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SUMMARY

Linear prediction filters in the f-x domain are often used to interpolate
regularly sampled data. We study the problem of reconstructing irreg-
ularly sampled data via linear prediction filters methods. For this pur-
pose, we propose a two-stage algorithm for the computation of missing
data. First, we reconstruct the unaliased part of the data spectrum us-
ing a Fourier method (Minimum Weighted Norm Interpolation). Pre-
diction filters are extracted from the reconstructed low frequency data
components, and finally, they are used to reconstruct the aliased part of
the spectrum. The applicability of the proposed method is examined
using synthetic and field data examples.

INTRODUCTION

Reconstruction of seismic data using statistical approaches is an ac-
tive area of research in exploration seismology. While many methods
are based on statistical estimation theory, they also utilize information
from the physics of wave propagation by taking into account relevant
a priori information and assumptions. Methods proposed by Spitz
(1991), Porsani (1999) and Gulunay (2003) successfully address re-
moving alias from regularly sampled data. These methods utilize low
frequency information to recover high frequency data components.
Spitz (1991) computed prediction filters (autoregressive operators) from
low frequencies to predict interpolated traces at high frequencies. This
methodology is applicable only if the original seismic data are regu-
larly sampled in space. Conversely, irregularly sampled data can be
reconstructed using Fourier methods. In this case the Fourier coef-
ficients of the irregularly sampled data are retrieved by inverting the
inverse Fourier operator with a band limiting (Duijndam et al., 1999)
and/or a sparsity constraint (Sacchi et al., 1998; Liu and Sacchi, 2004;
Zwartjes and Gisolf, 2006).

We introduce a new strategy that combines the strengths of both pre-
diction error methods and Fourier based methods to cope with the
problem of reconstructing non-uniformly sampled, aliased data. The
proposed algorithm involves the reconstruction of spatial data at low
frequencies. Then, from the reconstructed low frequency portion of
the data, a suite of prediction filters is extracted and used to recon-
struct the aliased portion of the data in the f-x domain.

THEORY

Problem Definition

Consider a seismic gather containing a finite number of linear events.
In addition, we assume that some traces in the gather are missing. By
applying the Discrete Fourier Transform (DFT) with respect to time,
the gather is transformed to the f-x domain. We let x( f ) be the length-
N vector of f-x data sampled on a regular grid x1( f ),x2( f ),x3( f ), . . . ,xN( f ),
of which only M traces are available. Let the sets of integers K =
{k(1),k(2),k(3), . . . ,k(M)} and U = {u(1),u(2),u(3), . . . ,u(N−M)}
indicate the indices of available (known traces) and missing samples
(unknown traces), respectively. The goal is to recover xU ( f ) from
xK ( f ).

Minimum Weighted Norm Interpolation (MWNI) of unaliased
data

Fourier reconstruction methods are well suited to reconstruct seismic
data in the low frequency (unaliased) portion of the Fourier spectrum.

In addition, as it was shown by Duijndam et al. (1999), the reconstruc-
tion problem is well-conditioned at low frequencies where only a few
wave numbers are required to honor the data. This makes the problem
well-posed; therefore, it is quite easy to obtain a low frequency spatial
reconstruction of the data.

With the previous reasoning in mind, we first proceed to restore the low
frequency part of the data using a Fourier reconstruction method. In
other words, we estimate the missing samples of x( f ), that is xU ( f )
from xK ( f ) for temporal frequencies f ∈ [ fminr , fmaxr ], where fminr
and fmaxr denote the minimum and maximum (unaliased) frequencies
in the data . In general, due to the band-limited nature of the seismic
wavelet, we consider fminr > 0.

Recently, two Fourier-based reconstruction methods were introduced:
Band Limited Fourier Reconstruction (BLFR) (Duijndam et al., 1999;
Schonewille et al., 2003) and Minimum Weighted Norm Interpola-
tion (MWNI) (Liu and Sacchi, 2004; Sacchi and Liu, 2005; Liu et al.,
2004). In our implementation, we have adopted MWNI. It is important
to mention, however, that similar results were obtained using BLFR.
These methods can retrieve the complex Fourier coefficients of the re-
constructed data directly from the the observations by inverting the
inverse Fourier operator. The non-uniqueness of the reconstruction
problem (Sacchi et al., 1998) is circumvented by the incorporation of
a constraint in the form of a spectral norm. Details pertaining the
MWNI method are discussed in Appendix A.

Multi-step estimation of prediction filters and high-frequency data
reconstruction

Let us consider reconstructed data in the band f ∈ [ fminr , fmaxr ]. In ap-
pendix B we show that linear events in the f-x domain can be predicted
using Multi-Step Autoregressive (MSAR) operators of the form,

xk( f ) =
L

∑
j=1

Pj(α f )xk−α j( f ), k = αL+1, . . . ,N, (1)

x∗k( f ) =
L

∑
j=1

Pj(α f )x∗k+α j( f ), k = 1, . . . ,αN −L. (2)

These equations corresponds to a special type of autoregressive (AR)
model where forward (equation 1) and backward (equation 2) autore-
gressive equations are computed by ”jumping” α steps at the time.
The length of the AR operator is L and Pj( f ) is the prediction filter.
The parameter α = 1,2, ...,αmax is the step factor used to extract the
prediction filter for frequency α f from frequency f . Since the step
factor is a positive integer it is clear that low frequencies provide vital
information for our data reconstruction algorithm.

The parameter αmax is the upper limit of the step factor in equations 1
and 2. The later depends on the number of traces N, and the length of
prediction filter L. This parameter is given by

αmax = b
N − L+1

2
L

c,

where b.c denotes the integer part.

Equations (1) and (2) are also considered as a generalization of the pre-
diction filters used by Spitz (1991), in order to incorporate all possible
prediction filters into the reconstruction scheme. Multiple prediction
filters can be extracted for a given high frequency f ′ = α f . In other
words, all possible combinations of α and f leading to the product
f ′ = α f will deliver a prediction filter that can be used to reconstruct
data at frequency component f ′.
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To continue with our analysis, a few comments are in order. The
MSAR strategy requires us to find prediction filters in the reconstructed
band [ fminr , fmaxr ], where minr and maxr are discrete frequency in-
dices. We might encounter the case where for some frequency f ′, the
frequency f ′/α may not fall in the reconstructed interval [ fminr , fmaxr ];
and then, the MSAR method will not be applicable. This situation can
be solved by extrapolating prediction filters using the method proposed
in Appendix B of Spitz (1991). It should be mentioned that this situa-
tion can be avoided by properly choosing the values of fminr and fmaxr
in such a way that maxr ≥ 2(minr −1).

So far we have outlined a method to extract, from reconstructed low
frequency data components x( f ), prediction filters for high frequency
data component x( f ′) = x(α f ).

Following the procedure proposed by Wiggins and Miller (1972) and
Spitz (1991), one can compute the missing samples from known data
and prediction filter coefficients. In this case, the forward and back-
ward autoregressive equations for α = 1,

xk( f ) =
L

∑
j=1

Pj( f )xk− j( f ), k = L+1, . . . ,N, (3)

x∗k( f ) =
L

∑
j=1

Pj( f )x∗k+ j( f ), k = 1, . . . ,N −L, (4)

are used to isolate the unknown data components. This is done by
expanding the last two equations and rewriting them, after a few math-
ematical manipulations, in matrix form as follows

Ã(P( f ))


xu(1)( f )
xu(2)( f )

...
xu(N−M)( f )

 = B̃(P( f ))


xk(1)( f )
xk(2)( f )

...
xk(M)( f )

 . (5)

The notation Ã(P( f )) and B̃(P( f )) reflects the fact that these two ma-
trices only depend on the prediction filters. Hence, the missing sam-
ples are computed using:

xU ( f ) = [ Ã?(P( f ))Ã(P( f ) ]−1 Ã?(P( f )) B̃(P( f ))xK ( f ), (6)

where xU ( f ) and xK ( f ) indicate the vectors of unknown and know
data samples, respectively. In addition, Ã? stands for the transpose and
complex conjugate of Ã.

TESTS

Synthetic example

In order to examine the performance of the MSAR reconstruction tech-
nique we construct a synthetic data example. The data consist of three
linear events. Two of them are severely aliased. In addition we have
randomly removed 60% of the traces. Figures 1a and 1b show the orig-
inal complete data and the data with missing traces, respectively. The
data with missing traces were reconstructed using the MWNI method
for normalized frequencies in the range 0.035 to 0.5. The result is por-
trayed in Figure 1c. In addition, we have used MWNI to reconstruct
only the low frequency portion of the data from normalized frequen-
cies in the range 0.035 to 0.075. The remaining frequency components
were reconstructed with the MSAR technique (0.075 to 0.5), the final
result is provided in Figure 1d. Both methods were capable of recon-
structing the data. However, the high frequencies were better restored
via the combined application of MWNI and MSAR. This is empha-
sized by Figures 2 where we show the f-k panels of the data portrayed
in Figure 1. In particular, one observes that all the high frequency
artifacts generated by MWNI (Figure 2b) were attenuated (Figure 2d).
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Figure 1: Synthetic example in t-x domain. a) Original data. b) The
data with missing traces. c) Reconstructed section using MWNI. d)
Reconstructed section using MWNI plus MSAR where MWNI was
used to reconstruct data in the normalized frequency band 0.035−
0.075, the remaining part of the band (0.075−0.5) was reconstructed
via MSAR.
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Figure 2: The f-k representation of Figure 1. a) Original data. b)
Data with missing traces. c) Reconstructed data via MWNI. d) Recon-
structed data via MWNI and MSAR.

Figure 3: The number of prediction filters contributing to each fre-
quency components in the example in Figure 1d. The average filter for
any given frequency is used in the reconstruction stage of the algorithm
(equation (6)).

Figure 3 shows the number of prediction filter extracted for each fre-
quency using the MSAR method. Due to lack of information, the
very low frequencies were excluded from the reconstruction. Pre-
diction filters for the low frequency end of the data could have been
estimated by extrapolation of prediction filters as suggested in Spitz
(1991, Appendix B).

Real data example

In order to test the performance of the MSAR reconstruction on a real
data set, we apply the technique to the reconstruction of a near off-
set section from a marine data set from the Gulf of Mexico. Events
arising from diffractions on a salt body make the reconstruction diffi-
cult for the MWNI method. About 40 % of the traces were removed
from the original section (Figure 4a) to simulate a section with miss-
ing traces (Figure 4b). The section of missing traces is reconstructed
using MWNI (Figure 4c) and MWNI (low frequencies) plus MSAR
(high frequencies) (Figure 4d). From a comparison of these figures
it is easy to see that the combined application of MWNI and MSAR
produce a result where the steeply dipping events are better preserved
during reconstruction.
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Figure 4: Reconstruction of a near offset section. a) Original section.
b) Section with missing traces. c) Reconstructed section using MWNI.
d) Reconstructed section using MSAR.

CONCLUSIONS

A method for spatial reconstruction of high frequency data compo-
nents was introduced. The method involves the cooperative applica-
tion of a Fourier-based technique (MWNI) to reconstruct the nona-
liased part of the data and a Multi-Step Autoregressive (MSAR) al-
gorithm to reconstruct the high frequency and potentially aliased part
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of the data. The MSAR algorithm relies on extracting information
from low frequencies (reconstructed via MWNI) to reconstruct high
frequencies. Since the prediction filter of a given high frequency can
be computed from more than one reconstructed low frequency, more
than one prediction filter can be extracted for a given high frequency.
In this case, an average of prediction filters is used to reconstruct the
data.

The results of synthetic data reconstruction, and also the real data ex-
ample show that MSAR is capable of eliminating high frequencies
artifacts often encountered when MWNI is used to reconstruct the
complete seismic band. The proposed methodology can be applied
to regularly sampled sections as well, and used for data interpolation.

Modifying MSAR for multi-dimensional data reconstruction is straight-
forward. In higher dimensions, the reconstruction of low frequencies
using MWNI should be more stable, and as a result the prediction
filters can be calculated with high precision, leading to a better recon-
struction of high frequencies. Wang (2002) introduced a way to use
2D AR operators to interpolate the regularly sampled data in the f-x-y
domain. The same style of AR operators can be used to extend the
MSAR method to the 2D case.
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APPENDIX A

MINIMUM WEIGHTED NORM INTERPOLATION (MWNI)

Interpolation of band-limited data with missing samples can be sum-
marized in the following inversion scheme:

Minimize ‖x‖2
W Subject to Gx = y (A-1)

where ‖.‖2
W indicates a specific weighted norm and G is the sampling

matrix which maps all data samples to available samples. Its transpose,
GT , fills the position of missing samples with zeros. A regularization
norm can be selected in the wave-number domain as follows:

‖x‖2
W = ∑

k∈K

X∗
k Xk

W 2
k

. (A-2)

Here, Xk indicates the coefficients of the Fourier transform of the vec-
tor of spatial data x. The values of Wk determine the type of inter-
polation. For Band-limited Minimum Weighted Norm Interpolation a
diagonal matrix is defined as:

ϒk =
{

W 2
k k ∈ K

0 k /∈ K
, (A-3)

where K indicates the region of support of the Fourier transfrom. The
pseudoinverse of ϒ is defined as:

ϒ
†
k =

{
W−2

k k ∈ K
0 k /∈ K

(A-4)

For Band-limited Minimum Norm Interpolation, the values of Wk are
equal to one, while for Minimum Weighted Norm Interpolation, their

values must be iteratively updated to find an optimal reconstruction.
The minimizer of the cost function (A-1) is given by

x̂ = FH
ϒFGT (GFH

ϒFGT +αI)−1y (A-5)

where F is the Fourier matrix, α is trade-off parameter, I is the identity
matrix, while T and H stand for transpose and Hermitian operators,
respectively. For further details see Liu (2004) and Liu and Sacchi
(2004).

APPENDIX B

MULTI-STEP AUTOREGRESSIVE OPERATOR

In this appendix we provide a proof for the MSAR theory. Interested
readers can find further details about prediction filters and their prop-
erties in Spitz (1991). A seismic section with linear events can be
represented in the f-x domain as:

S(m∆x,n∆ f ) =
L

∑
k=1

Ake−i2π(n∆ f )(m∆x).pk , (B-1)

where ∆ f and ∆x are frequency and spatial sampling intervals, respec-
tively. In addition, pk and Ak are the slope and amplitude of each linear
event, respectively. This means that each linear event, for a monochro-
matic frequency component f , can be represented as complex har-
monic in the f-x domain. Now consider the case with ∆x′ = α∆x and
∆ f ′ = ∆ f

α
. In this case it is easy to show that

S(m∆x′,n∆ f ′) = S(mα∆x,n
∆ f
α

) (B-2)

In addition, one can show that a superposition of L harmonics can be
represented by an autoregressive (AR) model of the form:

S(m∆x,n∆ f ) =
L

∑
j=1

P( j,n∆ f )S((m− j)∆x,n∆ f ) (B-3)

Similarly if we use ∆ f ′ and ∆x′, we obtain:

S(m∆x′,n∆ f ′) =
L

∑
j=1

P′( j,n
∆ f
α

)S((m− j)α∆x,n
∆ f
α

). (B-4)

A comparison of expressions (B-2), (B-5) and (B-4) leads to the fol-
lowing expression

P′( j,n
∆ f
α

) = P( j,n∆ f ), j = 1,2, . . . ,L. (B-5)

which is the basis for the MSAR reconstruction method.

It can also be shown that there exit predictability properties for each
component of the prediction filter on the frequency axis. This means
that if the prediction filters are known for some frequencies, one can
find the prediction filter for other frequencies by applying prediction
operators to the prediction filter components. More succinctly, one can
find the prediction filters of prediction filters. For further details see
Spitz (1991, Appendix B).
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