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Minimum entropy deconvolution with
frequency-domain constraints

Mauricio D. Sacchi*, Danilo R. Velis*, and Alberto H. Cominguez‡

ABSTRACT

A method for reconstructing the reflectivity spec-
trum using the minimum entropy criterion is pre-
sented. The algorithm (FMED) described is compared
with the classical minimum entropy deconvolution
(MED) as well as with the linear programming (LP)
and autoregressive (AR) approaches. The MED is
performed by maximizing an entropy norm with re-
spect to the coefficients of a linear operator that
deconvolves the seismic trace. By comparison, the
approach presented here maximizes the norm with
respect to the missing frequencies of the reflectivity
series spectrum. This procedure reduces to a nonlinear
algorithm that is able to carry out the deconvolution of

band-limited data, avoiding the inherent limitations of
linear operators.

The proposed method is illustrated under a variety
of synthetic examples. Field data are also used to test
the algorithm. The results show that the proposed
method is an effective way to process band-limited
data.

The FMED and the LP arise from similar concep-
tions. Both methods seek an extremum of a particular
norm subjected to frequency constraints. In the LP
approach, the linear programming problem is solved
using an adaptation of the simplex method, which is a
very expensive procedure. The FMED uses only two
fast Fourier transforms (FFTs) per iteration; hence,
the computational cost of the inversion is reduced.

INTRODUCTION

The minimum entropy deconvolution (MED) technique
proposed in Wiggins (1978) offers a different approach- to
seismic deconvolution. While the classical methods such
as spiking deconvolution and predictive deconvolution
(Robinson and Treitel, 1980) seek to whiten the spectra, the
MED seeks the smallest number of large spikes that are
consistent with the data.

Despite these differences, both methods constitute a linear
approach to seismic deconvolution. The spiking and predic-
tive filters are obtained by inverting the Toeplitz matrix; the
MED filter is calculated in an iterative procedure in which
the Toeplitz matrix is inverted at each step (Wiggins, 1978).
These filters are quite different in nature, but as they are
linear operators, none of them can handle band-limited data
properly. This limitation is difficult to overcome when deal-
ing with noisy data.

In this work, a frequency domain version of the MED
scheme is developed. This approach involves maximizing a
generalized entropy norm with respect to the seismic reflec-
tivity. De Vries and Berkhout (1984) investigated the use of
these norms to measure the resolving power in the context of
velocity analysis. The particular norm on which we are going
to focus our attention (the logarithmic norm) has also been
used for deconvolution and wavelet extraction in Postic et
al. (1980) in an attempt to overcome the limitations of the
classical MED method.

For band-limited signals,the deconvolution can be
achieved by reconstructing the reflectivity spectrum. Two
main procedures have been developed to reach this goal.
The first method (Levy and Fullagar, 1981) is based on a
linear programming (LP) approach. This method attempts to
find the reflectivity series with minimum absolute norm that
remains consistent with the data. The second approach
(Lines and Clayton, 1977) fits a complex autoregressive (AR)

Manuscript received by the Editor May 11, 1992; revised manuscript received September 27, 1993.
*Department of Geophysics and Astronomy, University of British Columbia, 129-2219 Main Mall, Vancouver, B. C., Canada, V6T 1Z4, on
leave from Departamento de Geofisica Aplicada, Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, La Plata,
1900 ,  A rgen t i na .
‡Consejo Nacional de Investigaciones Cientificas y Tecnicas and Departamento de Geofisica Aplicada, Facultad de Ciencias Astronomicas y
Geofisicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina.
© 1994 Society of Exploration Geophysicists. All rights reserved.

938



MED with Frequency Constraints 939

model to the data spectrum, and from the information
available in the actual frequency band, attempts to extrapo-
late the missing low and high frequencies of the reflectivity.
Both methods have been improved and expanded to cope
with acoustic impedance inversion from band-limited reflec-
tion seismograms. In the LP approach, Oldenburg et al.
(1983) incorporated impedance constraints to the problem.
In the autoregressive (AR) case, Walker and Ulrych (1983)
considered the missing low-frequency band of the spectrum
as a gap to be filled. Knowing the complex autoregressive
predictor filter, they showed how to complete the low-
frequency band, and like Oldenburg et al. (1983) they inves-
tigated the effect of impedance constraints on the inversion.

Our method can be mainly compared with the LP ap-
proach. This is because both methods seek an extremum
point of a given norm that is a function of the underlying
unknown function: the reflectivity. The main advantage of
an entropy norm over the absolute norm   is that the
minimization procedure involves a convenient algorithm that
avoids the computationally expensive cost of linear pro-
gramming routines. It must be stressed that the proposed
method provides a unifying thread between the LP
(Oldenburg et al.,1983) and the MED approach (Wiggins,
1978).

“earth system” is always present, i.e., after removing the
wavelet, only a portion of the reflectivity spectrum is avail-
able. In other words,   =    is band-limited. For
further developments,  will be called the band-limited
reflectivity and yt the full-band reflectivity. We will assume
that the wavelet has been removed, therefore a, has zero
phase with constant amplitude in the frequency range

  and zero amplitude outside that interval.
Estimating the full-band reflectivity from the band-limited

reflectivity is a nonunique linear inverse problem. Neglect-
ing the noise term,the last assessment may be easily
confirmed taking the Fourier transform of equation (4)

    (5)

It is easy to see that Y(o) can take any value at those
frequencies at which  vanishes. The knowledge of 
is not enough to estimate the portion of  outside the
nonzero band of  Hence, there exists an infinite
number of models yt that satisfy equation (5). In other
words,  gives no information about the parts of 
that belong to the null space (Parker, 1977). In the next
analysis, we will discuss how to limit the nonuniqueness of
the problem.

THEORETICAL CONSIDERATIONS Entropy norms

S e i s m i c  m o d e l Among all the possible solutions to the problem stated in

The normal incidence seismogram model can be expressed
as the convolution between two basic components: the
reflectivity yt and the wavelet wt. If we denote the noise-
free seismic trace by xt then

the previous section, we will look for those particular
solutions in which a reasonable feature of the reflectivity is
reached. Usually, parsimony is a required feature of an
acceptable model.“Minimum structure” or “simple solu-

  (1)

where * denotes discrete convolution. The goal of the
deconvolution process is to recover yt from xt . If we adopt
a linear scheme, an operator ft such that

tion” are terms often used for a model with parsimonious
behavior. In Wiggins’s (1978) original approach, the term
“minimum entropy” is used as synonymous with “maxi-
mum order. ’’ The term is appropriate to set up the main

  (2)

must be obtained. Note that if xt is a band-limited signal,
only a part of yt can be recovered.

Usually the signal is contaminated with noise, then the
normal incidence seismogram model is

difference between MED and spiking or predictive deconvo-
lution. While spiking or predictive deconvolution attempt to
whiten the data (minimum order), the MED approach seeks
for a solution consisting mainly of isolated spikes. Wiggins’s
entropy was inspired by factor analysis techniques, and can
be regarded as a particular member of a broad family of
norms of the form

 (3)

We want to compute a filter ft such that ft * wt =   but
usually we have only an estimate  of the filter. Then  

 = where  is called the averaging function, which in
the ideal case should resemble a delta function (Oldenburg,
1981). Operating with the filter  on the seismic trace

 
     

  
(6)

where the vector y
of length N, and
given by

represents the reflection coefficient series
qi is an amplitude normalized measure

 =      
(4)

(7)

         

Equation (4) shows that the filter not only has to make 
close to a delta, but also has to keep the noise level as small
as possible. It follows that we are faced with the usual
trade-off between resolution and statistical reliability.

In formula (6), F(qi) is a monotonically increasing function
of qi, which is often called the entropy function (De Vries
and Berkhout, 1984). Having defined F(qi) , the following
inequality can be established:

At this point it must be said that even with the best seismic
field and processing techniques, the band-pass nature of the     
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The normalization factor in equation (6) guarantees the same
upper limit for any entropy function. Note that for the most
simple case, a series with all zeros and one spike, the norm
reaches the upper bound V(y) = 1. When all the samples are
equal V(y) reaches the lower bound.

The original MED norm is obtained when F(qi) = qi. In
many synthetic examples we found that this norm is very
sensitive to strong reflections. To avoid such inconve-
niences, we have tested other norms concluding that better
results are achieved with the logarithmic norm in which
F(qi) = ln (qi) (Sacchi et al.,1992). This norm was also
reported by Postic et al. (1980).

MAXIMIZATION OF V(y)

Wiggins’s algorithm

A trivial solution to the problem stated in equation (2) is

 

 
(8)

where   stands for the inverse of xi if it exists. To avoid
such a solution, a fixed length must be imposed to the
operator fi (Postic et al., 1980), then

The criterion for designing the operator& may be set as

        

(9)

   

From equation (2) it follows that  =  and after
some algebraic manipulations equation (9) becomes

     

where

 

   

and

   +  
 

(10)

(11)

Table 1 summarizes the expressions that are involved in the
problem when the functions    (Wiggins’s entropy
function) and =   (logarithmic entropy function)
are used.

Expression (10) corresponds to the system used to design
the well known Wiener or shaping filter (Robinson and
Treitel, 1980). This filter seeks to convert an input signal x
into a desired output b. In matrix notation:

   =  (12)

where  is the Toeplitz matrix of the data and the vector g(f)
is the crosscorrelation between b and x. The system must be
solved through an iterative algorithm:

   .   (13)

where the upper index n denotes iteration number. In each
iteration, the system is solved with Levinson’s algorithm
(Robinson and Treitel, 1980). The initial value for this
system is  = (0, 0, 0, . . . , 1, . . . , 0, 0, 0). Note that in
each iteration the system attempts to reproduce the features
of the reflectivity series. If the proper length is chosen, the
system leads to a useful maximum and the main reflections
can be estimated (Wiggins, 1978).

Minimum entropy with frequency-domain constraints

In the frequency domain, the maximization of the entropy
is subjected to the following constraint:

     (14)

For practical purposes let us define equation (5) by means
of the discrete Fourier transform

  (15)

where the lower index k denotes frequency sample. So the
maximization of V(y) with midband constraints can be
written as

subjected to

Maximize V(y) ,

      (16)

where kL and kH are the samples that correspond to  and
 respectively. It is easy to see that the midband
  must be kept unchanged throughout the algorithm.

The solution of the last problem can be achieved solving
the following system of equations:

 
 

(17)

Table 1. Norm V and desired output bi. (a) Wiggins’s entropy
function. (b) Logarithmic entropy function.
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      (18)

where  are the Lagrange multipliers of the problem.
Taking the derivative, inserting  in the constraint and then
the multipliers in equation (17), the following result is
obtained:

       

 =       
 

(19)

From equations (11) and (14) it is easy to see that

 
 =

  
(20)

where Bk is the discrete Fourier transform of bt

equation (11). Because bt is a nonlinear function of yt , the
problem must be solved as follows:

1) The algorithm is initialized by letting  =  .
2) Elements bt and Bk are computed.
3) The missing low and high frequencies are replaced by

Bk.
4) From the inverse Fourier transform, an estimate of the

reflectivity is calculated. The norm V(y) is also evalu-
ated to check convergence and a new iteration starts in
step 2.

Equivalent formulation of the algorithm

Another way to write equation (21) is

  (21)

The upper index n indicates the iteration number and Hk is
a zero-phase, stop-band digital filter with cut-off frequencies

 and  The filter removes the mid-band samples of Bk

that are replaced by the known midband samples of 
Equation (21) can be transformed back to time and an
equivalent formulation of the problem is found

     t (22)

where ht is the impulsive response of the stop-band filter
Hk.

The LP formulation

In the LP method the objective function to be minimized is

   (23)

The minimization of equation (23) is carried out under the
constraints given by equation (14). In Levy and Fullagar
(1981), they deal with the problem by splitting the con-
straints into real and imaginary parts:

 =    

(24)

    

These equations evaluated in the band  ,  are the
linear constraints used to minimize  Oldenburg et. al.
(1983) have also shown that minimizing  is equivalent to
minimize the absolute norm of the derivative of the acoustic
impedance. We are not going to discuss the mathematical
details of the LP approach, but it must be pointed out that
the LP method and the minimum entropy approach with
frequency-domain constraints arise from similar concep-
tions.

EXAMPLES

Synthetic examples

The algorithms will be tested in this section. For simplic-
ity, they are called MED (Wiggins’s algorithm) and FMED
(minimum entropy with frequency-domain constraints). The
logarithmic norm (Table 1) is used in all the cases.

The algorithms were tested with the same synthetic data.
The seismic trace was generated by convolving a zero-phase
15-60 Hz pass-band wavelet with a reflectivity series. The
model (reflectivity) and the synthetic seismic trace are
shown in Figures la and lb. The reflectivity and seismic
trace spectra are shown in Figures 2a and 2b. The MED
algorithm was run with a 200 ms filter. The MED output after
10 iterations is shown in Figure lc. Since there is only one

FIG. 1. Shown in successive traces: (a) reflectivity, (b)
band-limited reflectivity, (c) MED output, and (d) minimum
entropy with frequency domain constraints (FMED) output.
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nonzero midband (15-60 Hz) to be inverted, the MED filter
cannot estimate the reflectivity series. Obviously, the cho-
sen synthetic wavelet can never be completely inverted
because of its band-limited nature. Note that the FMED
algorithm is not only effective for reconstructing the high
frequencies, but the low-frequency signature of the spectrum
is also recovered (see Figures 1d and 2d).

An analysis of the convergence of each algorithm when a
band-limited signal is used is shown in Figure 3. After a few
iterations, the FMED algorithm reaches a useful maximum.
Even after many iterations, the MED does not lead to a
useful maximum; actually the maximum reached corre-
sponds to a degenerated solution.

To illustrate the behavior of the algorithms under noisy
conditions, noise has been added to the synthetic trace with
a signal-to-noise ratio of 14 dB (Figure 4b). The MED and
FMED outputs are shown in Figures 4c and 4d. Their
amplitude spectra are shown in Figure 5. In each iteration,
the FMED suppresses the high and low bands where the
noise contribution is dominant, and estimates new low and
high frequencies from those in the midband.

use this algorithm. The second approach (LP) uses the
nonzero frequency band as a constraint and attempts to find
a reflectivity model that consists of isolated spikes. The LP
approach has been described in a previous section.

In Figure 6a, the reflectivity model is shown. In Figure 6b
the same model is shown after being filtered with a zero-
phase operator with fL = 20 Hz and fH = 90 Hz. In
Figures 6c, 6d, and 6e the outputs for the FMED, AR, and

Comparison with the LP and AR methods

In this section we wish to compare the FMED with the
AR modeling technique (Walker and Ulrych, 1983) and the
LP reconstruction algorithm (Levy and Fullagar, 1981;
Oldenburg et al., 1983).

Briefly, it can be said that the AR modeling technique fits
a complex autoregressive model to the nonzero band and
extrapolates the low and high frequencies by linear predic-
tion. A more sophisticated version of the algorithm applies a
gap filling technique that improves the reconstruction of the
low-frequency components. This is the way we are going to

FIG. 2. Graphs (a, b, c, d) are the amplitude spectra of the
time series of Figure 1.

FIG. 3. Entropy norm versus iterations for the noise-free
example.

FIG. 4. Shown in successive traces: (a) reflectivity, (b)
band-limited reflectivity plus random noise (SNR = 14 dB),
(c) MED deconvolution, and (d) minimum entropy with
frequency-domain constraints (FMED) output.
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LP methods are shown. In the AR reconstruction, the
autoregressive operator was computed using a complex Burg
algorithm (Walker and Ulrych, 1983). The length of the
operator is 0.3( kH - kL ) samples. In Figure 7 we show the
spectrum of the reflectivity (7a), the spectrum of the band-
limited reflectivity (7b), and in successive traces, the spectra
of the FMED, AR, and LP full-band reflectivity estimates.

The reflectivity spectra are reconstructed with different
levels of accuracy by all of the techniques. In the AR and
FMED case, it is clear that the low-frequency portion of the
spectrum is well recovered. However, both methods attempt
to overestimate the high-frequency portion of the spectra.
Strictly speaking, the AR does not produce much better
results than the FMED. Actually, the computational cost
involved in the LP is much more expensive than the com-
putational cost of the FMED. In the LP case, the linear
programming problem is solved. The latter goal is achieved
with a routine based on the simplex method (Levy and
Fullagar, 1981). On the other hand, the FMED algorithm
needs only two FFTs per iteration. Thus we believe that
FMED is worth considering when we seek a fast and easy
way to process band-limited data.

It is difficult to say which is the best method to invert
band-limited data. The block interpretation of several tech-
niques allows us to explore the model space, as well as to
have an efficient way to assess the main features of the
model manifested in the output of each inversion.

Real data

In many real applications, it is not necessary to obtain a
full-band reflectivity, it is enough to simply extend the band
only 10 or 20 Hz to increase resolution. That is the case we
are going to present. In the CDPs of Figure 8a, the zone of
interest is located at 1250 ms. A zero-phase deconvolution

FIG. 5. Graphs (a, b, c, d) are the amplitude spectra of the
time series in Figure 4.

FIG. 6. Comparison of the FMED algorithm with the AR
LP methods. (a) Reflectivity, (b) band-limited reflectivity
FMED, (d) AR, and (e) LP.

FIG. 7. Amplitude spectra of the traces shown in Figure
Reflectivity, (b) band-limited reflectivity, (c) FMED, (d)
and (e) LP.
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was applied to remove the wavelet, producing the mean
spectra shown in Figure 9a. The band from 10 to 70 Hz is the
constraint of the problem, but instead of extending the high
frequencies up to the Nyquist frequency (125 Hz), the band
was extended from only 70 to 90 Hz. The low-frequency
band was completely extended. The output is shown in
Figure 8b. Note a small splitting of the reflections at 1275 ms.
This result was later confirmed with a synthetic seismogram
(there is a well at CDP 4640). In Figure 8b the mean
spectrum of the extended data is shown. In this application,
the reconstruction of only a few samples of the reflectivity
spectra has been made to get a reliable model.

CONCLUSIONS

The minimum entropy algorithm with frequency-domain
constraints offers a different way to process band-limited
data. We have shown that it is possible to reconstruct a
spike-like reflectivity series from a portion of its spectrum.
When compared with the original reflectivity series, the
reconstructed signal results are similar, even when noise is
added to the data.

The algorithm is robust under noise conditions. This is
because the low- and high-band frequency estimates are
calculated from the known midband frequency samples
where the signal spectrum is dominant.

The well known LP (Levy and Fullagar, 1981; Oldenburg
et al., 1983) and AR (Lines and Clayton, 1977; Walker and
Ulrych, 1983) procedures were compared with the algorithm
presented. The three methods offer similar results, although
the LP seems to estimate high frequencies better than the
AR and FMED. We believe that the FMED constitutes an
efficient and easy way to perform the inversion of band-
limited data, and we strongly believe the proposed approach
provides an unifying thread between Wiggins’s approach and
the linear programming method.

Finally, the effectiveness of the FMED was tested with
field data. In this example, the FMED was used to resolve
two close reflections. The result was later verified with a
synthetic seismogram computed from a sonic log at the
productive level of the well.
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FIG. 8. Example with real data. (a) Segment of seismic section. The data were preprocessed with a zero-phase deconvolution
routine. (b) After recovering the low frequencies and part of the high frequencies with the FMED.
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FIG. 9. (a) Mean amplitude spectrum of the seismic segment (Figure 8a). (b) Mean amplitude spectrum of the seismic segment
after processing with FMED (Figure 8b).
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