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SUMMARY

Multidimensional seismic data reconstruction can be viewed
as a low rank matrix or tensor completion problem. Different
rank-reduction approaches can be employed to perform seis-
mic data interpolation and denoising. For these methods, the
computational cost and reconstruction quality are two impor-
tant aspects that must be carefully considered. In this paper,
we present a new fast and economic tensor completion method
named Parallel Square Matrix Factorization (PSMF). We ap-
ply the algorithm to the ubiquitous 5D seismic data regulariza-
tion problem. 5D reconstruction entails reconstructing a series
4th-order multilinear arrays (tensors) in the frequency domain.
For this purpose we transform the data to the frequency do-
main and 4D spatial volumes in midpoint-offset are reshaped
into matrices. Rank-reduction of these matrices is at the core
of our reconstruction algorithms. We show that properly re-
shaping the data tensor into almost square matrices lead to an
improved tensor completion algorithm. We demonstrate the
effectiveness of the proposed approach via synthetic examples
and by a data set from Western Canadian Sedimentary Basin.

INTRODUCTION

In the frequency-space domain, properly sampled seismic data
can be represented by a low rank matrix or tensor. Decima-
tion of traces and additive noise increase the rank of the ma-
trix or tensor. Hence, matrix and tensor completion methods
which are widely applied in computer vision and recommen-
dation systems (Liu et al., 2013) can be adopted to recover
missing traces and to enhance the SNR of the seismic volume.
Different reduced-rank methods have been adopted for seis-
mic data processing. For instance, Trickett et al. (2010) pro-
posed a matrix rank-reduction method based on Cadzow Fil-
tering (CF) to interpolate missing traces. Similarly, Oropeza
and Sacchi (2011) proposed a Multichannel Singular Spec-
trum Analysis (MSSA) method to reconstruct the 3D data and
adopted a Randomized SVD algorithm to speed up the rank
reduction filter required by their algorithm. Gao et al. (2013)
expanded the MSSA method to reconstruct 4D spatial data and
adopted fast multilevel Toeplitz matrix-vector multiplication
algorithms to improve the computational efficiency of the orig-
inal MSSA algorithm. Kreimer and Sacchi (2012) introduced
a low rank tensor completion method, named High Order SVD
(HOSVD), to reconstruct 5D seismic volumes. Kreimer et al.
(2013) proposed a nuclear norm minimization method which
does not require the provision of a priori rank estimates. The
common place of these methods is that they all reduce the
rank of the tensor via the SVD algorithm or via the Lanczos
bidiagonalization technique. Kumar et al. (2013) proposed a
robust nuclear norm minimization method and adopted itera-

tive low rank matrix factorization as an alternative to the SVD.
Recently, Gao et al. (2015) introduced a fast SVD-free tensor
completion approach, named the Parallel Matrix Factorization
(PMF) method, to reconstruct multidimensional seismic data.
Although the PMF method can significantly improve the com-
putational efficiency of low rank reconstruction methods, it
adopts a tensor unfolding procedure that leads to unbalanced
“long strip” matrices. We will show in this paper that the re-
construction quality and ability of the “long strip” matrix rank
reduction method is not as good as rank reduction method-
ologies applied on a balanced square matrix. We propose a
fast and economic tensor completion method, called Parallel
Square Matrix Factorization (PSMF) to improved the quality
of the reconstruction of seismic tensors. We first reshape the
original tensor of seismic data into balanced square matrices
and perform low rank matrix factorization to recover missing
traces. We use synthetic data sets and a field data to examine
the reconstruction efficacy of the proposed method.

THEORY

Previous studies show that fully sampled seismic data can be
represented via low rank matrices or tensors. The latter is
more obvious in the frequency domain than in time domain.
Furthermore, it has been shown that the singular values of
unfolded tensors decay faster in the midpoint-offset domain
than in the source-receiver domain (Kreimer, 2013; Aleksandr
et al., 2014). Hence, we transform the subsampled seismic data
from source-receiver domain to midpoint-offset domain and
then implement the low rank tensor completion in frequency-
midpoint-offset domain. We denote the prestack seismic vol-
ume by D(ω,x,y,hx,hy), where x, y, hx and hy represent the
spatial coordinates of the inline, crossline midpoint, inline,
crossline offset. We bin the data in midpoint-offset domain
and define the seismic volume for one single frequency slice
via a 4th-order tensor Dobs with elements Di1,i2,i3,i4 , where the
indices i1, i2, i3 and i4 represent the spatial coordinates x, y, hx
and hy, respectively. The symbol ω is dropped to gain conci-
sion but it is clear that the algorithm is run for frequencies in
the seismic band ω ∈ [ωmin,ωmax].

Traditional Matrix Factorization (TMF) Algortihm

For N-dimensional seismic data reconstruction, one would like
to recover a low rank tensor Z ∈ CI1×I2×I3×I4 from the par-
tially observed data tensor Dobs = P ◦Z , where P is the
sampling operator with elements 1 and 0. ‘◦’ is an element-
wise product operator. Following the work of Wen et al. (2012),
we convert the tensor Z to a matrix Z(k) along an arbitrary
mode-k and build the following cost function that one must
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An fast seismic reconstruction algorithm

minimize in order to recover the missing entries of the tensor

min
X ,Y,Z

‖ XY −Z(k) ‖2
F +

µ

2
‖P ◦Z −Dobs ‖2

F , (1)

k ∈ {1,2, . . . ,N},

where, ‖ · ‖2
F denotes the Frobenius norm, µ is a regularization

factor that balances the weight of the low rank constraint term
‖ XY −Z(k) ‖2

F and the data misfit term ‖P ◦Z −Dobs ‖2
F .

We call the model in equation 2 the Traditional Matrix Fac-
torization (TMF) method. In essence, this model belongs to
the family of matrix completion methods. The mode-i unfold-
ing matrix Z(k) of size Ik × I1 · · · Ik−1Ik+1 · · · IN is usually an
unbalanced “long strip” matrix. Recent research by Mu et al.
(2014) indicates that Z(k) could be reshaped into a more bal-
anced square matrix and, as a consequence, the tensor Z can
be better recovered.

Square Matrix Factorization (SMF) model

We modify the TMF model in equation 2 and propose a Square
Matrix Factorization model (SMF),

min
X ,Y,Z

‖ XY − Ẑ[ j] ‖2
F +

µ

2
‖P ◦Z −Dobs ‖2

F , (2)

where, Ẑ[ j] is a balanced square matrix (close to a square ma-

trix) with size of Ii1 · · · Ii j×Ii j+1 · · · IiN , Ẑ[ j]=reshape(Ẑ(1),
∏ j

k=1 Iik ,∏N
k= j+1 Iik ), j ∈ {1,2, . . . ,N}. The matrix Ẑ(1) is the mode-1

unfolding of the tensor Ẑ . The tensor Ẑ is obtained by rela-
belling the mode-ik of tensor Z to k for k = 1,2, . . . ,N. The
permutation {i1, i2, . . . iN} is chosen to make

∏ j
k=1 Iik as close

possible to
∏N

k= j+1 Iik . After the reshaping operation, Ẑ[ j] be-
comes a more balanced matrix than the unfolded tensor Z(k) in
equation 2 (Mu et al., 2014).

Parallel Matrix Factorization (PMF) model

In our simulations we show that the recovery ability of SMF
model outperforms the TMF method. However, both TMF and
SMF belong to the category of matrix completion methods.
In this section we propose to exploit all the modes in which
one can unfold the seismic tensor (Xu et al., 2013; Gao et al.,
2015). In the Parallel Matrix Factorization (PMF) method, the
4D spatial seismic data reconstruction is reconstructed by min-
imizing the following cost function

min
X(k),Y(k),Z

N∑
k=1

‖ X(k)Y(k)−Z(k) ‖2
F +

µ

2
‖P ◦Z −Dobs ‖2

F , (3)

where, Z(k),k = 1,2,3,4 are usually is a “long strip” matrices
of size Ik × I1 . . . I(k−1)I(k+1) . . . IN . Compared with the ten-
sor completion methods via SVD algorithm, the PMF method
is an SVD-free approach, and can significantly decrease the
computation cost of the reconstruction while attaining simi-
lar reconstruction quality as SVD-based methods (Gao et al.,
2015).

Parallel Square Matrix Factorization (PSMF) model

Unfortunately, Z(k) in the PMF method are unbalanced ma-
trices and we will show that by simple reorganizing the ten-
sor into balanced matrices one can improve the reconstruction

quality. For this purpose, modify the PMF model and intro-
duce the square matrix factorization technique. For 4D spatial
data reconstruction, the new model named Parallel Square Ma-
trix Factorization (PSMF) is given by,

min
X( j),Y( j),Z

3∑
j=1

‖ X( j)Y( j)− Ẑ[ j] ‖2
F +

µ

2
‖P ◦Z −Dobs ‖2

F , (4)

where, the balanced square matrices are now given by Ẑ[1]=
reshape(Z(1), I1I2, I3I4), Ẑ[2]=reshape(Z(1), I1I3, I2I4) and
Ẑ[3]=reshape(Z(1), I1I4, I2I3). Compared with the original PMF
model (Gao et al., 2015) in equation 3, the PSMF model only
contains three low rank constraint term. This is due to the
dimensional permutation {I1, I2, I3, I4} that was chosen in such
a way that the row or column index of the balanced matrix
Ẑ[ j] only has three different patterns {I1I2}, {I1I3} and {I1I4}.
The comparisons of reconstruction performance for the TMF,
SMF, PMF and PSMF methods are shown in tables 1 and 2.
Clearly, by simple balancing the size of the unfolded tensors
that are needed by the PMF algorithm, we increase the quality
of reconstruction by 5−10dB.

TESTS

Results with synthetic data

We construct a series of 5D seismic data models to examine
the reconstruction performance of TMF, SMF, PMF and PSMF
methods. The first model is designed to test the computation
cost and reconstruction quality for the noise-free data case. We
synthesize a 5D seismic volume that consist of 12×12×12×
12 traces and 301 time samples per trace. The data include 4
curve events and S/N = ∞. We randomly remove 20%, 50%
and 80% traces from the complete data. Then, we apply the
alternating least squares method to solve the four tensor com-
pletion problems defined in equation 2, 2, 3 and 4. We set
the maximum number of iterations to Niter = 300, the itera-
tion stopping error tol = 10−4, temporal frequencies for re-
construction in the band are 1− 70 Hz, and we vary the rank
value r1 = r2 = r3 = r4 = r from 1 to 12 with increment 1. We
define the reconstruction quality factor Q = 10

log10
‖D true‖2

F
‖D recon−D true‖2

F
in dB units, where D true is the complete

data and D recon is the reconstructed data. For each decimated
volume reconstruction case, we run the code 5 times for each
method and record the computation time and best rank value r
which corresponds to the largest Q. The average computation
time corresponding to the best rank r for each method is shown
in Table 1. We point out that the best rank value for TMF, SMF,
PSMF and PMF is 4, 4, 5 and 5. Table 1 illustrates that the
SMF method has the best performance in terms of computa-
tional efficiency, the PSMF method performs second best, and
both of them are faster than the PMF method. Table 2 shows
the reconstruction quality of the four methods. We observe
that the PSMF method outperform the other three methods. It
is interesting to observe a noticeable improvement when the
data are severely decimated (80% missing traces). Figure 1
shows a slice of the original complete data with S/N = ∞ and
decimated data with 80% traces missing. Figure 2 displays
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An fast seismic reconstruction algorithm

a slice of the reconstructed results and the difference. From
Figure 2 e to 2 h, we observe that the TMF method fails to
reconstruct the data with 80% missing traces. The other three
methods are able to recover the data.

The second model is used to examine the denoising and re-
construction ability for data contaminated with noise. We add
random noise to the noise-free data model with S/N = 1. Fig-
ure 3 shows a slice of the complete data and decimated data.
We set the regularization factor µ = 0.1 and keep all the other
parameters as in the noise-free example. Figure 4 shows the
reconstruction results. From the difference sections, 4e to 4h,
we can see that the error for the PSMF method is smaller than
for the other methods.

Field data example

Based on the above synthetic data analysis, we test PSMF
method on a real prestack data set obtained by a survey from
the Western Canadian Sedimentary Basin. The data volume
contains 15× 15 CMP bins and 13× 13 offsets per bin and
351 time samples per trace. We set rank rk=5, k=1, 2, 3, 4.,
Niter=100 and µ=0.9 for the PSMF and PMF reconstruction.
Figure 5 shows the reconstruction result of a CMPx gather ob-
tained by fixing CMPy bin=7, hy bin=7. Figure 6 shows the re-
construction result of a CMPy gather obtained by fixing CMPx
bin=6, hx=6. From Figure 5 and 6, we conclude that the seis-
mic events are better recovered by the PSMF than by the PMF
method.

Decimation Computation time (s)
TMC SMF PSMF PMF

20% 38.7 7.6 21.3 88.4
50% 42.1 12.0 30.0 174.6
80% 38.3 45.3 141.8 354.6

Table 1: Computational time comparison of the proposed
PSMF reconstruction method, TMF method, SMF method and
PMF method for 5D volumes. The best rank value r adopted
in TMF, SMF, PSMF and PMF methods is 4, 4, 5 and 5, re-
spectively.

Decimation Quality factor Q
TMC SMF PSMF PMF

20% 35.7 55.6 60.8 60.4
50% 11.4 50.1 57.2 55.6
80% -3.0 40.5 50.6 39.1

Table 2: Reconstruction quality Q versus percentage of miss-
ing traces for the TMF, SMF, PSMF and PMF methods. The
best rank r used in the TMF, SMF, PSMF and PMF methods is
4, 4, 5 and 5, respectively.

CONCLUSIONS

We have presented a new fast and accurate low rank tensor
completion method and apply it to reconstruct multidimen-
sional seismic data. The proposed PSMF method reshapes the
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Figure 1: Slice view of original noise-free complete data a)
and decimated data with 80% missing traces b).
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Figure 2: Slice view of reconstructed data for the noise-free
data. a) TMF method. b) SMF method. c) PSMF method.
d) PMF method. e), f), g) and h) are the difference of the
subtraction of the true complete data and reconstructed data
results.
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Figure 3: Slice view of noisy complete data with S/N=1.0 a)
and decimated data with 80% missing traces b).
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Figure 4: Slice view of reconstruction results for the noisy data
set with 80% missing traces and µ=0.1. a) TMF method. b)
SMF method. c) PSMF method. d) PMF method. e), f), g) and
h) are the difference of the subtraction of the true complete
data and reconstructed data.
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Figure 5: A CMPx gather reconstruction result of a real data
for fixed CMPy bin=7, hy bin=7 and µ=0.9. a) Input gathers.
b) Reconstructed gathers using the PMF method. c) Recon-
structed gathers using the PSMF method.
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Figure 6: A CMPy gather reconstruction result of a real data
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constructed gathers using the PMF method. c) Reconstructed
gathers using the PSMF method.

“long strip” unfolded matrices into more balanced square ma-
trices and utilize a SVD-free parallel matrix factorization al-
gorithm to reduce the rank of the seismic tensor and recover
the missing samples. The synthetic and field data tests indi-
cate that the PSMF method not only improves the reconstruc-
tion ability of tensor completion methods for sparsely sampled
data but also decreases computational cost in comparison to
the PFM method.
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