
Enhanced resolution in Radon domain using the shifted hyperbola equation

Cristina Moldoveanu-Constantinescu ∗, and Mauricio D. Sacchi
Department of Physics, University of Alberta,Canada

Summary

The use of long-offset seismic data leads to an improve-
ment in imaging deeper targets. The drawback is that
some of the approximations commonly used in conven-
tional processing, such as the hyperbolic moveout, do not
hold for long-offset data. One of the objectives of seismic
processing is to enhance the signal and remove the
undesired energy from the data. A technique successfully
applied in coherent noise filtering is the Radon transform.
Resolution in Radon domain depends on mainly two
factors: the basis function for the summation path, and
the inversion algorithm. Improvements in separating
signal and noise can be achieved when the appropriate
basis function for the Radon transform is employed. In
this paper we show that the shifted hyperbola (Castle,
1994) represents a better approximation than the normal
moveout equation (Dix, 1955) for long-offset data.
In particular, we focus on incorporating the shifted
hyperbola formula in our current implementation of time
variant Radon transforms, and developing a framework
for a multiparameter Radon transform.

Introduction

Long-offset seismic data provide significant illumination
for deep reflections. While it improves the imaging of
deeper targets some of the approximations used in con-
ventional processing, such as hyperbolic moveout, do not
hold anymore. The main objective of seismic processing
is to improve the signal-to-noise ratio. We often look to
transform the data to a new domain where we can readily
discriminate between signal and noise based on their dif-
ferent characteristics. The Radon techniques have been
efficiently applied in multiple suppression, ground roll re-
moval, and data interpolation. The Radon transform is
defined as a summation along a particular path. The use
of the appropriate basis function for the summation curve
yields a more focused image in Radon domain making the
separation of events an easier task. In this paper we study
the problem of incorporating far offset approximation into
the design of Radon transformations for multiple attenu-
ation and velocity analysis. In particular, we explore the
incorporation of the shifted hyperbola formula in our cur-
rent implementation of time variant Radon transforms. In
the current paper, we use a synthetic data example to test
the viability of a multiparameter Radon transform.

Methodology

Dix (1955) introduced the normal moveout (NMO) equa-

tion for a horizontally layered-earth model
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where t is the traveltime from the geophone to the re-
ceiver, t0 is the two-way vertical traveltime from the sur-
face to the reflector, h is the offset, and Vrms is the root-
mean-square velocity. This is a short offset approxima-
tion and represents the first two terms of a Taylor’s series
expansion of t around h = 0. For long offset we need to
take into account at least one extra term of the expansion.
Taner and Koehler (1969) give the following equation for
the traveltime for a horizontally layered-earth model
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Equation (2) represents an exact Taylor’s series expansion
of t2 as a function of offset h. The coefficients µi are given
by the following equation
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where ∆τk is the vertical traveltime in the kth layer, and
Vk is the interval velocity of the kth layer. It can be seen
that µ2 = V 2

rms.

Two important characteristics of any equation used in
seismic processing is accuracy and practicality. Although
equation (2) is an accurate description of the traveltime
at long offset it may not be practical to use it in data
processing. Malovichko (1978, 1979) derived the shifted
hyperbola NMO equation. Castle (1994) describes this
equation for a horizontally layered earth as
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and is a dimensionless parameter called the shift param-
eter. From the definition of S and µi it can be seen that
for the first layer S = 1 equation (4) reduces to the nor-
mal moveout equation (1) (Dix, 1955). Making use of the
Jensen inequality (Claerbout, 1992) it can be proved that
S ≥ 1.
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The Radon transform (RT) maps events with different
curvatures in data domain, like primaries and multiples,
to points in Radon domain. Due to this property, the
Radon transform has been effectively used in coherent
noise filtering, and data interpolation.

The forward Radon transform is defined as the following
summation

d(h, t) =
∑

v

m(v, τ = φ(v, t, h)) (6)

where d(h, t) is data in time domain, m(v, τ) represents
the data in Radon domain, and φ(v, t, h) is the summation
path - in this case, equation (4).

The summation can be written in matrix form as

d = Lm (7)

where L is the Radon operator. By applying the adjoint
operator LT one can obtain the data in Radon domain as

m̂ = L
T
d. (8)

It has been noticed by several authors (Thorson and
Claerbout, 1985; Hampson, 1986; Kostov, 1990; Sacchi
and Ulrych, 1995) that the utilization of equation (8)
leads to a low resolution Radon panels. A key aspect
in trying to circumvent the aforementioned problem en-
tails defining the Radon transform as the solution of an
inverse problem that can be solved by means of a conju-
gate gradient algorithm. Giving the following objective
function

J = (Lm− d)T(Lm− d) (9)

and minimizing it with respect to m we obtain the least
squares (LS) solution

m̂ = (LT
L)
−1

L
T
d. (10)

Synthetic data example

Figure 2(a) shows a synthetic data shot gather that has
been modeled by the shifted hyperbola equation using the
parameters in Table 1. The offset is ranging from 0 to 3.5
km with a sampling interval of 0.02 km. The depth of the
last reflector is 1.7 km, giving a maximum offset-to-depth
ratio of approximately 2.

Figures 2(b)-(e) illustrate several shifted hyperbolic
Radon panels with constant shift parameter (S) obtained
using a different S for each of them. When the accurate
shift parameter is used, the image in Radon domain is
more focused and the correct velocity is obtained. Signif-
icant smearing of reflections occurs when a non-optimum
parameter is considered and the velocity is different than
the true one. When S is smaller than the true value,

the obtained velocity is larger than the true velocity and
frown-shaped smearing occurs. When S is too large, the
obtained velocity will be too low and smile-shaped smear-
ing occurs. In this example it has been observed that the
shift parameter S is sensitive to changes of 0.05 in its
value. The velocity variation with shift parameter can
be better observed in Fig. 2(f) which represents a time
slice at time t=1.06 s. The shift parameter varies from 1
to 1.8 with a sampling rate of 0.05. The correct values
for the velocity and shift parameter at time t=1.06 s are
Vrms = 2.824 km and S = 1.64. Although some kind of
focusing can be observed around S = 1.6 it is difficult to
decide what pair of Vrms and S values should be chosen
only based on this plot.

A shifted hyperbolic Radon transform using only a con-
stant S gives an approximate estimation of the shift pa-
rameter for different reflectors. However, the focusing in
Radon domain is achieved only for the events for which
S is close to the right one. A more global approach in-
cludes the use of a time dependent shift parameter. This
transform would allow to scan for velocity while tuning
the shift parameter. Figure 3 shows several models ob-
tained by applying a shifted hyperbolic Radon transform
with the shift parameter linearly varying with time

S(τ) = S0 + aτ. (11)

A priori information about S, such as the range of vari-
ation, are helpful in choosing the intercept S0 and the
slope a. As shown in de Vries and Berkhout (1984) and
Sacchi et al. (1996), minimum entropy norms can be used
as a measure of resolving power. Therefore, the most fo-
cused model is obtained by minimizing the entropy which
is equivalent to maximizing the following function called
negentropy
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N is the size of the model, andmi represents Radon panel
for a particular S(τ) curve. The maximum value of ne-
gentropy is equivalent to the maximum focusing in Radon
domain, as shown in Figure 3(f) and 3(b). Figure 1 illus-
trates the maximum negentropy principle. In the first
case, Fig. 1(a), it is shown a sparse model, with all sam-
ples zero except one whose amplitude is N (the number
of samples). When computing the negentropy E, one will
obtain E = 1. As the degree of sparseness in the model
decreases, the negentropy decreases as well. The other
extreme situation is the last case, Fig. 1(d), in which all
the samples have the same amplitude equal to 1/N, giving
a negentropy E = 0.
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Conclusions

For long-offset data the shifted hyperbola represents a
more accurate approximation. An extra unknown param-
eter called shift parameter is introduced. In this paper
we modify our current implementation of the hyperbolic
Radon transform to incorporate the shifted hyperbola for-
mula (Castle, 1994). The quality of the results strongly
depends on the shift parameter. A correct value of the pa-
rameter yields a more focused image in the Radon domain
and the obtained velocity is close to the true velocity. We
firstly estimate a range for the shift parameter S by apply-
ing the shifted hyperbolic Radon transform with constant
S. Subsequently, a shifted hyperbolic Radon transform
with variable S(τ) is applied. The most focused image
in Radon domain is chosen as being the model with the
maximum value of negentropy. In this synthetic exam-
ple, simple linear S(τ) curves give good results, but more
complicated curves can be later incorporated.
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Fig. 2: Shifted hyperbolic Radon panels with constant shift parameter (S). (a) Synthetic Data. (b) Hyperbolic Radon panel (equivalent
to shifted hyperbolic Radon with constant S = 1). (c) Shifted hyperbolic Radon panel for S = 1.3. (d) Shifted hyperbolic Radon panel
for S = 1.4. (e) Shifted hyperbolic Radon panel for S = 1.7. (f) RMS Velocity vs. shift parameter at time t=1.06s.
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Fig. 3: Shifted hyperbolic Radon panels with variable shift parameter (S).(a) Model 1 (S(t) = 1). (b) Model 5 (most focused a = 0.002).
(c) Model 6. (d) Model 8. (e) Model 10 (least focused a = 0.01). (f) Focusing measure curve for 10 models.


