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The Hartley transform in seismic imaging

Henning Kühl∗, Maurico D. Sacchi∗, and Jürgen Fertig‡

ABSTRACT

Phase-shift migration techniques that attempt to ac-
count for lateral velocity variations make substantial
use of the fast Fourier transform (FFT). Generally,
the Hermitian symmetry of the complex-valued Fourier
transform causes computational redundancies in terms
of the number of operations and memory requirements.
In practice a combination of the FFT with the well-
known real-to-complex Fourier transform is often used
to avoid such complications. As an alternative means to
the Fourier transform, we introduce the inherently real-
valued, non-symmetric Hartley transform into phase-
shift migration techniques. By this we automatically
avoid the Hermitian symmetry resulting in an optimized
algorithm that is comparable in efficiency to algorithms
based on the real-to-complex FFT. We derive the phase-
shift operator in the Hartley domain for migration in two
and three dimensions and formulate phase shift plus in-
terpolation, split-step migration, and split-step double-
square-root prestack migration in terms of the Hartley
transform as examples.

We test the Hartley phase-shift operator for poststack
and prestack migration using the SEG/EAGE salt model
and the Marmousi data set, respectively.

INTRODUCTION

Recursive phase-shift methods in seismic imaging are based
on the use of the fast Fourier transform (FFT). For the feasibil-
ity of techniques such as phase shift (Gazdag, 1978), phase shift
plus interpolation (PSPI) (Gazdag and Squazzero, 1984), and
split-step migration (Stoffa et al., 1990), an efficient computer
implementation, especially in 3-D and/or prestack migration,
is important. Since the seismic wavefield is real valued, the
complex Fourier transform has Hermitian symmetry. Hence,
a brute force implementation leads to redundant operations
and memory allocation. The combination of the complex FFT
with a well-known modification of the FFT, the real-to-complex
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FFT (Press et al., 1997), is often used to circumvent these
redundancies.

Alternatively, the Hartley transform (Bracewell, 1986) can
optimize such codes. The fast Hartley transform (FHT) is
closely related to the complex FFT but is computationally more
suitable for real data because of its inherently real-valued na-
ture. The Hartley transform codes the amplitude and phase of
a real function in a single, real-valued transform without sym-
metries. It satisfies similar theorems equivalent to those of the
Fourier transform and can therefore replace the FFT in virtu-
ally any application that involves real-valued data (Bracewell,
1986). The Hartley transform has been used successfully in
other applications such as wavefield modeling and data filter-
ing (Saatcilar et al., 1990; Saatcilar and Ergintav, 1991).

A complete set of FHT algorithms is available in the litera-
ture. We exclusively deal with the radix-2, decimation-in-time
FHT. We refer to Sorensen et al. (1985) for other implementa-
tions of the FHT.

To illustrate the use of the Hartley transform in seismic imag-
ing, we pose the phase-shift wavefield extrapolator in the Hart-
ley domain and provide flowcharts and migration examples for
the derived algorithms.

THE HARTLEY TRANSFORM

The 1-D Hartley transform and its inverse are given by

H(u) = 1√
2π

∫
f (x) cas(ux) dx,

f (x) = 1√
2π

∫
H(u) cas(ux) du, (1)

with the real-valued Hartley kernel cas(ux) = cos(ux) +
sin(ux) (Bracewell, 1986). The orthogonal Hartley transform
is related to the unitary Fourier transform and satisfies similar
theorems. For seismic imaging an extension of definition (1)
to higher dimensions becomes necessary. This extension is not
obvious since

cas(ux + vy) �= cas(ux) cas(vy), (2)

as opposed to the Fourier kernel, which is separable:
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exp(i(ux + vy)) = exp(iux) exp(ivy). (3)

Both sides of equation (2) are used as 2-D Hartley kernels in
the literature. Here, we adopt the multiplicative definition of
the 2-D Hartley transform suggested by Sundarajan (1995) and
refer to it as version I:

HI (u, v) = 1
2π

∫ ∫
f (x, y) cas(ux) cas(vy) dx dy, (4)

with an obvious extension to the 3-D case:

HI (u, v, w) = 1

(2π)
3
2

∫ ∫ ∫
f (x, y, z) cas(ux) cas(vy)

× cas(wz) dx dy dz. (5)

Some authors refer to this definition as the cascas(cas) trans-
form (e.g., Bracewell, 1986). For stylistic reasons we call equa-
tions (4) and (5) (multidimensional) Hartley transforms (ver-
sion I), in agreement with Sundarajan (1995). Sundarajan also
defines version II of the 2-D Hartley transform:

HI I (u, v) = 1
2π

∫ ∫
f (x, y) cas(ux + vy) dx dy, (6)

where the argument of the kernel is the sum of the arguments of
the 1-D kernels. However, definitions (4) and (5) are separable
into 1-D Hartley transforms and therefore are computationally
more convenient to obtain than version II. Both versions of the
N -dimensional Hartley transform are orthogonal.

FAST HARTLEY TRANSFORM

In accordance with equation (1), the discrete 1-D Hartley
transform (DHT) and its inverse for a length-N sequence
f (n), 0 ≤ n≤ N − 1, are defined by (Bracewell, 1986)

H(ν) =
N−1∑
n=0

f (n) cas
(

2π

N
νn

)
, 0 ≤ ν ≤ N − 1,

f (n) = 1
N

N−1∑
ν=0

H(ν) cas
(

2π

N
νn

)
, 0 ≤ n ≤ N − 1.

(7)

A complete set of fast algorithms for computing the DHT
is given by Sorensen et al. (1985), including a radix-2,
decimation-in-time FHT. The decimation-in-time FHT is based
on the DHT decomposition formula, which is similar to the
Danielson–Lanczos formula for the discrete Fourier transform
(DFT) (Press et al., 1997). A length N = 2M DHT is divided
into two length-N/2 DHTs—one over the even-indexed sam-
ples (Heven) and one over the odd-indexed samples (Hodd)—and
combined to form the DHT of the full-length sequence:

H(ν) = Heven(ν) + Hodd(ν) cos
(

2π

N
ν

)

+ Hodd(N − ν) sin
(

2π

N
ν

)
, 0 ≤ ν ≤ N − 1,

(8)

where the indices of the half-length transforms for the even
and odd indices are evaluated modulo N/2. The decomposition
formula (8) is applied recursively until length-2 transforms are

obtained. This structure resembles the FFT derived by Cooley
and Tukey (1965). Figure 1 shows a flowchart representation
of equation (8), called the (Hartley butterfly). Since we want
to compute the FHT in place, four elements are included in
each Hartley butterfly to avoid overwriting an element that
will be needed later. Sorensen et al. (1985) provide a radix-2,
decimation-in-time FHT Fortran code based on the described
Hartley butterfly. They also conduct a number-of-operations
count and show that, when coded efficiently, the FHT takes
only a few more additions than an equivalent real-to-complex
FFT. In this sense the FHT can be regarded as a means to
compute a time- and memory-optimized, real-valued spectral
transform. The extension to higher dimensions (version I) is
most easily accomplished by multiple application of the 1-D
FHT along the respective dimensions without loss in efficiency.

However, we do not suggest that algorithms based on the
Hartley transform are generally more efficient than those us-
ing the real-to-complex FFT. We merely propose the Hart-
ley transform as an alternative tool that might be attractive to
practitioners developing efficient algorithms which exploit the
symmetries of the Fourier transform.

PHASE-SHIFT MIGRATION USING HARTLEY TRANSFORM

The 2-D phase-shift, zero-offset migration for stratified
media down to depth z is expressed as (Gazdag, 1978)

P(kx , z, t = 0)

= 1√
2π

∫
P(kx , z = 0, ω)ei

∑
j kz j (kx ,ω)�z dw, (9)

where P(kx , z= 0, ω) is the 2-D Fourier transform of the seis-
mic wavefield P(x, z= 0, t) recorded at the surface of the earth:

P(kx , z = 0, ω) = 1
2π

∫ ∫
P(x, z = 0, t)e−i(kx x+ωt) dx dt.

(10)

The variables x and t are the surface and time coordinates,
and kx and ω are their respective Fourier counterparts. The
vertical wavenumber kz j in the individual extrapolation step
from depth z j to z j + �z,

P(kx , z j + �z, ω) = P(kx , z j , ω)eikz j (kx ,ω)�z
, (11)

FIG. 1. The Hartley butterfly according to equation (8). The
sine and cosine factors are evaluated at (2π/N)ν, where N is
the length of the discrete sequence.
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is given by the dispersion relation for the downgoing one-way
acoustic-wave equation:

kz j = ω

v(z j )

√
1 −

(
v(z j )kx

ω

)2

, (12)

where v(z j ) is the velocity in the jth layer of thickness �z.
The wavefield is recursively downward continued (extrapo-
lated) by successive applications of the phase-shift operator
(11). In doing so, the imaging principle for zero-offset data is ap-
plied at each depth step �z by summing over the frequencies ω.

In the Appendix we derive the analog to the Fourier phase-
shift operator (11) in terms of the Hartley transform:

PHI (kx , z j + �z, ω) = PHI (kx , z j , ω) cos(kz j�z)
− PHI (−kx , z j , ω) sin(kz j�z), (13)

where HI denotes the version I 2-D Hartley transform over
x and t . Instead of one complex multiplication, two real mul-
tiplications must be carried out. The wavenumber kx appears
mirrored with respect to the ω-axis in the second term of equa-
tion (13). Substituting the Fourier transform by the Hartley
transform and equation (11) by equation (13) yields the phase-
shift scheme in the Hartley domain.

Gazdag’s phase-shift migration is known for its computa-
tional efficiency. However, the major drawback of this tech-
nique lies in its restriction to media with laterally constant
velocities. Correction techniques like phase-shift plus inter-
polation and split-step migration that attempt to compensate
for lateral velocity variations make additional Fourier/Hartley
transforms at each depth step �z necessary.

PHASE SHIFT PLUS INTERPOLATION USING
HARTLEY TRANSFORM

Gazdag and Squazzero (1984) propose the phase shift plus
interpolation (PSPI) technique to account for lateral velocity
variations. The extrapolation procedure consists essentially of
two steps. First, the wavefield is downward continued over a
depth step �z using a number of constant velocities. Second,
the actual wavefield is computed by interpolating the resulting
reference wavefields. The interpolation step makes one addi-
tional Fourier/Hartley transform per depth step and reference
wavefield inevitable. The concept of PSPI is not altered by the
number of reference velocities and is demonstrated here for
two velocities.

To avoid distortion of zero-dip reflectors, the extrapolation
step is split into two operations. A correction term is applied
prior to the spatial Fourier transform,

P̃(x, z j , ω) = P(x, z j , ω)e
i ω
v(x,z j )

�z
, (14)

followed by the phase-shift term applied to the wavefield for a
constant reference velocity v′(z j ):

P(kx , z j + �z, ω) = P̃(kx , z j , ω)e
i(kz ′j−

ω
v′ )�z

, (15)

where min{v(x, z j )} ≤ v′(z j ) ≤ max{v(x, z j )}. For flat reflec-
tors, kx = 0, the phase in equation (15) is zero and the reflectors
are therefore downward continued with the correct velocities
v(x, z j ) by equation (14).

The first step [equation (14)] is a time shift applied to each
trace and can be accomplished in the Hartley domain by replac-
ing equation (14) with the corresponding time-shift theorem
for the Hartley transform (Bracewell, 1986):

P̃HI (x, z j , ω) = PHI (x, z j , ω) cos
(

ω

v(x, z j )
�z

)

− PHI (x, z j , −ω) sin
(

ω

v(x, z j )
�z

)
. (16)

According to equation (13), the second step is the Hartley
phase-shift operator with the incorporated correction term
(ω/v′)�z:

PHI (kx , z j + �z, ω) = P̃HI (kx , z j , ω) cos
((
kz

′
j −

ω

v′

)
�z

)

−P̃HI (−kx , z j , ω) sin
((
kz

′
j − ω

v′

)
�z

)
. (17)

Finally, the Hartley coefficients P1
HI

(kx , z j + �z, ω) and P2
HI

(kx , z j + �z, ω), downward continued using the reference ve-
locities v1 and v2, are interpolated in space:

PHI (x, z j + �z, ω) =
P1
HI

(x, z j + �z, ω)(v2 − v) + P2
HI

(x, z j + �z, ω)(v − v1)

v2 − v1
.

(18)

The flowchart representation for PSPI in terms of the Hartley
transform is shown in Figure 2. Except for the reference
wavefields that need to be stored temporarily, all computations
are carried out in place.

SPLIT-STEP MIGRATION USING HARTLEY TRANSFORM

Split-step migration (Stoffa et al., 1990) is an interesting
alternative to PSPI that also partially accounts for lateral ve-
locity variations but does not use reference wavefields and re-
quires only one additional Fourier/Hartley transform pair per
depth step. This makes split-step migration especially attrac-
tive for the migration of 3-D data sets and prestack migration.
Split-step migration is originally derived directly from a vari-
able velocity wave equation as a first-order approximation to
the one-way acoustic wave equation.

Split-step migration in two dimensions

The split-step scheme is expressed in terms of the slowness
perturbation �u(x, z j) = u(x, z j) − ū(z j ), where ū(z j) = 1/v̄(z j)
is the mean slowness of the layer at depth z j . First, the wavefield
is extrapolated using ū(z j ):

P̃(kx , z j , ω) = P(kx , z j , ω)eikz j�z, (19)

where

kz j = ωū(z j )

√
1 − k2

x

ū2(z j )ω2
. (20)

Second, each trace is individually time-shifted according to the
slowness perturbation �u(x, z j ):

P(x, z j + �z, ω) = P̃(x, z j , ω)eiω�u(x,z j )�z . (21)
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Following the concept outlined for PSPI, the transfer to the
Hartley domain is evident, as illustrated in Figure 3.

Split-step migration in three dimensions

The form of the 3-D Hartley phase-shift operator differs
from the 2-D case and is derived in the Appendix, yielding the
following analog to equation (19):

P̃HI (kx , ky, z, ω) = PHI (kx , ky, z, ω) cos(kz j�z)
− PHI (kx , ky, z, −ω) sin(kz j�z). (22)

The dispersion relation for the one-way wave equation is now
written for three dimensions as

kz j = ωū(z j )

√
1 − k2

x + k2
y

ū2(z j )ω2
, (23)

where ky is the wavenumber for the additional spatial
y-coordinate of the 3-D data set.

Split-step DSR prestack migration

Knowing the Hartley phase-shift operator in three di-
mensions makes implementing split-step, double-square-root

FIG. 2. Representation of PSPI migration using the Hartley
transform. The seismic data P(x, z= 0, t) = D(x, t) are recur-
sively downward-continued to depth z in steps �z using mul-
tiple reference velocities. In the diagram the PSPI concept
is illustrated for two reference velocities. The migrated im-
age I (x, z) is obtained by summing over the frequencies of
P(x, z, ω).

(DSR) prestack migration (Popovici, 1996) in the Hartley do-
main straightforward. The spatial dimensions x ,y in equa-
tion (22) become midpoint and offset coordinates, respectively,
and the dispersion relation (23) is replaced by the DSR equa-
tion (Claerbout, 1985). Following Popovici (1996), the com-
plete split-step DSR algorithm in terms of the Hartley trans-
form is summarized in Figure 4.

EXAMPLES

SEG/EAGE salt model and Marmousi data set

We have tested our PSPI and split-step poststack migration
with an exploding reflector data set based on the SEG/EAGE
salt model (O’Brien and Gray, 1996) and the split-step DSR
prestack migration with the Marmousi data set (Bourgeois
et al., 1991).

The PSPI and split-step migrated sections for the salt model
using the Hartley transform are depicted in Figure 5. Over-
all, the PSPI migration produces a much better imaging result
than the faster split-step migration. However, the PSPI method
shows slight deficiencies for the steep salt flanks, and not all of
the steep faults in the subsalt zone are properly imaged. Clearly,
PSPI is sensitive to the reference velocities, and a higher num-
ber of them will result in a more accurate image. To select the
velocities at each depth step, we used the adaptive algorithm
of Bagaini et al. (1995), averaging 5.7 reference velocities per
depth step.

FIG. 3. Representation of split-step migration using the Hart-
ley transform. The seismic data P(x, z= 0, t) = D(x, t) are re-
cursively downward-continued to depth z in steps �z. The mi-
grated image I (x, z) is obtained by summing over the frequen-
cies of P(x, z, ω).
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The migration of the Marmousi data set and the underlying
velocity model is shown in Figure 6. As previously shown by
Popovici (1996), the split-step DSR algorithm gives an excel-
lent image of the Marmousi model.

Kessinger (1992) introduces the multiple-reference slowness
logic of the PSPI method in the split-step technique to in-
crease its accuracy. Ristow and Rühl (1994) present a modifi-
cation to the split-step method, introducing a finite-difference
term in the downward-continuation operator. Margrave and
Ferguson (1999) propose nonstationary phase-shift migration
(NSPS) and demonstrate in synthetic examples that, in the
presence of lateral velocity discontinuities, NSPS is superior
to the PSPI operator. All these modifications are interesting,
but a detailed study of them is beyond the scope of this paper.
Our examples primarily confirm the equivalence between the
Fourier and the Hartley methods in seismic imaging in gen-
eral. For a more systematic comparison of the various migra-
tion techniques based on the Marmousi model, refer to Han
(1996).

We have implemented our codes on an SGI Origin 2400
shared-memory parallel computer (400-MHz processors). The
algorithms have been parallelized with respect to the frequen-
cies. For the migration of the Marmousi data, every second
midpoint was used, resulting in a midpoint-offset data set of
size 256 × 64 × 1024 (including zero padding for the FHT). The
migration was performed for a frequency band of 5 to 60 Hz
and took about 70 s on 32 processors.

FIG. 4. Representation of split-step DSR prestack mi-
gration using the Hartley transform. The prestack data
P(y, h, z= 0, t) = D(y, h, z= 0, t) in midpoint-offset coordi-
nates are recursively downward-continued to depth z in steps
�z. The migrated image I (y, z) is obtained by evaluating the
wavefield P(y, h, z, ω) in the frequency domain at offset h= 0
and by summing over ω.

CONCLUSIONS

We have introduced the Hartley transform into seismic imag-
ing based on recursive wavefield extrapolators by posing phase-
shift, PSPI, and DSR migration in the Hartley domain. To
accomplish this, we derived the corresponding phase-shift op-
erator in the 2-D and 3-D Hartley domains. Similar to algo-
rithms based on the real-to-complex FFT, the resulting Hartley
algorithms avoid the computational inefficiency caused by the

FIG. 5. (A) Profile A–A′ from the SEG/EAGE salt model. The
velocities range from 1500 to 4500 m/s. Darker shades denote
higher velocities. (B) PSPI migration using 5.7 reference veloc-
ities per depth step on average. (C) Split-step migration.
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FIG. 6. (A) Marmousi velocity model. The velocities range
from 1500 to 5500 m/s. Darker shades denote higher velocities.
(B) Split-step DSR prestack migration.

Hermitian symmetry of the complex FFT. The Hartley algo-
rithms are straightforward to implement and efficient in com-
putation time and memory requirements. Tests based on the
SEG/EAGE salt model and the Marmousi model confirm the
mathematical equivalence of the Hartley migration algorithms
to their Fourier counterparts.

The parallel implementation in a shared-memory multipro-
cessor architecture can reduce the cost of prestack split-step
migration for data sets such as the Marmousi data to the order
of 1 minute.
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APPENDIX

PHASE-SHIFT OPERATOR IN HARTLEY DOMAIN

To avoid notational clutter, we denote the extrapolated
wavefield by a prime, P ′

H(kx , ky, ω) = PH(kx , ky, z j + �z, ω),
and use the subscripts PHI and PHI I to differentiate between
the Hartley-transformed wavefields according to versions I and
II, respectively.

Phase-shift operator for 2-D Hartley transform (version I)

We express the 2-D Hartley transform (version I) as the sum
of its even part EHI (kx , ω) and its odd part OHI (kx , ω):

EHI (kx , ω) = 1
2

[PHI (kx , ω) + PHI (−kx , −ω)]

= 1
2π

∫∫
P(x, t) cos(kx x−ωt) dx dt, (A-1)

OHI (kx , ω) = 1
2

[PHI (kx , ω) − PHI (−kx , −ω)]

= 1
2π

∫∫
P(x, t) sin(kx x + ωt) dx dt. (A-2)

Comparison of the real part R(kx , ω) and the imaginary part
I (kx , ω) of the Fourier transform (10) with equations (A-1) and
(A-2) yields

EHI (kx , ω) = R(kx , −ω),

OHI (kx , ω) = −I (kx , ω). (A-3)

With P ′
HI

(kx , ω) = E ′
HI

(kx , ω) + O ′
HI

(kx , ω), the relations (A-3),
and the Fourier phase-shift operator (9), the Hartley domain
phase-shift operator (version I) is found by direct substitution
after a few algebraic steps:

P ′
HI

(kx , ω) = PHI (kx , ω) cos(kz�z)
− PHI (−kx , ω) sin(kz�z). (A-4)

Phase-shift operator for 3-D Hartley transform (version I)

Given that version II of the 3-D Hartley transform satisfies

PHI I (kx , ky, ω) = R(kx , ky, ω) − I (kx , ky, ω), (A-5)

we can easily find the corresponding phase-shift operator
(version II):

P ′
HI I

(kx , ky, ω) = PHI I (kx , ky, ω) cos(kz�z)
− PHI I (−kx , −ky, −ω) sin(kz�z). (A-6)

Using the addition formulas for cosine and sine in three dimen-
sions (Bronstein et al., 1997), we derive the following relations
between versions I and II of the Hartley transform in three
dimensions:

PHI I (kx , ky, ω) = 1
2

[
PHI (−kx , ky, ω) + PHI (kx , −ky, ω)

+ PHI (kx , ky, −ω) − PHI (−kx , −ky, −ω)
]

(A-7)

and

PHI (kx , ky, ω) = 1
2

[
PHI I (−kx , ky, ω) + PHI I (kx , −ky, ω)

+ PHI I (kx , ky, −ω)

− PHI I (−kx , −ky, −ω)
]
, (A-8)

which means the same relation holds in both directions.
Noting that sine terms change their leading sign for neg-

ative frequencies to honor the Hermitian symmetry of the
Fourier transform, relations (A-6), (A-7), and (A-8) are used
to yield the phase-shift operator for the 3-D Hartley transform
(version I):

P ′
HI

(kx , ky, ω) = 1
2

[
P ′
HI I

(−kx , ky, ω) + P ′
HI I

(kx , −ky, ω)

+ P ′
HI I

(kx , ky, −ω)

− P ′
HI I

(−kx , −ky, −ω)
]

= 1
2

[
PHI I (−kx , ky, ω) cos(kz�z)

− PHI I (kx , −ky, −ω) sin(kz�z)
+ PHI I (kx , −ky, ω) cos(kz�z)
− PHI I (−kx , ky, −ω) sin(kz�z)
+ PHI I (kx , ky, −ω) cos(kz�z)
+ PHI I (−kx , −ky, ω) sin(kz�z)
− PHI I (−kx , −ky, −ω) cos(kz�z)
− PHI I (kx , ky, ω) sin(kz�z)

]
= PHI (kx , ky, ω) cos(kz�z)

− 1
2

[
PHI I (kx , −ky, −ω)

+ PHI I (−kx , ky, −ω)

− PHI I (−kx , −ky, ω)

+ PHI I (kx , ky, ω)
]

sin(kz�z)
= PHI (kx , ky, ω) cos(kz�z)

− PHI (−kx , −ky, −ω) sin(kz�z)
− [

PHI I (kx , ky, ω)

− PHI I (−kx , −ky, ω)
]

sin(kz�z)
= PHI (kx , ky, ω) cos(kz�z)

− PHI (kx , ky, −ω) sin(kz�z). (A-9)

The complex phase-shift term is replaced by two real multipli-
cations in the Hartley domain.


