. Eq. (3) can be general-
ized to a superposition of LWOs distributed in the (x0, t0)
data plane:

∑

t0

∑

x0

f(t0, x0) b(t− t0, x− x0, p) . (4)

Now, f(t0, x0) can be interpreted as a 2D ”shaping fil-
ter” that shapes one LWO into the desired 2D signal (the
data). It is important to stress that seismic data, in gen-
eral, is composed of a superposition of events that cannot
be described by a single LWO, therefore, we generalize the
convolution sum in equation (4) and obtain the following
expression:

d(x, t) =
∑

p

∑

t0

∑

x0

f(t0, x0) b(t− t0, x− x0, p) (5)

or, in matrix form: D =
∑

p
F(p) ⊗ B(p). Our goal,

now, is to find a procedure to estimate F(p) from D.
Equation (5) defines a generalized convolution (Granlund
and Knutsson, 1995) that represents a decomposition of
the seismic data in terms of temporal and spatially in-
variant kernels. The generalized convolution given by
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Eq. (5) defines the transformation from the Local Wave-
field Decomposition domain (F(p)) to the data space (D).
We will denote such a transformation via the expression:
D = L[F(p)].

Inversion of L

Given the data D, we now need a procedure to transform
the data to the LWD domain; a simple mapping from
data space to model space can be implemented via the

adjoint transform F̂(p) = L∗[D]. From this perspective,
L∗ represents a generalized correlation operator. How-
ever, like in Radon processing, rather than using the
adjoint operator L∗ we prefer to estimate F from the data
via inversion, a process that is equivalent to generalized
deconvolution. In other words, we will minimize the
following cost function

J = ||W(D−
∑

p

F(p)⊗B(p))||22 +R(F) . (6)

The first term is the data misfit; the second is the reg-
ularization term. The matrix W is the sampling matrix
required to process aliased data. In other words, the spa-
tial sampling of the unaliased operators B(p) differs from
the spatial sampling of the aliased data. This optimiza-
tion problem can be tackled via the method of conjugate
gradients. In our current numerical implementation, gen-
eralized convolution and its adjoint are implemented on
the fly by means of a 2D FFT.

Examples

In Fig. (1) we portray 15 LWOs computed on a grid of
41 × 279 (space - time) samples. The spatial sampling
of the data and operator is ∆x = 53 m. The LWOs
were parametrized by linear Radon operators with dips
in the range p0 = −4.75 × 10−4 s/m to p15 = 0 s/m.
These operators are used to compute the LWD (F(p))
of the data portrayed in Fig. 2 (first panel). The
operator F(p) is used to synthesize individual data
modes D(pk) = F(pk) ⊗ B(pk) , k = 1, 15. The data
modes, in conjunction with the full and partial data
reconstructions are also provided in Fig. 2. Notice, that
the partial reconstruction is created by summing the
modes k = 13, 14, 15. The latter is a good representation
of the hyperbolic event. A similar decomposition could
have been achieved via the hybrid Radon transform
(Trad et al, 2001). However, the hybrid Radon transform
defines a basis of linear and hyperbolic events that are
defined on the complete data aperture rather than a
compact basis defined on a sub-aperture of the data like
in the LWD.

In Fig. 3 we present an application of the LWD to inter-
polation beyond aliasing. In this case the true unaliased
marine shot gather is decimated and then reconstructed
using LWD. In other words, aliased data is used to re-
trieved unaliased operators F(p) that are used to recon-
struct the data on a properly sampled grid. The spatial
sampling interval is ∆x = 53.34 m, whereas the LWO

is constructed with a ∆x/2 sampling interval. Fig. 4
displays the f − k spectra of the original data (a), the
decimated data (b), the reconstructed data (c) and the
interpolation error (d).

Future directions and a few words on Learning

At this point it is important to stress that one could
have adopted a non-parametric representation of the
LWOs. For instance, the LWOs can be estimated from
the data as part of a learning algorithm (Olshausen and
Field, 1996). This concept could lead to a totally data
driven noise attenuation process. We first estimate the
LWT on individual data sets (e.g., shot records), this
stage can be designated as the local stage. Then, a global
stage can be used to update the LWOs by minimizing
the cost function J averaged over many shot records. A
schematic algorithm will look like:

1) For each individual record estimate the LWD (F(p))
with inital parametric initial

2) Estimate ∆B(p) such that < J > (averaged cost) is
minimized

3) Update the LWOs, B(p) + ∆B(p)← B(p)

4) Re-start the local stage.

The key point is to achieve sparsity in the generalized con-
volver by finding optimal LWOs directly from the data.

Conclusions

We have presented a generalized convolver that allows us
to represent seismic data in terms of a Local Wavefield
Decomposition. The ideas presented in this paper have
numerous applications: random and coherent (aliased)
noise attenuation, interpolation beyond aliasing, and
wavefield separation.
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k=1 k=2 k=3 k=4 k=5

k=6 k=7 k=8 k=9 k=10

k=11 k=12 k=13 k=14 k=15

Fig. 1: Local wavefield operators used to decompose the data in Fig. 2. The operator size is 41×278 samples (space-time) (∆t = 4 msec
∆x = 53 m). Notice that the scale of this figure is different that the scale of Fig. 2.

Data k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

k=9 k=10 k=11 k=12 k=13 k=14 k=15 FR PR

Fig. 2: Modal data decomposition. The panel FR is the full reconstruction. The panel PR is the partial reconstruction with modes
pk, k = 13, 14, 14.
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Fig. 3: (a) Gulf of Mexico marine shot record. (b) Decimated shot gather. (c) Reconstructed data. (d) Reconstruction error. Only a
portion of the shot record is displayed.
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Fig. 4: Amplitude spectra. (a) Original Gulf of Mexico marine shot record. (b) Decimated shot gather. (c) Reconstructed data. (d)
Reconstruction error.
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