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Minimum entropy deconvolution with
frequency-domain constraints

Mauricio D. Sacchi*, Danilo R. Velis*, and Alberto H. Cominguezi

ABSTRACT band-limited data, avoiding the inherent limitations of
linear operators.

A method for reconstructing the reflectivity spec- The proposed method is illustrated under a varigty
trum using the minimum entropy criterion is pre- of synthetic examples. Field data are also used to test
sented. The algorithm (FMED) described is compared the algorithm. The results show that the proposed
with the classical minimum entropy deconvolution method is an effective way to process band-limited
(MED) as well as with the linear programming (LP) data.
and autoregressive (AR) approaches. The MED is The FMED and the LP arise from similar concep-
performed by maximizing an entropy norm with re- tions. Both methods seek an extremum of a particular
spect to the coefficients of a linear operator that norm subjected to frequency constraints. In the LP
deconvolves the seismic trace. By comparison, the approach, the linear programming problem is solved
approach presented here maximizes the norm with using an adaptation of the simplex method, which i a
respect to the missing frequencies of the reflectivity very expensive procedure. The FMED uses only two
series spectrum. This procedure reduces to a nonlinear fast Fourier transforms (FFTs) per iteration; hencg,
algorithm that is able to carry out the deconvolution of the computational cost of the inversion is reduced.

INTRODUCTION In this work, a frequency domain version of the MED

scheme is developed. This approach involves maximizing a

The minimum entropy deconvolution (MED) technique ge.neralized_entropy norm with respect to t_he seismic reflec-
proposed in Wiggins (1978) offers a different approach- to tivity. De Vries and Berkhout (1984) mvesﬂggted the use of
seismic deconvolution. While the classical methods such these norms to measure the resolving power in the context of
as spiking deconvolution and predictive deconvolution Velocity analysis. The particular norm on which we are going
(Robinson and Treitel, 1980) seek to whiten the spectra, the!0 focus our attention (the logarithmic norm) has also been
MED seeks the smallest number of large spikes that areused for deconvolution and wavelet extraction in Postic et
consistent with the data. al. (1980) in an attempt to overcome the limitations of the

Despite these differences, both methods constitute a lineaflassical MED method. .
approach to seismic deconvolution. The spiking and predic- FOr band-limited signals,the deconvolution can be
tive filters are obtained by inverting the Toeplitz matrix; the achieved by reconstructing the reflectivity spectrum. Two
MED filter is calculated in an iterative procedure in which main procedures have been developed to reach this goal.
the Toeplitz matrix is inverted at each step (Wiggins, 1978). The first method (Levy and Fullagar, 1981) is based on a
These filters are quite different in nature, but as they arelinear programming (LP) approach. This method attempts to
linear operators, none of them can handle band-limited datafind the reflectivity series with minimum absolute norm that
properly. This limitation is difficult to overcome when deal- remains consistent with the data. The second approach
ing with noisy data. (Lines and Clayton, 1977) fits a complex autoregressive (AR)
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model to the data spectrum, and from the information “earth system” is always present, i.e., after removing the
available in the actual frequency band, attempts to extrapo-wavelet, only a portion of the reflectivity spectrum is avail-
late the missing low and high frequencies of the reflectivity. able. In other wordsy , = y, * a, is band-limited. For
Both methods have been improved and expanded to copdurther developmentsy, will be called the band-limited
with acoustic impedance inversion from band-limited reflec- reflectivity andy; the full-band reflectivity. We will assume
tion seismograms. In the LP approach, Oldenburg et al.that the wavelet has been removed, therefgrbas zero
(1983) incorporated impedance constraints to the problem.phase with constant amplitude in the frequency range
In the autoregressive (AR) case, Walker and Ulrych (1983) [w; , wg] and zero amplitude outside that interval.
considered the missing low-frequency band of the spectrum Estimating the full-band reflectivity from the band-limited
as a gap to be filled. Knowing the complex autoregressive reflectivity is a nonunique linear inverse problem. Neglect-
predictor filter, they showed how to complete the low- ing the noise termthe last assessment may be easily
frequency band, and like Oldenburg et al. (1983) they inves-confirmed taking the Fourier transform of equation (4)
tigated the effect of impedance constraints on the inversion. .

Our method can be mainly compared with the LP ap- Y(0) = A(0) * Y(w). (5)
proach. This is because both methods seek an extremum
point of a given norm that is a function of the underlying fr
unknown function: the reflectivity. The main advantage of
an entropy norm over the absolute no(ény) is that the

minimization procedure involves a convenient algqnthm that number of modelsy, that satisfy equation (5). In other
avoids the computationally expensive cost of linear pro-

. : ords, ¥ ives no information about the parts Y(»
gramming routines. It must be stressed that the propose(ﬁat belc(J(Fl)g); %o the null space (Parker 197% In t(he) next
method provides a unifying thread between the LP ! :

(Oldenburg et al.1983) and the MED approach (Wiggins analysis, we will discuss how to limit the nonunigueness of

It is easy to see that Y(0) can take any value at those
equencies at whicA(we) vanishes. The knowledge ¥(»)

is not enough to estimate the portionY(w) outside the
nonzero band ofA(w). Hence, there exists an infinite

1978). the problem.
THEORETICAL CONSIDERATIONS Entropy norms
Seismic model Among all the possible solutions to the problem stated in

the previous section, we will look for those particular

The normal incidence seismogram model can be expresse@olutions in which a reasonable feature of the reflectivity is

as the convolution between two basic components: thereached. Usually, parsimony is a required feature of an
reflectivity y; and the waveletv. If we denote the noise-  acceptable model‘Minimum structure” or “simple solu-

free seismic trace by, then tion” are terms often used for a model with parsimonious

behavior. In Wiggins's (1978) original approach, the term

e = We * Ve, (1) “minimum entropy” is used as synonymous with “maxi-
where * denotes discrete convolution. The goal of the mum order. " The term is appropriate to set up the main
deconvolution process is to recowgffrom x, . If we adopt difference between MED and spiking or predictive deconvo-

a linear scheme, an operafpsuch that lution. While spiking or predictive deconvolution attempt to
whiten the data (minimum order), the MED approach seeks

Ve =X % fy (2) for a solution consisting mainly of isolated spikes. Wiggins's
must be obtained. Note thatf is a band-limited signal, entropy was inspired by factor analysis techniques, anql can
only a part ofy, can be recovered. be regarded as a particular member of a broad family of

Usually the signal is contaminated with noise, then the norms of the form
normal incidence seismogram model is

N
X, =w, *xy, +n,. 3 Viy) = > 4qi* Flg), (6)
t t t t ( ) NF(N) =
We want to compute a filteff such thatf, * w, =3 ;, but
usually we have only an estimefzof the filter. Thenf, % where the vector yepresents the reflection coefficient series

w; = a,, Whereaq, is called the averaging function, which in of length N, and g; is an amplitude normalized measure
the ideal case should resemble a delta function (Oldenburggiven by
1981). Operating with the filtef, on the seismic trace

3

Yi

p=a, *y, +f *n el
Vi c* vt h t @ qi EYI%/N (7)

=y, + (a; — 8;) * y, +ft * Ny

Equation (4) shows that the filter not only has to mage  In formula (6),F(q) is a monotonically increasing function
close to a delta, but also has to keep the noise level as smalhs qi, Which is often called the entropy function (De Vries

as possible. It follows that we are faced with the usual and Berkhout, 1984). Having definédc) , the following
trade-off between resolution and statistical reliability. inequality can be established:

At this point it must be said that even with the best seismic
field and processing techniques, the band-pass nature of the F(1)/F(N) = V(y) =1.



940 Sacchi et al.

The normalization factor in equation (6) guarantees the same f-R=g), (12)
upper limit for any entropy function. Note that for the most ] ] ]

simple case, a series with all zeros and one spike, the nornyvhereR is the Toeplitz matrix of the data and the vegidy
reaches the upper boulfy) = 1. When all the samples are 1S the crosscorrelatl_on b(_atwebran.d X. The system must be
equalV(y) reaches the lower bound. solved through an iterative algorithm:

The original MED norm is obtained whét{q) = ¢;. In £ = R=1 . g(g(n - 1)y 3
many synthetic examples we found that this norm is very g ’ (13)
sensitive to strong reflections. To avoid such inconve- where the upper index denotes iteration number. In each
niences, we have tested other norms concluding that betteiteration, the system is solved with Levinson’s algorithm
results are achieved with the logarithmic norm in which (Robinson and Treitel, 1980). The initial value for this
F(q) = In (&) (Sacchi et al.,1992). This norm was also  system isf® = (0,0, 0, ...,1,...,0, 0, 0). Note that in
reported by Postic et al. (1980). each iteration the system attempts to reproduce the features

of the reflectivity series. If the proper length is chosen, the
MAXIMIZATION OF  V(y) system leads to a useful maximum and the main reflections

Wiggins's algorithm can be estimated (Wiggins, 1978).
A trivial solution to the problem stated in equation (2) is Minimum entropy with frequency-domain constraints
7, =x! In the frequency domain, the maximization of the entropy
{ renee (8) is subjected to the following constraint:
P =23, A
Y(w) = Y(0), o € [w,, 0yl 14
wherex ! stands for the inverse &f if it exists. To avoid LR (14)

such a solution, a fixed length must be imposed to the For practical purposes let us define equation (5) by means

operatorf, (Postic et al., 1980), then of the discrete Fourier transform
LF Ve =Ar: Yy, (15)
Yn= 2 fo Xn-e- where the lower indek denotes frequency sample. So the
=1

maximization ofV(y) with midband constraints can be
The criterion for designing the operator& may be set as  Written as

av(y) o (=12 LF Maximize V(y) ,
afe S subjected to
9)
av(y) 1 s (Fgn + dF(qi)\ 9q: NoU o —izmkn
afk _NF(N) ; qi qi aq’ afk‘ Yk=n=0yne N, k=kLa"'1kH’ (16)
From equation (2) it follows thay,/ofy = x,_, and after  wherek,_ andky are the samples that correspondsjpand
some algebraic manipulations equation (9) becomes wy, respectively. It is easy to see that the midband
_ [w;, wx] must be kept unchanged throughout the algorithm.
%:fe 2 Xn-k¥n-e = E bixi— i, (10) The solution of the last problem can be achieved solving
" ! the following system of equations:
where } N
aV(y) H Y, - —i2mne
G(q-)y; + )\e e Yg - j’ e N |=0 17
bi=1—l, (11) Yk €=2kL 0¥y ,Eo ! an
N ? G(q))q;
and
aF(g:) Table 1. NormV and desired outputb,. (a) Wiggins’s entropy
Glqi) = Flqi) + g 0q function. (b) Logarithmic entropy function.
Table 1 summarizes the expressions that are involved in the F(q;) |4 b;
problem when the functiorF(g;) = q; (Wiggins's entropy
function) andF(q;) = In (g;) (logarithmic entropy function) 1 qi*Yi
are used a) q; = 24" qi —
: N N-V
Expression (10) corresponds to the system used to design 1 (n (g;) + D)y
the well known Wiener or shaping filter (Robinson and b) In (g;) ———— > g In(g) p LA
Treitel, 1980). This filter seeks to convert an input signal N-In (N) N-V+1

into a desired output. In matrix notation:
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N-1 —i2mnk N1
Ye- 3 Swe N =0, k=kp, ..., kg (18) R(Y) = X ya cos (2mkn/N),
o n=0 (24)
where A, are the Lagrange multipliers of the problem. N-1
Taking the derivative, insertirY, in the constraint and then F(Yy) = >, yn sin (2wkn/N).
the multipliers in equation (17), the following result is n=0
obtained:

These equations evaluated in the b{w; , wy] are the
N'IG(q,,)y,,e‘iZ“""’N linear constraints used to minimizp. Oldenburg et. al.

)y

sk & [k, kgl: (1983) have also shown that minimizidgis equivalent to
Y, =% n=0 > G(gj)q;IN Lo BHD (19) minimize the absolute norm of the derivative of the acoustic
j kelkr, kgl impedance. We are not going to discuss the mathematical
Y, details of the LP approach, but it must be pointed out that
. o the LP method and the minimum entropy approach with
From equations (11) and (14) it is easy to see that frequency-domain constraints arise from similar concep-
tions.
v = By, ké&lkr, kyl; 20
“Z) 20, K€k, kgl (20) EXAMPLES
where B, is the discrete Fourier transform df Synthetic examples
eg;ﬁg?nn r$11uls)t bBeeg?)K/Etelesasa fgl(l)g\llilr;?ar function of; , the The algorithms will be tested in this section. For simplic-
P ' ity, they are called MED (Wiggins’s algorithm) and FMED
. o A (minimum entropy with frequency-domain constraints). The
;) El]e alg?nthm (|st|n|t|aI|zed by iegtlny, =Y logarithmic norm (Table 1) is used in all the cases.
3) Theme_n S.bt aln k ageh.ccrj]n;pu ed. laced b The algorithms were tested with the same synthetic data.
) B € missing low and high frequencies areé replaced bY the seismic trace was generated by convolving a zero-phase

4 Fk- the i Fourier t ¢ timate of th 15-60 Hz pass-band wavelet with a reflectivity series. The

) rf(I)m. 1€ mversIe louger_rhrans orr\;n, an els |mae|0 € model (reflectivity) and the synthetic seismic trace are
reflectivity is calculated. The noriv(y) IS alSo evall-  shown in Figures la and Ib. The reflectivity and seismic
ated to check convergence and a new iteration starts i

toD 2 Nrace spectra are shown in Figures 2a and 2b. The MED
step 2. algorithm was run with a 200 ms filter. The MED output after
: . , 10 iterations is shown in Figure Ic. Since there is only one
Equivalent formulation of the algorithm

Another way to write equation (21) is

Yl(cn) - B,((”_ 1), Hk + Yk- (21)

The upper index indicates the iteration number ahl is l l L l l l | l (a)
N

a zero-phase, stop-band digital filter with cut-off frequencies
o; andeg. The filter removes the mid-band sampleBpf
that are replaced by the known midband sample¥ of
Equation (21) can be transformed back to time and an (b)
equivalent formulation of the problem is found

v =o'V w b, 43, (22)
where h; is the impulsive response of the stop-band filter ()
Hy.
The LP formulation (d)
In the LP method the objective function to be minimized is
N
® = _21 [al- (23) o 0% 06 08
' TIME (SEC)

The minimization of equation (23) is carried out under the

constraints given by equation (14). In Levy and Fullagar g 1. Shown in successive traces: (a) reflectivity, (b)
(1981), they deal with the problem by splitting the con- band-limited reflectivity, éc) MED output, and (d) minimum
straints into real and imaginary parts: entropy with frequency domain constraints (FMED) output.
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nonzero midband (15-60 Hz) to be inverted, the MED filter use this algorithm. The second approach (LP) uses the
cannot estimate the reflectivity series. Obviously, the cho- nonzero frequency band as a constraint and attempts to find
sen synthetic wavelet can never be completely inverteda reflectivity model that consists of isolated spikes. The LP
because of its band-limited nature. Note that the FMED approach has been described in a previous section.
algorithm is not only effective for reconstructing the high  In Figure 6a, the reflectivity model is shown. In Figure 6b
frequencies, but the low-frequency signature of the spectrumthe same model is shown after being filtered with a zero-
is also recovered (see Figures 1d and 2d). phase operator witi, = 20 Hz andfy = 90 Hz. In

An analysis of the convergence of each algorithm when aFigures 6¢, 6d, and 6e the outputs for the FMED, AR, and
band-limited signal is used is shown in Figure 3. After a few
iterations, the FMED algorithm reaches a useful maximum.
Even after many iterations, the MED does not lead to a
useful maximum; actually the maximum reached corre- 0.6
sponds to a degenerated solution.

To illustrate the behavior of the algorithms under noisy
conditions, noise has been added to the synthetic trace with
a signal-to-noise ratio of 14 dB (Figure 4b). The MED and 05
FMED outputs are shown in Figures 4c and 4d. Their 5,
amplitude spectra are shown in Figure 5. In each iteration, P«
the FMED suppresses the high and low bands where the
noise contribution is dominant, and estimates new low and EOA
high frequencies from those in the midband. 35

RO

Comparison with the LP and AR methods

0.3

In this section we wish to compare the FMED with the
AR modeling technique (Walker and Ulrych, 1983) and the
LP reconstruction algorithm (Levy and Fullagar, 1981;
Oldenburg et al., 1983).

Briefly, it can be said that the AR modeling technique fits 0 2 4
a complex autoregressive model to the nonzero band and ITERATIONS
extrapolates the low and high frequencies by linear predic-
tion. A more sophisticated version of the algorithm applies a,g. 3. Entropy norm versus iterations for the
gap filling technique that improves the reconstruction of the example.
low-frequency components. This is the way we are going to
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Fic. 2. Graphs (a, b, c, d) are the amplitude spectra of thch) MED deconvolution, and (d) minimum entropy with
time series of Figure 1. requency-domain constraints (FMED) output.
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LP methods are shown. In the AR reconstruction, the
autoregressive operator was computed using a complex Burg
algorithm (Walker and Ulrych, 1983). The length of the
operator is 0.3k, - k_) samples. In Figure 7 we show the
spectrum of the reflectivity (7a), the spectrum of the band-
limited reflectivity (7b), and in successive traces, the spectra
of the FMED, AR, and LP full-band reflectivity estimates.

The reflectivity spectra are reconstructed with different
levels of accuracy by all of the techniques. In the AR and
FMED case, it is clear that the low-frequency portion of the
spectrum is well recovered. However, both methods attempt
to overestimate the high-frequency portion of the spectra.
Strictly speaking, the AR does not produce much better
results than the FMED. Actually, the computational cost
involved in the LP is much more expensive than the com-
putational cost of the FMED. In the LP case, the linear
programming problem is solved. The latter goal is achieved
with a routine based on the simplex method (Levy and
Fullagar, 1981). On the other hand, the FMED algorithm
needs only two FFTs per iteration. Thus we believe that
FMED is worth considering when we seek a fast and easy
way to process band-limited data.

It is difficult to say which is the best method to invert
band-limited data. The block interpretation of several tech-
niques allows us to explore the model space, as well as to
have an efficient way to assess the main features of the
model manifested in the output of each inversion.

Real data

0.2 0.4 0.6

TIME (SEC)

0.8

94

FiG. 6. Comparison of the FMED algorithm with the AR
LP methods. |ga) Reflectivilg/, (b) band-limited reflectivity

In many real applications, it is not necessary to obtain aFMED, (d) A

full-band reflectivity, it is enough to simply extend the band

only 10 or 20 Hz to increase resolution. That is the case we
are going to present. In the CDPs of Figure 8a, the zone of
interest is located at 1250 ms. A zero-phase deconvolution
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Fic. 7. Amplitude spectra of the traces shown in Fig
Fic. 5. Graphs (a, b, c, d) are the amflitude spectra of theReflectivity, (b) band-limited reflectivity, (c) FMED, (

time series in Figure

and (e) LP.
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was applied to remove the wavelet, producing the mean The well known LP (Levy and Fullagar, 1981; Oldenburg
spectra shown in Figure 9a. The band from 10 to 70 Hz is theet al., 1983) and AR (Lines and Clayton, 1977; Walker and
constraint of the problem, but instead of extending the high Ulrych, 1983) procedures were compared with the algorithm
frequencies up to the Nyquist frequency (125 Hz), the band presented. The three methods offer similar results, although
was extended from only 70 to 90 Hz. The low-frequency the LP seems to estimate high frequencies better than the
band was completely extended. The output is shown in AR and FMED. We believe that the FMED constitutes an
Figure 8b. Note a small Spllttlng of the reflections at 1275 ms. efficient and easy way to perform the inversion of band-
This result was later confirmed with a synthetic seismogram |imited data, and we strongly believe the proposed approach

(there is a well at CDP 4640). In Figure 8b the mean poyides an unifying thread between Wiggins's approach and
spectrum of the extended data is shown. In this application, ha |inear programming method.

the reconstruction of only a few samples of the reflectivity Finally, the effectiveness of the FMED was tested with
Spectra has been made to get a reliable model. field data. In this example, the FMED was used to resolve

CONCLUSIONS two close reflections. The result was later verified with a
synthetic seismogram computed from a sonic log at the
The minimum entropy algorithm with frequency-domain productive level of the well.
constraints offers a different way to process band-limited
data. We have shown that it is possible to reconstruct a
spike-like reflectivity series from a portion of its spectrum.
When compared with the original reflectivity series, the i ) .
reconstructed signal results are similar, even when noise is This work was partly supported by the Consejo National
added to the data. de Investigaciones Cientificas y Tecnicas (Argentina). Also,
The algorithm is robust under noise conditions. This is We wish to thank Prof. T. J. Ulrych for supplying the AR and
because the low- and high-band frequency estimates ard-P codes used in the preparation of the paper. M. D. Sacchi
calculated from the known midband frequency samples would like to thank Prof. T. J. Ulrych for his useful com-
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MED with Frequency Constraints 945
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