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High-resolution velocity gathers and offset
space reconstruction

Mauricio D. Sacchi* and Tadeusz J. Ulrych*

ABSTRACT

We present a high-resolution procedure to recon-
struct common-midpoint (CMP) gathers. First, we
describe the forward and inverse transformations be-
tween offset and velocity space. Then, we formulate
an underdetermined linear inverse problem in which
the target is the artifacts-free, aperture-compensated
velocity gather. We show that a sparse inversion leads
to a solution that resembles the infinite-aperture ve-
locity gather. The latter is the velocity gather that
should have been estimated with a simple conjugate
operator designed from an infinite-aperture seismic
array. This high-resolution velocity gather is then used
to reconstruct the offset space.

The algorithm is formally derived using two basic
principles. First, we use the principle of maximum
entropy to translate prior information about the un-
known parameters into a probabilistic framework, in
other words, to assign a probability density function to
our model. Second, we apply Bayes’s rule to relate the
a priori probability density function (pdf) with the pdf
corresponding to the experimental uncertainties (like-
lihood function) to construct the a posteriori distribu-

tion of the unknown parameters. Finally the model is
evaluated by maximizing the a posteriori distribution.
When the problem is correctly regularized, the algo-
rithm converges to a solution characterized by differ-
ent degrees of sparseness depending on the required
resolution. The solutions exhibit minimum entropy
when the entropy is measured in terms of Burg’s
definition. We emphasize two crucial differences in
our approach with the familiar Burg method of maxi-
mum entropy spectral analysis. First, Burg’s entropy
is minimized rather than maximized, which is equiva-
lent to inferring as much as possible about the model
from the data. Second, our approach uses the data as
constraints in contrast with the classic maximum en-
tropy spectral analysis approach where the autocorre-
lation function is the constraint. This implies that we
recover not only amplitude information but also phase
information, which serves to extrapolate the data
outside the original aperture of the array. The tradeoff
is controlled by a single parameter that under asymp-
totic conditions reduces the method to a damped
least-squares solution. Finally, the high-resolution or
aperture-compensated velocity gather is used to ex-
trapolate near- and far-offset traces.

INTRODUCTION dow sometimes cause a poor velocity resolution when using

Conventional velocity analysis is performed by measuring
energy along hyperbolic paths for a set of tentative veloci-
ties. The analysis of the results in the    (two-way zero
offset time and velocity) plane serves to estimate the stack-
ing velocity that is later used to construct the zero-offset
section. The semblance (Neidell and Taner, 1971) is one of
the most popular measures of coherent energy along hyper-
bolic trajectories in common-midpoint (CMP) gathers. The
semblance measures the ratio of the signal energy within a
window to the total energy in the window. Noise with
nonzero mean and closely-spaced events in the same win-

this measure. The poor resolution of the semblance has lead
to more sophisticated techniques based on the eigenstruc-
ture of the data covariance matrix (Biondi and Kostov, 1989;
Key and Smithson, 1990). In these techniques, the data
covariance matrix is decomposed into signal and noise space
contributions. Different metrics based on the eigenvector of
the signal space are then used to measure coherent energy
along hyperbolic paths.

The semblance, or any other velocity measure, can be
displayed as a contour map where each maximum corre-
sponds to the pairs   Mapping the original data back
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from this space is not possible since these energy measures
do not contain phase information. This short-coming may be
overcome, however, by using constant-velocity stack gath-
ers that consist of constant-velocity CMP-stacked traces.
For an infinite-aperture array, the summation along hyper-
bolas should map into a point in the velocity space (for a
spike-like wavelet). Limited aperture, however, spreads the
information and not only makes the identification of each
seismic event difficult, but also degrades any reconstruction
of the offset space beyond the original aperture. Hence,
there is a practical importance for estimating high-resolution
or aperture-compensated velocity gathers.

To reduce amplitude smearing in the velocity space,
Thorson and Claerbout (1985) performed the inversion of a
set of constant-velocity stacks in t - h (time-offset) space.
The problem involves the inversion of large matrices that is
a difficult task. Thorson and Claerbout developed a stochas-
tic inversion scheme that converges to a solution with
minimum entropy. The latter is achieved by defining a
Gaussian prior pdf with variable variance. To avoid the
inversion of such huge matrices, Yilmaz (1989) posed the
problem in an elegant manner in f - h (frequency-offset)
space. First, the data are stretched along the time axis and
then are Fourier transformed to the f - h domain. Finally,
a system of complex equations is solved at each frequency
with a singular-value decomposition (SVD) routine. The
reconstructed CMP gather from the SVD velocity gather
exhibits an important signal-to-noise-ratio enhancement and
a considerable reduction of amplitude smearing. However,
SVD or damped least-squares do not provide enough reso-
lution in model space to correctly extrapolate near- and
far-offset traces. Damped least-squares can be derived using
the Bayes rule assuming a Gaussian prior. Clearly, a
Gaussian prior will impose smoothness on our model.

We seek a velocity gather that resembles the infinite-
aperture velocity gather. Therefore, mapping the data from
velocity space to offset space not only enhances hyperbolic
events, but also extrapolates far- and near-offset traces. In
our approach, we follow Yilmaz (1989) but instead of using
SVD we derive a maximum a posteriori (MAP) estimator of
the velocity gather at each single frequency. The MAP
solution leads to velocity gathers consisting mainly of iso-
lated pairs in the   domain, a procedure which, when
mapped back to the CMP space, extrapolates hyperbolic
energy outside the original aperture.

VELOCITY GATHERS

Forward and conjugate mapping

Velocity estimation from a CMP gather can be regarded as
a linear inverse problem. We are looking for feasible velocity
models capable not only of enhancing hyperbolic energy but
also of extrapolating near- and far-offset traces. Before
dealing with the formalism of the inverse problem, we must
understand how aperture in the data space and discretization
in the model space affect forward and inverse mapping.

First we describe the transformations that map the offset
space into the velocity space and vice-versa. For this pur-
pose let   be the velocity gather (the model that we are
seeking) and d(h, t) the data (the CMP gather). Let the
variables h, v, t, and  designate the offset, velocity, time,

and intercept time, respectively. The forward transformation
from offset to velocity involvessummation along offset

        (1a)

Similarly, the conjugate transformation (mapping from
locity space to offset space) involves summation along
velocity axis

         

In equation (lb),  t) is the reconstructed CMP gather.
Letting  =  we obtain

ve-
the

(lb)

    (2a)

       (2b)

In the f - h domain, the transformation from offset to
velocity may be computed at each frequency leading to an
easy to handle system of complex equations. To achieve this
goal we have to eliminate the square root in equations (2a)
and (2b). A stretching transformation on the time axis serves
our purpose

    

With this transformation, hyperbolic
formed into parabolic traveltimes

traveltimes

         

are

We can now write down the forward
mations in stretched coordinates

andtranspose transfor-

trans-

h
        (3a)

       (3b)

Equations (3a) and (3b) describe a special form of the
generalized Radon transform (Beylkin, 1987), which in our
particular problem represents a parabolic transform
(Hampson, 1986). Finally, taking Fourier transforms of
expressions (3a) and (3b) we end up with our system of
complex linear equations in the f - h plane

     (4a)

  =    (4b)
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 = (5b)

where d and m are vectors of lengths ND and NP, respec-
tively. The elements of the finite aperture forward operator
are given by

 .  (6)

Equation (5a) and (5b) define the conjugate and forward
mapping of the problem. The operator  is the conjugate or
transpose operator, also called the back-projection operator
(Claerbout, 1992). Many problems in geophysics are solved
with conjugate operators. Claerbout gives an interesting list
of forward operators and their conjugate counterparts. A
good example is migration, where we attempt to undo phase
shift without modifying the power spectrum of the data and
thus without danger of noise amplification. Although this is
an obvious advantage, the tradeoff degrades the resolution.
Substituting equation (5a) into (5b) we obtain

 = (7)

Let us now examine under what circumstances the trans-
formation L is unitary, or in other words,  = I. The
elements of  =  are given by

1
  

   
(8)

 

where   + 1) is a normalization factor.
Expression (8) corresponds to a geometric series with the
following sum

1
 

   

      

  

 
 .

(9)

The kernel given in equation (9) arises from effects of
discretization in the velocity space. We note that G depends
only on the velocity range scanned and on  Sampling the
velocity axis with a dense grid yields the identity matrix,

 =  It must be pointed out that, for a fixed velocity range,
decreasing the discretization interval also increases the
number of unknowns. It follows that the problem is naturally
underdetermined. Finally, the original CMP gather and the
predicted one (by means of the conjugate operator) are
related by a special type of convolution

       (10)

This expression explains the smearing of the reflections Equation (16) shows that the model computed with the
within the original aperture and the blurred continuation of conjugate operator recovers the original aperture plus a zero
the data outside the original aperture when this model is usedvalue extrapolation

for trace extrapolation. Clearly, these are end effects and not
extrapolated traces.

In the previous analysis we have studied the effects of
discretization. We proceed by considering the finite-aperture
problem itself. To simplify the analysis we will assume that
G = I or what is equivalent, that the discretization does not
introduce any artifacts in the reconstructed CMP. Let  be
the infinite-aperture CMP gather, in other words, the gather
we should have recorded for an infinite cable length. Let 
be the corresponding forward mapping for this unrealistic
array

 = (11)

Now let A be the aperture matrix that transforms an infinite
aperture CMP into a limited aperture CMP. This matrix is
equivalent to abox-carwindow and its form is

The matrix  operates like a window retrieving only a
limited number of traces from the infinite-aperture CMP
gather. Multiplying both sides of equation (11) by A yields
the system of equations for the limited aperture gather

  (13)

We recall that AL, = L and Ad, = d. Letting the velocity
gather computedby means of the conjugate operator be 
we obtain

   (14)

The reconstructed and extrapolated CMP gather will be
=  . Then by equation (14)

   (15)

Finally, because we assume a problem free from discretiza-
tion artifacts  =  we can write

  
(16)
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 :

0
0

 d .
0
0
0
:.

When the discretization is not negligible,   and the
extrapolated CMP gather will be

 . (18)
0
0
0

. :

0

.:.

We now illustrate our discussion by means of a synthetic
example. Three primary events corresponding to a velocity
of 3300 m/s, with zero-offset times of 0.4,0.8, and 1.2 s, were
used to simulate a CMP gather. Superimposed on these
events is a primary reflection corresponding to a velocity of
3000 m/s at 0.2 s with its corresponding multiples at 0.4,0.6,
and 0.8 s, . . . . The CMP gather is plotted in Figure la.
Near- and far-offset traces are located at 0 and 3500 m,
respectively. The spatial sampling in the offset space is 50 m.

Only traces with offsets ranging from 1000 to 2500 m were
used to estimate the velocity gather. This spatial window
was contaminated with random noise with a standard devi-
ation of 0.1 (Figure lb). In Figure 2a, we show the velocity
model computed with the conjugate operator. The spatial
window was used to reconstruct the offset space. The results
are shown in Figure 2b. We recall equation (16) where we
showed that this approach leads to zero trace extension.

The frequency distortion of shallow events is caused by
the t2 transformation that compresses the data before 1 s and
stretches the data after 1 s. To compute the velocity gather
in   we must apply a  transformation with the
consequence that data before 1 s are stretched and data after
1 s are compressed. Because of alias introduced by the 
compression before 1 s, the reconstruction is not exact and
leads to the aforementioned distortion.

BAYESIAN INVERSION

Inverse problems are naturally ill-posed since they do not
satisfy the conditions of existence, uniqueness, and stability
of the solution (see for example, Tikhonov and Goncharsky,
1987). The technique that permits the construction of a
unique and stable solution by introducing some type of prior
information is called regularization. The prior information
can be given in a deterministic form or in a stochastic form.
Positivity is a common deterministic constraint that is useful
for solving a variety of inverse problems (e.g., magnetic
susceptibility inversion, density inversion, etc.). A stochas-
tic prior assumes some relevant information about the model
in terms of moments of corresponding distributions.

In many problems, the regularization is carried out regard-
less of the nature of the model we are seeking. That is the

FIG. 1. (a) Synthetic CMP gather. (b) Spatial window extracted from panel (a). Panel (b) was contaminated
with Gaussian noise  = 0.1).
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case of the widely used quadratic regularization. This
method has the advantage of imposing smoothness to the
model that is the common way to avoid the amplification of
random errors associated with each observation. The well
known prewhitening technique used in spiking and predic-
tive deconvolution is an example of quadratic regularization.
However, in many situations, we may wish to use other
types ofregularization that permit us to incorporate some
relevant information about the model. If the additional
information is in the form of a pdf, it can be combined with
the data using Bayes’s rule. In the next section, we will show
how the prior probability induces a particular regularization
on the inverse problem, i.e., a Gaussian prior leads to
quadratic regularization.

To clarify some concepts, let us start with Bayes’s rule. If
p(A/I) denotes the probability of proposition A given prop-
osition I, then Bayes’s rules establishes the way of updating
p(A/I) when additional information B is incorporated,

 
 =  

 
(19)

In equation (19) the proposition I is the prior information,
and p(A/I) is the prior probability of A conditional only on
the information given by I. The term on the left-hand-side of
equation (19) is called the posteriori probability. For
Bayesians, probability is a measure of the degree of plausi-
bility of a proposition. Basically, Bayes’s rule serves to
update the plausibility of a proposition when our state of
information changes because new data are acquired.

Bayesian approach to inversion

when noise is considered is given by
The relationship between m`odel space and data space

    (20)

where n stands for the noise term. Letting m = A be the
proposition we want to assess and d = B represent our data,
Bayes’s rule can be written as

 =
 

(21)

where for simplicity we have omitted I in the notation. To
clarify notation, p(d/m) is the probability or likelihood of
obtaining the data d assuming that the model m is true and
given the prior I, p(m) is the prior probability of the model,
p(d) is the data likelihood and enters into the problem as a
normalization factor, and p(m/d) is the posterior probability
of the model.

To use the Bayesian formalism we must consider two
remaining problems. First, given p(m/d), how is m deter-
mined, and second, how is p(m) determined. The first
problem can be solved by an appropriate choice of a decision
rule. For example, we could use the MAP solution, mMAP,
which maximizes p(m/d). The second problem, which is
probably one of the most cumbersome problems in inverse
theory, is how to translate our prior appraisal about the
model into a probability density function.

bility.

Various attempts have been made to find prior probabili-
ties that represent a state of total ignorance about the model
(Jeffreys, 1961; Jaynes, 1968). These priors are derived from
mathematical arguments of symmetry and invariance. In our
approach, we first derive a global constraint in terms of
moments of the underling model pdf, and then we use the
principle of maximum entropy to compute the prior proba-

FIG. 2. (a) Velocity processing with the conjugate operator. Panel (b) shows the reconstructed CMP gather.
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Prior probabilities and maximum entropy

Consider a continuous
entropy h given by

variable m with pdf p(m). The

expresses the uncertainty associated with the distribution
P(m). Therefore, the distribution that most honestly de-
scribes our data, given only what we know without assuming
anything else, is the one with maximum entropy (Jaynes,
1968). It is natural, therefore, that when we attempt to make
inferences based on incomplete information, that we should
draw them from that probability distribution that has the
maximum entropy allowed by the available information.
Suppose we have information about m in the form of some
global constraint S(m). Then, the corresponding maximum
entropy probability distribution will have the following form

     (23)
where the constants   are Lagrange multipliers associ-
ated with this constrained maximization problem. In fact, 
is a normalization factor that yields   = 1. The
constraint to the problem, S(m), contains our prior informa-
tion about the model. [As pointed out by Jaynes (1985), the
constraints need not be in terms of mathematical expecta-
tions.] Among all the possible solutions to the underdeter-
mined inverse problem described in the previous sections,
we seek solutions in which a reasonable feature of the model
is reached (feasible solutions). For an infinite-aperture array,
the velocity gather will contain isolated wavelets at each pair

  Each wavelet will occupy a single point on the
velocity axis with support along  depending on the frequency
content. A solution with minimum structure (a sparse solution)
will fulfill our objectives. A constraint of the form

where the gradients are given by
      (24)

  
 

can be used to quantify the amount of sparseness of a vector.
In equation (24), b is a small additive perturbation that
represents the default power in absence of hyperbolic
events. It also enforces continuity to the gradient of S(m)
that will be used in the derivation of our algorithm. When the
signals are linear events,the formalism leads to a 2-D
spectral estimation problem in which the velocity axis (in
fact the ray parameter axis) can be replaced by the wave-
number, and the argument  represents a spectral
power. Consequently, when b = 0 the metric defined by
equation (24) is analogous to Burg’s entropy (Burg, 1975).

The prior probability according to equation (23) and (24) is
given by

     

 

     

(25)

For a single element of the vector of unknowns, the 1-D prior
is given by

   

1 (26)

  +  

where parameter  controls the amount of sparseness in the
model. Large values of  lead to sharp distributions. On the
other hand, when  is very small, the last expression yields
a uniform priori.

Having defined our constraint, we recall equations (23)
and (25) to compute the posterior distribution

     (27)
To derive the last equation, we assumed that the noise
vector is normally distributed. In other words, the condi-
tional probability of the data, given the model, is Gaussian.
K is a normalization constant and C is the covariance matrix
of the noise. It turns out that the  solution is achieved
by minimizing the following objective function

        

where  = 

(28)

Minimization of the objective function

For simplicity we separate the objective function as fol-
lows

    (29)

At the MAP solution the following expression must be
satisfied

 
   

The matrix  is diagonal with elements given by

   + (32)

Finally, we write the solution in the following form

      (33)

The last expression can be rewritten as follows (Tarantola,
1987, 158)

m =  + (34)

The parameter A controls the ratio between sparseness and
fitting. The diagonal matrix P plays a fundamental role in the
inversion of sparse models. At each iteration only large
powers, are kept, reducing the powers that are not
relevant in fitting the data. The background power b makes
the gradient continuous when  approaches zero. It also
provides a lower bound to the constraint S(m). It is inter-
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esting to note that equations (33) and (34) resemble the
damped least-squares solution and the minimum model norm
solution, respectively.

Our solution has been reduced to a nonquadratic regular-
ized least-squares solution. In damped least-squares, or in
the SVD solution, the regularization is accomplished via a
constant perturbation to the main diagonal of the pseudoin-
verse matrix (Lines and Treitel, 1984). This is equivalent to
assuming that our prior is Gaussian. This assumption will
introduce smoothness in the solution, which is precisely
what we do not want. In fact, when b is large, In (    + b)

  +  (b) and equation (26) can be replaced by

This is a Gaussian prior that yields the
tion or damped least-squares solution

    

quadraticregulariza-

(35)

m =  +   (36)

or according to equation (34)

m =  + (37)

where =  When exact data are considered, C = 0,
and equation (37) reduces to the minimum norm solution for
underdetermined linear inverse problems (Tarantola, 1987).
Another interesting feature of the solution occurs for large
values of  In this case the pseudoinverse matrix is diagonal
dominant, and the model corresponds to the one we might
have computed with the conjugate operator.

In the derivation of the prior density, we assumed the
existence of only a global constraint S(m). Suppose that we
wish to compute the prior probability, then we need to assign

a numerical value to the global constraint and manipulate the
equations to obtain the Lagrange multipliers. Actually, we
do not have a numerical value of the constraint. Our only
constraint has been the statement that the solution should be
sparse, which is equivalent to finding a minimum of S(m).
We can, however, determine the correct prior by means of
the misfit function Q. Since the noise has been assumed
Gaussian, Q obeys a x2 statistic and the expected value of
the misfit is given by E(Q) = NP, where NP is the number
of parameters. A line search is performed to find the value of
 which yields the proper misfit target. It is straightforward

to see that this single parameter completely defines the priori
probability and the numerical value of the constraint. This
can be important in problems in which we seek not only a MAP
solution but we also wish to describe the inverted model by
means of other measures such as mean, median, variance, etc.

The specification of the proper misfit is still a problem
since we know the actual structure of the noise covariance
matrix only approximately. However, we have found that
for reasonable levels of noise the parameter  can be
estimated easily using a tentative misfit target. The results
can be visually inspected to find evidence of overfitting or
underfitting. When data are over&ted, the algorithm at-
tempts to create hyperbolic energy from the noise. When
mapping the model back to the offset space it is easy to
recognize new hyperbolas in the original aperture.

The synthetic data plotted in Figure lb were processed
with the damped least-squares and our sparse inversion
scheme. The results achieved with the damped least-squares
technique are shown in Figure 3a (velocity gather) and
Figure 3b (reconstructed gather). We emphasize that only
offsets ranging from 1000 to 2500 m were used to invert the

FIG. 3. (a) Velocity gather computed with the least-squares approach. Panel (b) shows the reconstructed CMP
gather.
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FIG. 4. (a) High-resolution velocity gather computed with the sparse inversion scheme. Panel (b) shows the
reconstructed CMP gather.

velocity panel. The resolution in model space is clearly
improved. However, near- and far-offset traces are not
correctly extrapolated. The same example was then solved
with the sparse inversion algorithm. The velocity panel is
shown in Figure 4a. Primary and multiple events are per-
fectly isolated and the noise does not introduce spurious
details in the model. Finally, the velocity gather was used to
reconstruct the offset space. The result is shown in
Figure 4b. Near- and far-offset traces are correctly extrapo-
lated, except for an unavoidable phase shift in the wavelet
caused by the t2 transformation.

DISCUSSION

The high-resolution algorithm described here provides an
interesting new approach to limited aperture problems. By
defining the problem in the f - h domain, we have been able
to decouple discretization and aperture effects. The discret-
ization artifacts are reduced by decreasing the sampling
interval in the velocity space. This effect emphasizes the
underdetermined nature of the problem.

The sparse inversion technique allows us to construct a
solution consisting of a few nonzero velocity events, a
feature that is consistent with the expected model. We have
shown the importance of the prior information in the overall
inversion and how the prior induces a particular regulariza-
tion of the inverse problem. The resolution that is achieved
permits not only the correct reconstruction of the original
aperture but also the extrapolation of near- and far-offset
traces.

The maximum entropy principle imposes a noncommittal
procedure for determining the required a priori densities.

The algorithm uses these densities to produce a sparse
solution, which according to Burg’s definition of entropy,
also corresponds to a minimum entropy solution. There is no
inconsistency here; the principle of maximum entropy is
used to find pdfs. The cost function that is defined in terms
of these pdfs may lead to a sparse model.

Finally, we would like to point out that the algorithm can
be used efficiently to solve other problems. Two examples
that come to mind are 2-D spectral estimation in sonar
processing and the separation of down and upgoing waves in
VSP. These issues are under investigation.
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