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SUMMARY

This paper illustrates an inversion scheme for separating si-

multaneous sources. The proposed algorithm assumes that

an ideal 3D common receiver gather can be represented via

a low rank matrix in the frequency-space domain. We propose

a dual-space algorithm that minimizes the misfit between the

observed blended data and predicted blended data in t − x− y
subject to a nuclear norm constraint that is applied to the data

in the ω − x− y domain. The algorithm is illustrated with a

synthetic 3D vertical seismic profile (VSP) data set.

INTRODUCTION

Simultaneous source acquisition, or blended acquisition, is im-

plemented by firing several sources in a short period of time.

The responses are recorded by a set of receivers that contain

a considerable amount of contamination produced by overlap-

ping sources. The method of blended acquisition permits to

save acquisition costs at the expense of introducing extra pro-

cessing steps to unmix the recorded data.

In marine data acquisition, blending techniques are often based

on the randomization of time delays among air guns. The

key is to make interferences appear random in common re-

ceiver gathers (Stefani et al., 2007; Hampson et al., 2008) and

therefore, treat the problem via denoising methods. Coherent

pass operators such as f − k filters, median filters (Huo et al.,

2009), f − x SSA filter (Maraschini et al., 2012) and predic-

tion subtraction techniques (Spitz et al., 2011; Mahdad et al.,

2011) have been adopted to annihilate the interferences. The

unblended data can also be estimated by sparsity promoting

inversion techniques that operate in different domains (Abma

et al., 2010; Moore, 2010; Mansour et al., 2012).

In a previous article (Cheng and Sacchi, 2013), we proposed

a simultaneous source separation algorithm that is based on a

rank-reduction technique. In particular, we developed rank-

reduction schemes that operates on Hankel matrices that are

formed from spatial data in the f − x domain. A projection

operator was utilized to recover the ideal deblended data that

was assumed to be low-rank when embedded in a Hankel ma-

trix. Recent work in the field of matrix completion expands

methodologies for reduced-rank filtering by introducing algo-

rithms that minimize the nuclear norm (sum of singular val-

ues) of a matrix (Fazel, 2002; Candes and Recht, 2009; Cai

et al., 2010; Ma et al., 2011). Nuclear norm minimization was

also adopted by Kreimer et al. (2013) to reconstruct 5D vol-

umes. However, Kreimer et al. (2013) applied nuclear norm

minimization on tensors rather than matrices.

In this paper, we replace the rank constraint utilized in Cheng

and Sacchi (2013) by a regularization term based on nuclear

norm. We also discussed a dual domain algorithm where de-

blending is carried out in the time domain with rank constraints

that are applied to data in the frequency domain. The nuclear

norm minimization problem can be solved via the classic gra-

dient descent method in conjunction with a rank projection op-

erator that is implemented via soft singular value thresholding

(Cai et al., 2010). We apply our technique to a synthetic 3D

VSP data set.

THEORY

We will consider a regular distribution of sources in x−y (Fig-

ure (1)). The data associated to sources in the spatial positions

xl ,yl is designated by d(t,xl ,yl). We assume a total number of

Ns sources.The blended data are represented as follows

b(t) =
�

l∈S
d(t − τl ,xl ,yl), l = 1 : Ns (1)

the latter can be written in operator form as follows

b = Γd (2)

where b is the blended data collected by one receiver and d in-

dicates desired unblended data in the time domain. The blend-

ing operator is represented by Γ. We will remind the reader

that the desired data d can be written in term of its Fourier

transform as follows

d(t,xl ,yl) =

�
D(ω,xl ,yl)eiωt dω, l = 1 : Ns . (3)

If we consider a regular distribution of sources in the x − y
plane, one can express D(ω,xl ,yl) in terms of a matrix D(ω)
of size NSx ×NSy, where the total number of sources is given

by NS = NSx ×NSy. We will assume that the matrix D(ω) is

low-rank and therefore, we will pose deblending as a low-rank

matrix completion problem. The deblended data are estimated

by minimizing the following cost function

J = �b−Γd|2
2
+µ

�

ω
�D(ω)�∗ . (4)

In the above notation �D(ω)�∗ is the nuclear norm of the ma-

trix D(ω) which is given by the following expression

�D(ω)�∗ =
�

i
Si(ω)

where Sk(ω) indicates the ith singular value of D(ω). The

singular values are positive. Consequently, to minimize the

nuclear norm is equivalent to minimize the l1 norm of the sin-

gular values. By minimizing the nuclear norm, one attempts to

sparsify the spectrum of singular values.

Deblending via nuclear norm minimization
The classic gradient descent algorithm followed by a low-rank
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projection operator (Cai et al., 2010; Ma et al., 2011) is used
to minimize the cost function of our problem

x = dk−1 − τ Γ∗(Γdk−1 −b)
dk = Pτµ [x]

(5)

where τ is the step size of the gradient descent algorithm. We
remind the reader that dk and, therefore x are deblended data at
iteration k in the t−x−y domain. However, the rank-reduction
constraint Pτµ must be applied in the ω −x−y domain. Con-
sequently, we first transform the data x in t − x − y domain
to X(ω) in f − x − y domain. Then, for each temporal fre-
quency ω , we run rank reduction via singular value soft thresh-
olding. The latter is equivalent to compute the singular value
decomposition (SVD) of X(ω) and then, reconstruct the data
with a new set of singular values that are given by Ŝk(ω) =
max[Sk(ω)− τµ,0]. In other words, if we denote U(ω) and
V(ω) the matrices of singular vectors of X(ω), the approxi-
mated low-rank matrix is given by X̂(ω) = U(ω)Ŝ(ω)V∗(ω).
Ŝ(ω) is the diagonal matrix of singular values after soft thresh-
olding. To continue with the algorithm, the rank-reduced data
in the ω −x−y domain, X̂(ω), is transformed back to the time
domain to obtain a new estimator of the deblended data dk.
The proposed gradient descent algorithm operates in time do-
main. However, the rank constraints are applied in the ω −x−
y domain.

The algorithm is initialized with the pseudo-deblended data
Γ∗b. Convergence is guaranteed by adopting a step size, τ <
2/σmax, where σmax is the maximum eigenvalue of the opera-
tor Γ∗Γ (Ma et al., 2011). The proposed method adopts non-
summable diminishing steps that decrease according to 1/

√
k

(Boyd and Mutapcic, 2007). At early iterations, the projec-
tion operator applies harsh rank-reduction filters to eliminate
strong crosstalk. As iterations progress, we gradually relax
the threshold to allow modeling details that require a repre-
sentation in terms of a larger number of singular values. This
is analogous to setting a threshold schedule in projection-onto-
convex sets regularization and deblending methods (Abma et al.,
2010). The procedure is provided in Algorithm 1 and Algo-
rithm 2.

Algorithm 1 Dual Domain Minimum Nuclear Norm Deblend-
ing Algorithm

Inputs:
Blending operator Γ and its adjoint Γ∗

Observed blended trace b
Trade-off parameter µ
Stopping criterion ε
Initial step size τ0

Initialize:
d0 = Γ∗b; k = 1;

repeat
τ = τ0/

√
k

x = dk−1 − τΓ∗(Γdk−1 −b)
dk = Pτµ [x] (See Algorithm 2)
k = k+1

until �b−Γdk�2
2 < ε

d = dk

Algorithm 2 Projection operator Pα [x]
Initialize:

X(ω)← x (transform to frequency domain)
for ω = ωmin : ωmax do

[U(ω),S(ω),V(ω)] = svd[X(ω)]
Ŝl,l(ω) = max[Sl,l(ω)−α,0]
X̂(ω) = U(ω)Ŝ(ω)V∗(ω)

end for
dk ← X̂(ω) (transform back to time)

EXAMPLE

We test the proposed algorithm with a synthetic example sim-
ulated from the zz component of a 3D-9C synthetic VSP data
set. The geometry of sources and receivers are portrayed in
Figure (1). The dataset contains a regular grid of 205 × 205
sources. The x and y source intervals are 16.67m. A group of
31 detectors are deployed downhole right in the center from
a depth of 1350 m to 1850 m. In our simultaneous source
acquisition, we assume a rather unrealistic scheme with one
vessel moving and firing at short time intervals. A more real-
istic scenario requires more than one vessel firing at random
time intervals. The time interval between two adjacent sources
follows a uniform distribution. Figure (2) displays the total
acquisition time for a regular survey in conjunction with the
blended survey modeled in our example. The acquisition time
was compressed to 50% of the conventional acquisition.
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Figure 1: Distribution of sources and receivers. Each red point
represents a group of 10 sources and each blue triangle repre-
sents 5 receivers.

We apply the proposed algorithm to deblend the synthetic VSP
data. Figure (3) shows the distribution of singular values for
one ideal (pre-blending) common receiver gather at 25Hz (red),
singular values at the same frequency for the pseudo-deblended
gather (blue) and the deblended common receiver gather (green)
also at 25 Hz. It is clear that the incoherent noise in the pseudo-
deblended data increased the rank of the original data. The
proposed algorithm has eliminated the noise and re-established
a distribution of singular values similar to the distribution of
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singular values of the ideal data. Figure (4) shows a time slice
of the results after 25 iterations. Figure (5) shows the deblend-
ing result for the center shot and Figure (6) shows the result
for the center receiver. The interferences from simultaneously
fired shots are effectively suppressed. We improve the signal to
noise ratio of the pseudo-deblended dataset from 0 dB to 27.8
dB. As a result, the unblended solution becomes comparable
with the true shot record.

CONCLUSION

This article proposes a deblending algorithm based on nuclear
norm regularization. The method operates directly on multidi-
mensional data and relies on the coherency of the desired sig-
nal in common receiver gathers. The steepest descent method
has been utilized in conjunction with a soft thresholding op-
erator applied to the singular values to enforce solutions with
minimal nuclear norm. Through tests with synthetic examples,
we show that the interferences can be effectively suppressed by
the proposed method. The proposed method can be further ap-
plied to the joint reconstruction (interpolation) and separation
of simultaneous source data.

In the current algorithm, a rank constraint is applied to ma-
trices in the frequency domain. We are also investigating ex-
panding the algorithm to tensors (Kreimer et al., 2013) and,
therefore, allow to deblend multiple receivers at one time.
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Figure 2: Distribution of firing time of the first 100 shots for
conventional (blue) and simultaneous source acquisition (red).
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Figure 3: Distribution of the first 80 singular values in loga-
rithmic scale for the center common receiver gathers at 25 Hz:
the distribution of singular values for one ideal (pre-blending)
common receiver gather (red), the pseudo-deblended gather
(blue) and the deblended common receiver gather (green).
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Figure 4: Dual domain minimum nuclear norm deblending results. (a) The real unblended time slice at 1.2 s. (b) Pseudo-deblended
time slice. (c) Deblended time slice after after 25 iterations of the proposed algorithm. (d) Differences between (a) and (c). In this
example, the signal-to-noise ratio after separation is 27.78dB.
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Figure 5: Results of separation via dual domain minimum nuclear norm deblending algorithm: (a) The real unblended common
shot gather (center shot). (b) Pseudo-deblended shot record. (c) Deblended shot record after 25 iterations. (d) Differences between
(a) and (c).
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Figure 6: Results of separation via dual domain minimum nuclear norm deblending algorithm: (a) The real unblended common
receiver gather (center receiver). (b) Pseudo-deblended common receiver gather. (c) Deblended common receiver gather after 25
iterations. (d) Differences between (a) and (c).
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