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SUMMARY

This paper illustrates an inversion approach based on matrix
rank reduction that separates simultaneous source data. The
algorithm operates on each common receiver gather of a mul-
tidimensional data set. We propose to minimize the misfit be-
tween the observed data and blended predicted data subject to a
low-rank constraint that is applied to the data in the frequency-
space domain. The low rank constraint can be implemented via
the classical truncated Singular Valued Decomposition (tSVD)
or via a new randomized QR decomposition (rQRd) method.
Compared to the tSVD, rQRd significantly improves the com-
putational efficiency of the method. In addition, the rQRd al-
gorithm is less stringent on the selection of the rank of the
data. This is important as we often have no precise knowledge
of the optimal rank that is required to represent the data. We
adopt a synthetic 3D VSP data set to test the performance of
the proposed deblending algorithm. Through tests under dif-
ferent survey time ratios, we show that the proposed algorithm
can effectively eliminate interferences caused by simultaneous
shooting.

INTRODUCTION

Simultaneous source acquisition, or blended acquisition, has
been attracting a great deal of attention because of the eco-
nomic potential it brings to seismic data acquisition (Beasley
et al., 1998; Berkhout, 2008). The technique aims at improv-
ing the acquisition efficiency by allowing continuous record-
ing of overlapping shots. In simultaneous source acquisition,
instead of firing one shot each time and waiting for its seis-
mic response, several shots are fired with at close time inter-
vals. In land acquisition, different phase-encoding schemes
have been utilized to distinguish the signal from different Vi-
broseis (Bagaini, 2006). In marine acquisition, simultaneous
shooting relies on the randomization of the firing time delays.
This is because random time delays would preserve the co-
herency of desired signal while perturbing the interference in
common receiver, offset and midpoint domains (Stefani et al.,
2007). The latter is important as it allows separation of si-
multaneous source data via a coherent-pass constraint (Abma
et al., 2010).

Various techniques have been developed for deblending simul-
taneous source data. Methods that exploit the low-rank prop-
erty of the unblended data are of special interest to this paper.
Maraschini et al. (2012) utilized the SSA low-rank filter, or
equivalently the Cadzow filter, in an iterative manner to sup-
press the incoherent interference in common offset domain.
Cheng and Sacchi (2013) posed deblending as a rank con-
strained inverse problem and solved it via the gradient projec-
tion method. Further developments include relaxing the low-
rank constraint to a nuclear norm constraint that leads to better
properties of convergence (Cheng and Sacchi, 2014; Wason

et al., 2014). One major concern of these rank-reduction based
deblending methods is computational cost. Rapid rank reduc-
tion methods, such as Lanczos bidiagonalization (Gao et al.,
2011) and randomized SVD (Oropeza and Sacchi, 2011) were
applied to seismic data de-noising and reconstruction.

In this article, we develop a fast rank reduction algorithm based
on random projection and QR decomposition. The algorithm
improves the computational efficiency compared to the singu-
lar value decomposition method. We also discussed an itera-
tive rank reduction framework for simultaneous source separa-
tion of 3D common receiver gathers. We tested the proposed
method with a synthetic 3D VSP data set under different sce-
narios where we have varied rank and survey time.

THEORY

Self-simultaneous source acquisition
We provide a brief review of the self-simultaneous shooting,
which is a special case of simultaneous source acquisition (Abma
et al., 2013). One vessel keeps traveling and firing until it cov-
ers the whole survey area. The detectors are ocean bottom
nodes. To save acquisition time, shots are fired with small ran-
dom time delays that introduce interference. The firing time of
the l-th source is defined by

tl = tl�1 + tl =
lX

i=1

ti , (1)

where ti is the time delay for the i-th source. We assume the
source locations can be binned in a regular grid. For a single
receiver, we denote the data associated to sources in the spatial
positions xl ,yl by a 3D tensor or multilinear array D. The
blended data are then represented as follows

b(t) =
X

l2S
D(t � tl ,xl ,yl) . (2)

The blending process shifts each shot record according to the
firing time delay (tl) and superimposes the shot records into a
super shot gather. One can rewrite Equation (2) in its operator
form as follows

b = GD, (3)

where the blending operator is designated by G. Equation (3) is
an underdetermined linear system of equations where the data
collected by one receiver b contain information from multiple
shots. The adjoint operator G⇤ is the pseudo-deblending oper-
ator. The latter entails shifting the time delays back and split-
ting the blended observation to one common receiver gather
(Mahdad et al., 2011). It is equivalent to the minimum norm
solution to the blending system of equation. It can be easily
demonstrated that the minimum norm cannot remove shot in-
terference and therefore, extra constraints are needed for find-
ing the solution of Equation (3).
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Simultaneous source separation

Rank-constrained inversion
We will write the desired unblended seismic data D in terms
of its Fourier transform as follows

D(t,xl ,yl) =

Z
D̃(w,xl ,yl)e

iwt dw , (4)

At a given monochromatic frequency, the spatial data of the
ideal unblended common receiver gather in frequency-space
domain D̃ can be represented via a matrix Dw . Dw is a low-
rank matrix (Trickett, 2003; Cheng and Sacchi, 2014). In si-
multaneous source acquisition, the interference from the blended
shots would increase the rank of the Dw . Therefore, we pro-
pose to minimize the misfit between the blended estimation
and the observed data subjecting to a low-rank constraint that
is applied to the data in frequency-space domain

min J = kb�GDk2
F s.t.

8w : Dw 2 Ck = {Dw : rank(Dw ) k} . (5)

The solution is acquired via the Gradient Projection method
(Cai et al., 2010; Ma et al., 2011). The iterative rank-reduction
deblending framework is summarized in algorithm (1). We
consider to successively update the current estimate Dn in the
opposite direction of the gradient as follows

X = Dn � lG⇤(GDn � b) . (6)

l denotes the step size. A new solution is found by projecting
X to a set of low rank matrices in frequency-space domain

Dn+1 = P[X ] , (7)

where P denotes the projection operator. The algorithm is
initialized with the pseudo-deblended data G⇤b as it contains
exactly the information of the unblended signal.

Algorithm 1 Iterative Rank Reduction Deblending Algorithm

Inputs:
Blending operator G and its adjoint G⇤
Observed blended trace b
Stopping criterion e
Step size l

Initialize:
D0 = G⇤b; n = 0;

repeat
X = dn �lG⇤(GDn �b)
n = n +1
Dn = P[X ] (See Algorithm 2)

until kb�Gdnk2
2 < e

d = dn

Fast low-rank projection via rQRd
The projection operator in equation (7) entails transforming X
to the frequency-space domain. At a given frequency w , we
denote the spatial data of X̃ as Xw . We then perform matrix
rank reduction on Xw and repeat the process for all frequencies
before transforming back to time domain. Instead of imple-
menting matrix rank reduction via the truncated SVD (tSVD),
we propose a simple, fast method named randomized QR de-
composition (rQRd). In tSVD, we keep only the k largest sin-
gular values while setting all other singular values to zero. The

reduced-rank approximation is computed by reconstructing the
matrix with the new set of singular values. In rQRd, we first
project Xw , by a set of p random normalized vectors given by
the matrix WWW:

M
NSx⇥p

= Xw
NSx⇥NSy

WWW
NSy⇥p

, (8)

where NSx and NSy are the total number of shots in x and y
directions, respectively. Owing to the randomness, the vectors
in matrix M are linearly independent. Since the unblended
data are low rank, only a number of p random vectors will
be required to span the full range of the desired signal (Halko
et al., 2011). We compute the orthonormal basis Q with the
economy-size QR decomposition as follows

Q
NSx⇥p

R
p⇥p

= M
NSx⇥p

. (9)

The low rank approximation is then acquired via

X̂w = QQH Xw . (10)

The random projection reduces the size of matrix before ap-
plying QR decomposition as p⌧ NSy. We are able to min-
imize the computations of the procedure by operating on the
reduced-size matrix. The rQRd projection operator is summa-
rized in algorithm (2).

Algorithm 2 Projection operator via rQRd P :

Inputs:
Updated estimation from gradient: X
The rank in RQRD: p

Initialize:
X̃  X (transform to frequency domain)

for w = wmin : wmax do
M = Xw WWW (random projection)
[Q,R] = qr[M]

X̂w = QQHXw

end for
Dn+1 X̂ (transform back to time)
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Figure 1: Processing time of rank reduction versus size of the
matrix in logarithmic scale. The blue curve shows the process-
ing time for the truncated SVD. The red curve corresponds to
the rQRd method. In this example, we choose p equals to 3K
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Simultaneous source separation

Figure (1) shows the comparison of processing time on a test
where we perform matrix rank reduction using tSVD (blue)
and rQRd (red). The rQRd algorithm is about 10 times faster
than the conventional tSVD. As we will discuss later, the rank
in rQRd, p, is a relaxation of the exact rank of a matrix (Chiron
et al., 2014). Unlike tSVD which directly solves for the closest
low-rank approximation of a given matrix, the rQRD does not
constrain the rank as strongly. In rQRd we usually choose a
rank (p) that is larger than the exact rank of the given matrix
(K). The latter leads to good results when the singular values
do not decay dramatically.

EXAMPLE

We use a synthetic 3D vertical seismic profile data set to mimic
the process of simultaneous source acquisition. The data set
contains 205 source lines with 205 sources on each line (O’Brien,
2010). The interval of each source position is 16.67m and the
line spacing is also 16.67m. A total of 31 downhole detec-
tors are deployed from 1350m to 1850m with 16.67m interval.
The sources are blended using the self-simultaneous shooting
technique. Under this scenario, the survey time ratio (STR),
which is defined by the conventional survey time divide by the
blended survey time (Berkhout, 2008), can be measured via

ST R =
t0
t̄
, (11)

where t0 denotes the regular firing time interval for the con-
ventional seismic acquisition and t̄ is the expected time delay
for all the blended shots. For example, if the survey time ra-
tio equals to 10, the expectation of randomly generated time
delays will be 10% of one conventional shot record length. In
other words, we are trying to save 90% of the total acquisition
time of a conventional seismic survey. We measure the quality
of deblending via

QS = 10 log
||Dtrue||22

||Dtrue �DS||22
, (12)

where Dtrue is the true synthetic data from a conventional
common receiver gather and DS stands for the separated com-
mon receiver gather via iterative rank reduction.

We tested the effectiveness of the deblending algorithm in terms
of different selections of rank for both tSVD and rQRd. The
firing time delay is fixed in this experiment (ST R = 10). As is
show in Figure (2), the tSVD method (blue) presents the high-
est deblending quality only when selected rank is very close
to the exact rank of data K. The rQRd method (red), on the
other hand, can achieve reasonable results when the selected
rank is in the range p 2 [1.5K,5K]. The test provides evidence
that rank p in the rQRd algorithm is a relaxation of the desired
rank K. In other words, we may not need accurate informa-
tion about the rank of unblended data to perform the iterative
reduced-rank deblending algorithm.

We also tested the deblending results under different survey
time ratios and the rank p. At a given STR and p, we gener-
ated 50 realizations of firing time delay based on an uniform
distribution. For each realization, we ran the deblending al-
gorithm. If the quality of separation is higher than 20dBs,

we consider the algorithm successfully separated the blended
shots. In Figure (3), the white color means that in all 50 trials,
the algorithm successfully removed the interferences. In con-
trast, the dark area indicates for those combinations of rank
and STR, all the trials failed to improve the data quality factor
to 20dB. The gray area is called the phase transition area in
the field of compressive sensing (Donoho and Tanner, 2009),
where the deblending algorithm has both succeeded and failed
in deblending the data.
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Figure 2: The quality of deblending versus rank K in tSVD
and p for the rQRd. The blue curve shows the results utilizing
the truncated SVD as the low rank projection operator while
the red is the results corresponding to the rQRd method.
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Figure 3: The probability map of simultaneous source sepa-
ration with the proposed deblending method under different
rank and survey time ratio. For small STRs, a broad range of
ranks could be adopted to achieve successful separations. As
the STR grows, we need precise knowledge of the optimum
rank to correctly deblend the data. For this specific model and
acquisition design, the algorithm performs poorly when STR
is greater than 21.

Figure (4) shows the deblending result for the center shot and
Figure (5) shows the result for the receiver at the center of the
survey. The interferences from simultaneously fired shots are
effectively suppressed. We improve the quality factor of the
pseudo-deblended dataset to 32.5 dB. We find that deblending
on 3D common receiver gathers usually lead to better results
compared to 2D deblending methods. This is because by op-
erating on the 3D gathers we introduce one extra degree of
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Simultaneous source separation

randomness with respect to the firing time.

CONCLUTION

We present an iterative rank-reduction algorithm for simulta-
neous source separation. The method operates on 3D common
receiver gathers and relies on the randomization of the firing
time delays. A cost function is defined by the blending sys-
tem and a low-rank constraint. We implement matrix rank re-
duction via randomized QR decomposition. The latter signif-
icantly saves computation time when compared with classical
rank-reduction via truncated SVD. In addition, the randomize
QR decomposition does not require precise knowledge of the
rank of the unknown solution. We tested the effectiveness of
the deblending algorithm with a synthetic 3D VSP data set.
We also tested the performance of the algorithm with different
selections of rank and survey time. The algorithm also permits
to reconstruct missing sources.
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Figure 4: Results of simultaneous source separation in com-
mon shot domain. STR equals to 2. (a) The real unblended
common shot gather. (b) Pseudo-deblended common shot
gather. (c) Deblended common shot gather via the proposed
algorithm. (d) Differences between (a) and (c). In this exam-
ple, the signal-to-noise ratio after separation is 32.5dB.
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Figure 5: Results of simultaneous source separation in com-
mon receiver domain: (a) The real unblended common re-
ceiver gather. (b) Pseudo-deblended common receiver gather.
(c) Deblended common receiver gather via the proposed algo-
rithm. (d) Differences between (a) and (c).
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