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SUMMARY

Acquisition design plays a significant role in seismic explo-
ration and data processing. An optimized seismic acquisition
design will require fewer resources and therefore, it can re-
duce the total cost of seismic exploration. Finding the opti-
mal locations of sources and receivers in a seismic survey is a
long-standing problem. Random sampling can recover high-
bandwidth of seismic data using fewer number of sensors,
however, it might not be viable to implement in real acquisi-
tion scenarios. In this paper, we have proposed a technique to
determine the optimal distribution of sources and receivers for
an orthogonal 3D seismic survey while satisfying geophysical,
operational, and reconstructional constraints for a real acqui-
sition design. The proposed sampling method adopts the con-
cept from the field of compressive sensing (CS) that connect
acquisition design and data reconstruction. During 5D recon-
struction, seismic data are generally transformed from source-
receiver domain into common midpoint (CMP)-offset domain
after binning. Therefore, to implement CS successfully, we
require to minimize the mutual coherency of every data patch
in CMP-offset domain while satisfying other geophysical and
operational constraints in the source-receiver domain. This
is a complex non-linear problem and hence, we have imple-
mented simulated annealing (SA) with Augmented Lagrangian
method to solve this problem (Powell (1969); Belegundu and
Arora (1984)).

INTRODUCTION

Different geophysical and operational parameters such as bin
size, maximum offset, largest minimum offset (LMOS), field
geometry, and available resources (i.e., sources and receivers)
have significant impact in seismic acquisition design (Cordsen
et al., 2000). In conventional seismic data acquisition design,
the field geometry is generally assumed dense and orthogo-
nal not only to avoid spatial aliasing artifacts but also to obtain
high-fidelity and high-resolution seismic data (Kerekes, 1998).
Nevertheless, this classical acquisition technique drastically
increase the total cost of the survey and impose adverse impact
on environment both in land and marine scenarios. A num-
ber of methodologies have already been developed to solve
this optimization problem. Liner et al. (1999) introduced a
method which optimize the geophysical parameters of 3D ac-
quisition design. Later on, this method has been modified and
improved by Morrice DJ (2001) and Vermeer (2003) where
they included economical and operational constraints in that
cost function. However, in this paper, we have proposed to de-
sign a sparse acquisition with reduced number of sources and
receivers which entails to satisfy not only geophysical and op-
erational constraints but also constraints related to seismic data
reconstruction. Several methods have been proposed to opti-
mize survey design based on data reconstruction and imaging.

These methods include optimizing signal to noise ratio (SNR)
of the reconstructed data (Mosher et al., 2012), forward mod-
elling of seismic wave-fields and imaging (Zhu et al., 2012)
etc.

Compressive Sensing (CS) is a mathematical tool which per-
mits a compressible signal to be recovered exactly from a set
of measurements that are far fewer than the Nyquist sampling
rate (Donoho, 2006). A fundamental requirement to imple-
ment this technique in geophysics is to having a sparse repre-
sentation of seismic data in some domain (Candes and Walkin,
2008). Fortunately, plenty of algorithms (e.g., Zwartjes and
Sacchi (2007); Hennenfent and Herrmann (2008) etc.) have
been developed that utilize the sparsity characteristics of seis-
mic data that makes easier to implement CS in seismic survey
design. Regular decimation of measurements creates alias-
ing in spatial domain of the original signal that makes sparse-
inversion failed. In contrast, random-like sampling in a grid or
patch can distribute noise-like incoherent energy in frequency-
wavenumber domain which is favourable for available data re-
construction methods (Trad, 2009). Based on recent CS results
(Elad, 2007), a sampling scheme can be optimally designed
whereby the accuracy of reconstruction can be improved or
the number of required samples can be reduced. Several au-
thors (e.g., Elad (2007); Tang et al. (2008)) defined mutual co-
herency as a criterion for the accuracy of reconstruction. Hen-
nenfent and Herrmann (2008) proposed jitter under-sampling
technique in receiver domain for 2D acquisition design that can
control gap size up to a certain extent, however, unable to sat-
isfy logistic constraints. In this paper, we optimized 3D survey
design which satisfies geophysical and operation constraints in
source-receiver domain and simultaneously, minimize mutual
coherency of 5D patches in CMP-offset domain for the better-
ment of data reconstruction.

THEORY

According to the theory of compressive sensing, seismic data
x can be reconstructed from undersampled observed data y via
exploiting any sparsity-promoting non-linear convex optimiza-
tion algorithm (Elad (2007); Donoho (2006)). Mathematically,
this under-determined system of equations can be expressed as
follows

y = Rx+ ε (1)
= RSα + ε, (2)

where, ε is the measurement noise, R, the sampling opera-
tor that maps from the original data to observed data, S is a
transformation basis or dictionary such as Fourier, Wavelets,
Curvelet, or Wave-atom, and α is the vector of coefficients that
represents x as a linear combination of S. Undersampled data
can be reconstructed successfully using CS theory if one can
satisfy two constraints: sparsity and incoherence. The data x
is said to be sparse in dictionary S if a very few coefficients
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Sparse acquisition

of α are non-zero. Fortunately, seismic data can be repre-
sented as sparse in Fourier and other domain (Sacchi (2009);
Hennenfent and Herrmann (2008)). Second condition in CS
theory is that the coherence between sampling matrix (R) and
transformation dictionary (S) should be as small as possible.
Mutual coherency is a way to verify this constraint. The mu-
tual coherency of A (i.e., RS) can be represented by using the
Gramian matrix which is expressed using equation (3).

G = AHA, (3)
= SHRTRS. (4)

In this paper, we consider S as a Fourier operator applied in 4D
spatial directions (i.e., inline CMP, crossline CMP, and offset
in inline and crossline directions) in CMP-offset (Ωy) domain.
Therefore, we have to deduce an optimized sampling in the Ωy
grid so that the mutual coherency becomes very small. To min-
imize the mutual coherency of A, the Gramian matrix needs to
be close to an identity matrix.

Seismic data are recorded in source-receiver domain during
3D seismic survey. However, prior to 5D data reconstruction,
seismic data is transformed from source-receiver domain (Ωx)
into CMP-offset domain (Ωy). Subsequently, data are binned
in CMP-offset domain using nearest neighbour interpolation
which is a non-invertible process. The whole process can be
represented as

Ωy = BG Ωx, (5)

where G is an operator which transform source-receiver do-
main to CMP-offset domain, and B is the binning operator
which applies to CMP-offset domain to obtain binned data.
Consider now that one would like to reconstruct 5D data in Ωy
grid and hence divide the whole grid into small 5D patches and
reconstruct each patch individually. Therefore, it will require
to optimize the mutual coherency of patches while satisfying
other acquisition design parameters in Ωx domain. The series
of mutual coherency of 5D patches can be defined as {µy}
and µyi is the mutual coherency of ith patch. To optimize the
mutual coherency of every patch, we minimize both the aver-
age mutual coherency and the quantity of critical patches (ρµ )
where mutual coherency is very high. ρµ can be computed ap-
plying simple statistical analysis of {µy} . Mathematically, it
can be expressed as follows:

µstd
n =

µyi −µyave
σµy

µ̂std
n =µstd

n −Var(µstd
n )

ρµ =
Γ(µ̂std

n )

N

(6)

where σµy , µyave, and µstd
n are the standard deviation, aver-

age mutual coherency, and normalized standard deviation of
the series {µy} respectively, Γ operator counts the number of
patches having higher mutual coherency than the variance of
normalized standard deviation (µstd

n ), and N represents the to-
tal number of patches. The desired value of fraction of crit-
ical patches (ρ̄µ ) is zero. In this paper, we also satisfy other
reconstructional parameters such as grid efficiency (ηy) and
grid density (gy). Grid efficiency can be defined as the ratio of

the number of bins that are populated in (Ωy) domain and the
number of traces generated in (Ωx) domain. Our target value
for grid efficiency (η̄y) is 1.0. On the other hand, grid density
(gy) is the ratio of the number of populated bins to the total
number of bins in (Ωy) domain. Based on CS theory, sparsity-
promoting algorithm can reconstruct a volume that is popu-
lated by 10-15% of traces having set that mutual coherency is
smaller and sparsity is higher. Likewise mutual coherency, we
optimize grid density for every patch in (Ωy) domain via ex-
ploiting average grid density (gyave) and minimizing the frac-
tion of critical patches where grid density (ρg) is very low. The
target values of ḡyave and ρ̄g are 0.15 and 0 respectively.

Regarding geophysical and operational constraints, we opti-
mize bin size in crossline and inline directions, maximum off-
set, largest minimum offset (LMOS), and available resources
during operation. Bin size is a crucial parameter which dictates
source (SI) and receiver (RI) interval and itself depends on
three parameters: minimum target size, maximum unaliased
frequency, and lateral resolution based on the first fresnel zone
after migration. Source (SLI) and receiver (RLI) line interval is
dictated by LMOS which is computed based on the shallowest
target horizon of the subsurface (i.e., 2 × depth of shallow-
est horizon× tan(350)). The desired value of maximum offset
depends on the depth of the deepest horizon that needs to be
illuminated. It is also required for AVO analysis, and DMO for
velocity determination (Cordsen et al., 2000).

In this paper, we consider bin size is fixed as target value and
we have enough available resources for the whole survey de-
sign. Therefore, putting it all together, we now have a prob-
lem where we need to minimize a cost function subject to con-
straints. Here one wants to know the source and receiver dis-
tribution in Ωx not only to ensure the proper distribution in Ωy
but also to meet the constraints in the survey domain. Mathe-
matically, the cost function can be written as follows:

argmin
Ωx

µyave(Ωx)

subject to
ηy − η̄y ≈ 0
ρµ − ρ̄µ ≈ 0
ρg − ρ̄g ≈ 0
Xmax − X̄max ≥ 0
Xmin − X̄min ≤ 0
gyave − ḡyave ≥ 0

(7)

where Xmax, and Xmin represent maximum offset, and largest
minimum offset respectively, and X̄max, and X̄min are the target
values of maximum offset, and largest minimum offset respec-
tively. To proceed, we have started with an orthogonal source
and receiver geometry with regular interval. Initially, (SI, RI)
and (SLI, RLI) are computed based on bin size and shallow-
est horizon of subsurface respectively. Subsequently, we deci-
mate sources and receivers, and start perturbation (Ωx +∆Ωx)
in such a way so that it can control the maximum gap and
represents the feasible set of shots and receivers distribution.
To minimize the cost function in equation (7), we applied hy-
brid semi-exhaustive search method using simulated annealing
(SA) with Augmented Lagrangian method Wah et al. (2007).

SEG New Orleans Annual Meeting Page  255

DOI  http://dx.doi.org/10.1190/segam2015-5931123.1© 2015 SEG

D
ow

nl
oa

de
d 

09
/2

8/
15

 to
 1

42
.2

44
.1

94
.8

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Sparse acquisition

Each constraint in the cost function is identified as hard or soft.
Hard constraint needs to be satisfied precisely and a soft con-
straint only requires to be close to the target value. Xmin, Xmax
are soft constraints, however, Ωx +∆Ωx is the hard constraints.
Regarding reconstructional parameters gyave, ηy, ρµ , and ρg
are soft constraints which ensure quality data reconstruction
for each 5D patch. The above constrained optimization prob-
lem is transformed into unconstrained optimization function
using method of multipliers technique. This method can ac-
commodate both equality and inequality constraints (Powell
(1969); Hestenes (1969)). These constraints are normalized to
equalize the deviation from target values, to avoid numerical
instability and to improve the optimization performance.

argmin
Ωx

J(Ωx ,σ ,θ) = µyave(Ωx)+
1
2

(
σ1
(
(ρµ − ρ̄µ )+θ1

)2 +σ2
(
(ρg − ρ̄g)+θ2

)2

+σ3

( η̄y −ηy
η̄y

+θ3

)2
+σ4

[(
x̄min − xmin

x̄min
+θ4

)−
]2

+σ5

[(
x̄max − xmax

x̄max
+θ5

)+
]2

+σ6

[(
ḡyave −gyave

ḡyave
+θ6

)+
]2


 ,

(8)

argmin
Ωx

J(Ωx,Σ,θ) = µyave(Ωx)+
1
2
(c+θ)T Σ(c+θ)

(9)
where c is the vector consists of normalized constraints, σi and
θi are parameters associated with ith constraint (i= 1,2, · · · ,6),
and

(a)+ = max(a,0),

(a)− = min(a,0)
(10)

are used for inequality constraints. Σ is a diagonal matrix
where σi’s are the diagonal elements. External and internal
iterations have been applied to solve the above cost function.
Internal iterations are used to optimize source-receiver distri-
bution (Ωx) via exploiting SA algorithm and in external itera-
tions, Σ and θ are changed to minimize the unconstrained cost
function J(Ωx,Σ,θ). The parameter θ has been introduced by
Powell (1969) to eliminate the requirement of Σ to reach infin-
ity. At each external iteration, θ is increased for the violated
constraints to force them into satisfaction. However, vector Σ
is increased to speed up the rate of convergence of the algo-
rithm.

RESULTS

A three layered simple subsurface model has been generated
to run the simulation to optimize acquisition design. The sur-
vey size is 1.2 Km × 1.2 Km and the depth of the model is 1
Km. The maximum, average, and minimum velocities of the
model are 3000 (m/s), 2400 (m/s), and 1750 (m/s) respectively.
The maximum and dominant frequencies of source is chosen
as 20 Hz and 40 Hz respectively. The depth of the shallowest
horizon of the model to be illuminated is 250m. Based on all
the parameters, the targeted values of bin size, maximum off-
set, and LMOS is fixed as 10 m both in inline and crossline
directions, 1.4 Km, and 340 m respectively and determine ini-
tial source and receiver interval as 20 m and source and re-
ceiver line interval as 80 m and 40 m respectively. Therefore,

the complete survey requires 15 and 30 source and receiver
lines respectively, and each line consists of 60 stations in it.
Figure 1 represents complete orthogonal geometry of source-
receiver distribution. Before running simulation, we regularly
decimated 50% of source and receiver lines and then start per-
turbing source and receiver lines both in inline and crossline
directions respectively. We consider that every source is lis-
tened by every receiver of the acquisition geometry. Figure 2
shows the source-receiver distribution after optimization.

Figure 3 shows the convergence of the Augmented Lagrangian
algorithm. One can see from this figure that fitness value is
gradually decreasing with the number of external iterations of
the algorithm. In each external iteration, the cost function is
minimized using SA method. Figure 4 depicts the convergence
of average mutual coherency of all patches. The series of mu-
tual coherency obtained at the final iteration for 36 4D spatial
patches has been shown in Figure 5. We can see from this fig-
ure that the mutual coherency for every patch of CMP-offset
domain has been minimized. Grid efficiency has also been im-
proved from 0.77 to 0.84 which is close to desired value (1.0)
and average grid density of all patches is 0.14, close to 0.15.
Maximum offset of the optimized acquisition geometry is 1.6
Km which is higher than desired value (1.4 Km). Finally, the
largest minimum offset of the optimized source-receiver do-
main is 268.348 m which is smaller than 340 m.

CONCLUSIONS

In this paper, we have proposed a technique to determine the
optimal distribution of sources and receivers for an orthogonal
3D seismic survey while satisfying geophysical, operational,
and reconstructional constraints of real acquisition design. We
have optimized mutual coherency, grid density, and grid effi-
ciency to ensure better data reconstruction quality. We also
considered maximum and largest minimum offset constraints
to ensure the required illumination of the subsurface. Reg-
ularly decimated sources and receivers pattern has been per-
turbed in a predefined nominal grid via satisfying maximum
gap constraints to ensure the viability to implement in real ac-
quisition scenarios. The numerical results show that mutual
coherency and fitness values have been minimized during the
course of SA with Augmented Lagrangian algorithm. Further
extension of this research will be considering fold distribution
in the CMP-offset domain, binning error, swath shooting strat-
egy when limited resources are available during acquisition,
and comparing with other types of sampling distribution in the
source-receiver domain.
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Sparse acquisition

Figure 1: Fully sampled source-receiver distribution.

Figure 2: Optimized source-receiver distribution after decima-
tion.
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Figure 4: Convergence of average mutual coherency.
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