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A bootstrap procedure for high-resolution
velocity analysis

Mauricio D. Sacchi∗

ABSTRACT

A method is given for further improving velocity es-
timates derived from high-resolution velocity analysis.
In conventional velocity analysis, a set of tentative ve-
locities is used to apply a normal moveout (NMO) cor-
rection to a set of spatio-temporal windows, the coher-
ence measure is evaluated for each velocity and finally,
the velocity estimate is retrieved from the peak of the
coherence measure. Because analytical expressions for
velocity uncertainties are difficult to derive, I propose
an intensive statistical procedure, the bootstrap method,
to assess the accuracy of the velocity estimate. In the
bootstrap method, I create a data sample by randomly
drawing seismic traces with replacement from a window
of the common midpoint gather (CMP). Next, I calculate
the velocity that maximizes the coherence measure for
each bootstrap realization. The variation of this velocity
provides a means to compute standard errors.

I also use the bootstrap method to construct an aver-
age coherence measure and a kernel density estimator of
the velocity that maximizes the coherence. The average
coherence exhibits an important attenuation of spurious
events while retaining enough resolution to model reflec-
tions properly with similar moveout curves. The latter is
illustrated with synthetic and field data examples.

INTRODUCTION

The bootstrap procedure (Appendix A), originally develop-
ed by Efron (1979) to compute standard errors, is a computer-
intensive technique for assigning measures of accuracy to
statistical estimates. The technique can be also used to assign
confidence intervals (Efron and Tibshirani, 1993). In general,
bootstrap methods are well suited for problems where the
parameters of interest cannot be estimated by analytical means.

The basic idea in bootstrapping is that the actual data are
resampled to produce a large number of data sets. The indi-
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vidual estimates of a given parameter may then be used to
compute its standard errors and/or confidence intervals. In
seismology, bootstrap methods have been applied to different
problems: estimation of earthquake magnitude uncertainties
(McLaughlin, 1988), estimation of standard error of earth-
quake depths (Tichelaar and Ruff, 1989), estimation of shear-
wave splitting errors (Sandvol and Hearn, 1994), and velocity
and depth errors determined by stacking receiver functions
(Gurrola et al., 1994). The bootstrap scheme was also applied
by Tauxe et al. (1991) to analyze directional paleomagnetic
data. In time series analysis, Sacchi and Ulrych (1994) use the
Extended Information Criterion, which is based on the boot-
strap method, to estimate optimum trade-off parameters in
seismic deconvolution. This criterion was also used to estimate
the number of harmonics required to model a deterministic
time series (Ulrych and Sacchi, 1995).

Velocity analysis, in general, is based on the identification of
the peaks of a coherence measure. A set of trial velocities is
used to apply on normal moveout (NMO) correction to a win-
dow in the common midpoint (CMP) gather; the velocity esti-
mate is that velocity which maximizes the coherence measure
(Neidell and Taner, 1971). In this problem the statistic of inter-
est is the velocity where the coherence measure exhibits a peak.

In this paper, the coherence measure is derived from the
eigenspectra of the covariance matrix of the data (Key and
Smithson, 1990). The bootstrap technique is used to retrieve
velocity peaks with the associated standard errors, an average
coherence measure, and a Gaussian kernel density estimate
(Silverman, 1986) of the velocity that maximizes the coherence.

VELOCITY ANALYSIS

In a CMP gather the moveout curve of a reflection is gener-
ally approximated by

ti =
(
t2
0 + d2

i

/
v2)1/2

i = 1, 2, . . . , N, (1)

where di is the source-receiver offset at the i th trace, v is the
velocity of the reflection, and t0 is the two-way zero-offset trav-
eltime. The velocity analysis is performed in consecutive tem-
poral windows by evaluating a coherence measure along the
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List of symbols

B = Number of bootstrap realizations
C(t0, v) = Coherence measure at intercept time t0

and velocity v
C∗i (t0, v) = Coherence measure derived from the

resampled data, i = 1, B
〈C∗(t0, v)〉 = Mean coherence obtained via equation (6)

˜
R(t0, v) = Data covariance matrix

˜
R̂(t0, v) = Estimator of the data covariance matrix

˜
R̂
∗
i (t0, v) = Estimator of the data covariance matrix

computed from the resampled data

˜
Rs = Signal covariance matrix
σ 2

n = Variance of the uncorrelated noise

˜
X(t0, v) = Data matrix; each row corresponds to a

segment of 2M + 1 samples of a seismic
trace centered about a moveout curve
with intercept time t0 and velocity v

˜
X∗i (t0, v) = Data matrix after resampling with

replacement the rows of
˜
X(t0, v)

v∗i (t0) = Velocity that maximizes the coherence
C(t0, v)∗i , i = 1, B

〈v∗(t0)〉 = Mean velocity after B bootstrap
realizations [equation (4)]

σ ∗(t0) = Standard error of the velocity estimate
at intercept time t0 computed after B
bootstrap realizations [equation (5)]

λi = Eigenvalues of the covariance matrix
λ̂i = Eigenvalues of the estimator of the

covariance matrix

moveout curve. The analysis is carried out for a set of trial
velocities; the velocity corresponding to the peak of the coher-
ence measure is interpreted as the velocity that best flattens the
seismic event. However, finite aperture, additive noise, static
shifts, and departures from the hyperbolic model may deterio-
rate the accuracy of the estimate.

If C(t0, v) denotes a coherence measure of interest at a win-
dow centered at t = t0, an estimate of the velocity v is obtained
at the peak value of C(t0, v).

Bootstrap application

The coherence measure described in Appendix B, C(t0, v),
depends on the eigenvalues of the data covariance matrix. The
data window of length 2M+1 centered about a moveout curve
with intercept time, t0, and velocity, v, is expressed as follows:

˜
X(t0, v) =


x1,t0−M1t · · · x1,t0 · · · x1,t0+M1t

x2,t0−M1t · · · x2,t0 · · · x2,t0+M1t

x3,t0−M1t · · · x3,t0 · · · x3,t0+M1t

· · · · · · · · · · · · · · ·
xN,t0−M1t · · · xN,t0 · · · xN,t0+M1t

 ,

(2)
where xj,t0+k1t indicates the amplitude of trace j at the interpo-
lated time sample t0+ k1t . The estimate of the data covariance

matrix from equation (B-8) becomes

˜
R̂(t0, v) = 1

2M + 1 ˜
X(t0, v)

˜
XT (t0, v). (3)

In the bootstrap procedure, B coherence measures C∗i (t0, v),
i = 1, B are computed by sampling with replacement the rows
or the matrix

˜
X(t0, v). The resampled data window at the boot-

strap realization i is denoted by
˜
X∗i (t0, v). This is used to com-

pute the i th realization of the data covariance matrix
˜
R̂
∗
i (t0, v)

and its associated coherence measure C∗i (t0, v). From the max-
ima of each coherence measure, I estimate B bootstrap es-
timates of the velocity v∗(t0)1, v

∗(t0)2, . . . , v
∗(t0)B. This set of

velocities is used to obtain a mean velocity and its standard
deviation, 〈

v∗(t0)
〉 = 1

B

B∑
i=1

v∗i (t0) (4)

and

σ ∗(t0) =
√√√√ 1

B− 1

B∑
i=1

[
v∗i (t0)− 〈v∗(t0)

〉]2
. (5)

The bootstrap technique is also used to compute a mean co-
herence measure,〈

C∗(t0, v)
〉 = 1

B

B∑
i=1

C∗i (t0, v). (6)

Later examples show that the mean coherence measure dras-
tically reduces spurious maxima that may lead to misleading
interpretations.

Figure 1 is the data window for a single reflection after ap-
plying an NMO correction with an incorrect velocity. In the
same panel I reproduce two bootstrap realizations obtained
by resampling with replacement the traces of the data window
[rows of

˜
X(t0, v)]. Figure 2 shows the reflection after NMO

FIG. 1. A reflection within a gate of analysis after NMO correc-
tion. An incorrect velocity, v, was used to perform the NMO
correction (left). The left panel is mathematically represented
in the text with the matrix

˜
X(t0, v), where t0 is the intercept time

associated to the center of the gate and v is the velocity used to
perform the NMO correction. Two bootstrap realizations (cen-
ter and right),

˜
X∗(t0, v), were computed by resampling with

replacement traces from the original window (left).

FIG. 2. A reflection within a gate of analysis after NMO cor-
rection. The correct velocity, v, was used to perform the NMO
correction (left). Two bootstrap realizations (center and right)
were computed from the original window (left).
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correction with the correct velocity together with two boot-
strap realizations. When the right velocity is used, the coher-
ence of the signal in not affected. An accurate velocity will flat-
ten the coherent reflector. Hence, interchanging traces [rows
of

˜
X̂(t0, v)] will only alter the influence of the noise in the struc-

ture of the covariance matrix
˜
R(t0, v). When the trial velocity

does not accurately predict the moveout of the reflection, the
bootstrap procedure will help to minimize near-offset contri-
butions that tend to broaden the coherence peak.

The output of the bootstrap procedure is a table of mean ve-
locities and standard errors for each temporal window which
may be used for automatic event detection. In this case, the
presence or absence of signal may be assessed by a simple test
on the standard error of the velocity. Only velocities with stan-
dard error below a given threshold are considered to indicate
signal.

According to Efron and Tibshirani (1993), B= 50 is often
enough to give a good estimate of standard errors. In contrast,
the number of bootstraps samples needs to be much larger
to compute confidence intervals (B> 1000), thereby requiring
a significant computational effort. However, a target-oriented
analysis may substantially decrease the computational cost by
limiting the temporal analysis windows in the CMP to fall
within the zone of interest. Partial stacking (summation of adja-
cent traces after correction) may improve the estimation of the
data covariance matrix. Another advantage of partial stacking
is the reduction of the dimension of the covariance matrix and
therefore also the computational cost of the procedure (Biondi
and Kostov, 1989).

EXAMPLES

Synthetic simulation

The CMP in Figure 3 consists of 36 traces distributed between
40 and 1400 m in 40-m increments. Two reflections of 2400 and
2500 m/s located at t0 = 0.4 s were used to test the resolution
of this algorithm. Two single reflections were simulated at 0.6
and 0.8 s (Table 1).

The coherence measure was retrieved from the original
36 traces using 16 gates of length 0.06 s or M =±8 samples.
The data covariance matrix is computed using equation (3)

FIG. 3. A synthetic CMP. The data were computed from the
parameters shown in Table 2.

after a partial stacking of 6 nonoverlapping adjacent traces.
This operation leads to a 6× 6 covariance matrix and a partial
improvement of the S/N ratio. At this point some comments
are in order. First, it is clear that the doublet has not been
properly resolved by the coherence measure. In fact, at
t = 0.4 s we can visualize three peaks. Second, the relative
amplitude of the peaks is not modeled correctly. Figure 5
shows the coherence at four different values of the intercept
time, t0 = 0.2, 0.4, 0.6, and 0.8 s.

The average coherence measure computed after 50 boot-
strap realizations is portrayed in Figures 6 and 7. In this case,
the doublet is properly resolved and the relative amplitude of
the peaks is honored.

The reason the coherence computed from the data itself
(without random replacement) cannot identify the presence
of the doublet at 0.4 s is a direct consequence of a measure
devised to identify a single event (Key and Smithson, 1990).
The false peak located between the true velocities (2400 and
2500 m/s) in Figure 4 is because of a coherent alignment of
near-offset energy from both reflections. Since the average co-
herence (Figure 7) can identify the doublet correctly, it ap-
pears that the bootstrap procedure annihilates any coherent
alignment of energy at the intermediate velocity. The latter
has a simple explanation: when one of the reflections is flat-
tened properly, the random replacement of traces destroys any
residual coherence provoked by the presence of multiple wave-
forms. In the long run, the average coherence clearly enhances
the two peaks (Figures 6 and 7).

The Gaussian density kernel estimator (Appendix C) of the
velocity is displayed in Figures 8 and 9. The vertical bars in
Figure 9 indicate the position of the mean velocity and the
standard errors. The density estimator exhibits a clear bimodal
behavior at 0.4 s. The mean corresponds to the mean of the
population. In this case the peak of the density provides an
estimate of the velocity. For a unimodal and approximately
symmetric distribution, we can always identify the peak with
the mean. It is interesting to analyze the coherence measure at
t0 = 0.2 s. In this case, the density estimator resembles a uni-
form distribution. In other words, in the absence of signal, any
velocity can maximize the coherence. The bootstrap velocities
are shown in Table 2. Note that the variance of the velocity is
much larger where the density is wider (Figures 8 and 9) and
has several maxima (multiple events).

Field data example

An ensemble of 10 consecutive land CMP gathers (Figure 10)
was used to test the algorithm. The minimum offset is 50 m, and
the maximum offset is 1900 m. The corresponding semblance
panel is shown in Figure 11. The high-resolution analysis is used
to identify short-period multiple interferences.

Table 1. Synthetic CMP gather.

Event t[s]∗ v[m/s]‡ A∗∗

1 0.4 2400 1.0
2 0.4 2500 0.8
3 0.6 2500 −1.0
4 0.8 2600 0.5
∗Two-way traveltime.
‡Velocity.
∗∗Peak amplitude of wavelet.
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FIG. 4. The velocity spectrum shown at t0 = 0.2, 0.4, 0.6, and
0.8 s (Figure 3). The coherence does not properly resolve the
reflections at 0.4 s.

FIG. 5. The mean coherence measure computed after 50 boot-
strap replications.

FIG. 6. The mean coherence measure derived after 50 boot-
strap realizations. Time slices of velocity spectrum at t0 = 0.2,
0.4, 0.6, and 0.8 s (Figure 4). The coherence reflections at 0.4 s
are clearly distinguished. True velocities at t0= 0.4 s are v=
2400 and 2500 m/s.

FIG. 7. The coherence measure computed from the synthetic
CMP shown in Figure 2.
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Table 2. Synthetic example. The true reflections are located
at t = 0.4, 0.6, and 0.8 s (gates 9, 14, 19). Note the drop in the
standard error in those gates.

Gate t[s]∗ v[m/s]‡ σ ∗∗ v + 2σ v − 2σ

1 0.08 2360 253 2867 1852
2 0.12 2351 295 2941 1761
3 0.16 2426 296 3019 1832
4 0.20 2503 248 2999 2006
5 0.24 2482 309 3100 1863
6 0.28 2466 251 2969 1963
7 0.32 2540 329 3199 1880
8 0.36 2439 223 2885 1993
9 0.40 2464 52 2568 2359

10 0.44 2394 280 2954 1833
11 0.48 2282 237 2757 1806
12 0.52 2397 314 3026 1767
13 0.56 2440 276 2993 1888
14 0.60 2502 14 2531 2473
15 0.64 2543 298 3139 1946
16 0.68 2466 362 3190 1741
17 0.72 2423 321 3066 1780
18 0.76 2540 329 3199 1880
19 0.80 2594 21 2636 2552
20 0.84 2452 352 3158 1747
21 0.88 2276 277 2831 1721
22 0.92 2455 276 3008 1902
23 0.96 2315 263 2842 1787
24 1.00 2492 296 3084 1900
∗Two-way traveltime.
‡Mean velocity after 50 bootstrap replications.
∗∗Sample standard deviation.

FIG. 8. The Gaussian density estimator of the velocity that max-
imizes the coherence measure.

The high-resolution coherence measure is displayed in Fig-
ure 12. Although the resolution is enhanced, several ill-defined
minima may represent seismic events. The mean coherence
measure computed after 100 bootstrap samples is displayed in
Figure 13. Now the main features of the velocity panel are dis-
cernible. The multiple interferences are visible at t0 ≈ 1.05 s
and t0≈ 1.15 s. The Gaussian density kernel estimate of the
velocity peaks (Figure 14) presents a clear picture of the veloc-
ity spectrum. The multiples are located at t0≈ 1.05, 1.12, 1.15,
and 1.2 s. Table 4 shows the bootstrapped velocities and the
standard errors. The presence of multiple events increases the
standard error of the velocity (gate 17 in Table 3).

DISCUSSION AND CONCLUSION

The bootstrap procedure may be used to assign errors to seis-
mic velocities and to improve the velocity spectrum computed
from high-resolution coherence measures. The computational
cost of the problem may appear too excessive because the in-
dividual cost of an already high-velocity analysis technique is
multiplied by the number of bootstrap realizations. However,
the procedure can be accelerated by partial stacking and/or
target-oriented processing.

In the presence of multiples, the bootstrap procedure helps
annihilate spurious peaks that may result in a misleading in-
terpretation of the velocity spectrum. The standard deviation
of the velocity estimate can be computed; it is important to
stress, however, that the variance estimate may be an indicator
of multiple maxima in the velocity panel. The mean velocity
and its standard deviation can be used to estimate accuracy

FIG. 9. Time slices of the Gaussian density kernel estimator of
the velocity that maximizes the coherence measure (Figure 8).
Vertical bars indicate the position of the mean velocity and
the ±2σ bounds. In the upper part of the diagram (0.2 s), the
bootstrap analysis captures the flat signature that resembles
a uniform probability. In the absence of signal, the velocity
spectrum can exhibit a peak anywhere (no preferable velocity).
The bimodality at t0 = 0.4 s reflects the presence of the doublet.
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FIG. 10. Ensemble of 10 adjacent CMP gathers forming a super
CMP gather used for velocity analysis.

only when the assumption of a single waveform within the
gate of analysis is valid. In a general scenario, the Gaussian
density kernel estimator of the velocity offers an alterna-
tive manner to interpret velocity panels. The Gaussian kernel
density estimate of the velocity gives an idea of how many
times a velocity maximizes the coherence during the bootstrap
simulation.
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FIG. 11. Conventional semblance analysis of the super CMP
gather shown in Figure 10.

FIG. 12. Coherence measure computed from the super CMP.

FIG. 13. Mean coherence measure calculated using 100 boot-
strap realizations.

FIG. 14. Gaussian kernel density estimator of the velocity
peaks.



                         
Bootstrap Procedure for Velocity Analysis 1723

APPENDIX A

THE BOOTSTRAP METHOD

Suppose we have observed N samples of a generic variable
x = (x1, x2, x3, . . . , xN), from which we compute a statistic of
interest, S(x). A bootstrap sample, x∗ = (x∗1 , x∗2 , x∗3 , . . . , x∗N),
is obtained by randomly sampling the original data with re-
placement

x∗i = xk, i = 1, . . . , N, (A-1)

where k is a random uniform variable that can take values
1, 2, 3, . . . , N. The data may be numbers, vectors, matrices,
or any other structure, depending on the problem (Efron and
Tibshirani, 1993).

The bootstrap procedure to compute the standard error of
the statistic, S(x), is summarized as follows:

1) Compute B bootstrap samples, x∗1, x∗2, x∗3, . . . , x∗B, each
consisting of N values drawn with replacement from x.

2) Evaluate the statistic of interest associated with each
bootstrap sample

θ̂
∗
i = S

(
x∗i
)
, i = 1, 2, . . . , B. (A-2)

3) Estimate the standard deviation using the expression

σ ∗ =
[

1
B− 1

B∑
i=1

(
θ∗i − 〈θ∗〉

)2

]1/2

, (A-3)

where 〈θ∗〉 =∑B
i=1 θ

∗
i /B.

The statistic S(x) may not have an analytical form. Moreover,
it may be obtained as a cascade of different numerical proce-
dures. Figure A-1 illustrates the bootstrap procedure for deter-
mining standard errors. The individual estimators θ∗i , i = 1, B
can be used to compute other statistics, i.e., confidence in-
tervals, a histogram of θ , or a Gaussian kernel density es-
timator, which is a smooth representation of the histogram
(Appendix C).

FIG. A-1. Schematic representation of the bootstrap method. The original data (x1, x2, x3, x4) are resampled by randomly selecting
four elements with replacement. This is repeated B times to form the bootstrap estimate, θ∗i , i = 1, B. The B estimates are used to
compute the mean and the variance.
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APPENDIX B

COHERENCE MEASURES

The coherence measure of interest is derived from the eigen-
spectra of the covariance matrix of the data. Techniques that
exploit the eigenstructure of the covariance matrix have been
borrowed from the field of array processing (Bienvenu and
Kopp, 1983; Wax et al., 1984) and applied to velocity analy-
sis by different researchers (Biondi and Kostov, 1989; Key and
Smithson, 1990; Kirlin, 1992).

The seismic signal, in the presence of noise, at receiver i may
be modeled using the equation

xi (t) = s(t − τi )+ ni (t) i = 1, N, (B-1)

where τi = (t2
0 +d2

i /v
2)1/2− t0 is the delay of the signal between

the i th receiver and a receiver having d0 = 0. If a waveform is
extracted along a hyperbolic path parameterized with velocity
v, equation (B-1) may be rewritten as

xi (t) = s(t)+ ni (t) i = 1, N, (B-2)

where, to avoid notational clutter, I use the same variable x(t)
to designate the delayed waveform [equation (B-1)] and the
corrected waveform [equation (B-2)]. The covariance matrix
of the signal is defined as

Ri, j (t) = E[xi (t)xj (t)] i, j = 1, N, (B-3)

where E denotes the expectation operator. If we assume the
noise and signal to be uncorrelated, the data covariance matrix
becomes

Ri, j (t) = Rsi, j (t)+ σ 2
n (t)δi, j , (B-4)

where Rsi, j (t) denotes the signal covariance matrix and δi, j = 1
if i = j and δi, j = 0 otherwise.

Assuming a stationary source and a stationary noise process,
we may drop the dependence on t . It is easy to verify that the
eigenvalues of the covariance matrix become

λi = λsi + σ 2
n i = 1, 2, . . . , N, (B-5)

where λsi are the eigenvalues of the signal covariance matrix.
Assuming the signal is invariant across each trace, the signal
covariance matrix is rank one, and we can write the following
relationships:

λs1 = N · Ps

(B-6)
λsi = 0 i = 2, . . . , N,

where Ps= E[s(t)2] denotes the signal power. Using equa-
tion (B-5), the eigenvalues of the data covariance matrix
become

λ1 = N · Ps + σ 2
n

(B-7)
λi = σ 2

n i = 2, . . . , N.

For uncorrelated noise, the minimal N − 1 eigenvalues of the
data are equal to the variance of the noise. The largest eigen-
value is proportional to the power of energy of the coherent
signal plus the variance of the noise.

In real situations, the eigenspectrum is retrieved from an es-
timate of the data covariance matrix. If the stationary random
processes xi (t) and xj (t) are ergodic, the ensemble averages
defined in equation (B-3) can be replaced by time averages
(see, for instance, Bendat and Piersol, 1971). The estimator of
the covariance matrix becomes

R̂i, j = 1
2M + 1

M∑
k=−M

xi (k1t)xj (k1t). (B-8)

Using the results given in equations (B-6) and (B-7), it is evi-
dent that an estimator of the noise variance is

σ̂ 2
n =

1
N − 1

N∑
i=2

λ̂i . (B-9)

Similarly, an estimator of the signal energy is given by

P̂s = λ̂1 − σ̂ 2
n

N
, (B-10)

and equations (B-9) and (B-10) can be combined into a single
measure, the S/N ratio:

Ĉ = 1
N

λ̂1 −
∑N

i=2 λ̂i /(N − 1)∑N
i=2 λ̂i /(N − 1)

. (B-11)

The coherence measure, Ĉ, was devised assuming the pres-
ence of a signal and assuming the proper velocity is used to
extract the waveform. In general Ĉ is computed for different
gates and different trial velocities. It is convenient to implicitly
emphasize the dependence of the coherence on these param-
eters by denoting Ĉ(t0, v). When the gate of analysis contains
only noise, Ĉ(t0, v) tends toward zero. When the trial veloc-
ity does not match the velocity of the reflection, it is impossi-
ble to decompose the eigenstructure of the data into signal
and noise contributions. In this case, the covariance matrix
has a complete set of eigenvalues different from zero; there-
fore, it is not possible to recognize which part of the eigen-
spectrum belongs to the noise and which belongs to the signal
process.

Key and Smithson (1990) propose another coherence mea-
sure based on a log-generalized likelihood ratio that tests the
hypothesis of equality of eigenvalues:

Ŵml = M logN

[
(
∑N

i=1 λ̂i /N)N∏N
i=1 λ̂i

]
. (B-12)

In the absence of signal, λi = σ 2
n , i = 1, N and hence Wml = 0. In

the presence of a single reflected signal,λ1 6= 0, λi = 0, i = 2, N
and Wml →∞. Therefore,Wml provides a strong discrimination
between signal and noise. Key and Smithson (1990) combine
equations (B-11) and (B-12) into a single measure, Kml, given
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by the product

K̂ ml = ŴmlĈ. (B-13)

Only one eigenvalue, λ1, is required to estimate Ĉ, since

trace(
˜
R̂) = λ̂1 + λ̂2 + · · · + λ̂N, (B-14)

where

trace(
˜
R̂) =

N∑
i=1

R̂i i . (B-15)

It is easy to see from equations (B-11) and (B-14) that only λ̂1

is needed to compute Ĉ.

APPENDIX C

THE GAUSSIAN DENSITY KERNEL ESTIMATOR

The set of velocities v∗b(t0),b= 1, B may be also used to com-
pute the velocity histogram at t0. It is difficult, however, to dis-
play a suite of histograms in a single velocity panel. To obtain
a smoother representation of the histogram, I use a Gaussian
kernel density estimate (Silverman, 1986). The Gaussian den-
sity estimate is computed using the following expression:

f̂ (v, t0; h) = 1
Bh

B∑
i=1

φ

(
v − v∗i (t0)

h

)
, (C-1)

whereφ(x) is the normal probability density function, (1/
√

2π)
× exp(−x2/2). The parameter h is the window size of the

Gaussian density kernel estimator and regulates the amount
of smoothing of the density estimate. The smoothing is com-
puted using the following expression (Silverman, 1986):

h = 1.06σ ∗B−0.2, (C-2)

where σ ∗ is an estimate of the standard error of v∗i , i = 1, B.
Equation (C-1) is interpreted as adding up B small Gaussian
curves centered around v∗b, each having standard error h.
Larger values of h will produce a smoother density estimate.


