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ABSTRACT. The imaging of geological subsurface struc-
tures with seismic reflection energy is a powerful tool for the
detection and the assessment of hydrocarbon reservoirs. The
seismic method can be understood as a multi-source and multi-
receiver reflection scattering experiment. The seismic sources
and receivers are placed at the earth’s surface. The sources emit
seismic energy into the subsurface and the receivers record the
earth’s response (the backscattered energy) as a function of
time and position relative to the source. The goal of seismic
imaging is to invert the recorded seismograms for the subsurface
structures and their underlying lithological properties. Seismic

imaging is usually called migration when only structural image
information is desired. The term inversion is used if the goal
is to invert for physical properties of the subsurface. In this
paper, we do not attempt to invert for true physical param-
eters. Instead, we aim at preserving the angle or the closely
related ray-parameter dependence of migrated seismic data. In
a subsequent step, this information can then be used to invert
for the lithological parameters that determine the angle/ray-
parameter dependent subsurface reflectivity. In the framework
of linearized scattering theory seismic data modelling and mi-
gration is defined as a pair of adjoint operators. This definition
leads to the formulation of an iterative least-squares seismic
migration method. The modelling/migration operator pair is
implemented using a wavefield propagator technique. We pro-
pose least-squares migration with a regularization term that
imposes continuity on amplitude variations as a function of
ray-parameter (AVP). This regularization is based on the idea
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that roughness along the ray-parameter axis stems from nu-
merical artifacts and incompletely and/or irregularly sampled
seismic wavefields. A synthetic seismic data example is given
for illustration.

1 Introduction. Most common seismic imaging techniques can be
subdivided into two categories. The first category are algorithms that
back-propagate the seismic surface wavefield into the earth using recur-
sive propagators. These algorithms are frequently called wave-equation
migration/inversion techniques. The second category are algorithms
based on ray-tracing. They are often referred to as Kirchhoff-type imag-
ing techniques. In ray-tracing, problems with shadow zones and caustics
can occur depending on the complexity of the geology of the subsurface.
Furthermore, the ability of the ray-based approach to account for multi-
pathing is limited. Propagator techniques, on the other hand, allow
the seismic waves to travel along all possible ray-paths (Gray and May,
[11]).

The formulation of migration/inversion algorithms starts with the
definition of a subsurface model in terms of physical parameters and a
reflection scattering mechanism. To make the imaging problem tractable
we make simplifying assumptions about the model and its interactions
with the seismic wavefield. Based on the work of Clayton and Stolt [6],
we then derive a forward modelling formula that relates the adopted
subsurface model with the seismic data. The ultimate goal in migra-
tion/inversion is to solve the forward relationship for the unknown sub-
surface model parameters. However, we must keep in mind that, in
practice, our simplified model serves merely as a proxy for the more
general nature of the problem. We must therefore interpret the results
with care.

In order to invert the generally “ill-posed” problem we employ a least-
squares data fitting method. This allows us to regularize the least-
squares solution by imposing certain desirable characteristics and con-
straints.

Nemeth et al. [20] and Duquet et al. [8] followed the least-squares
approach to obtain Kirchhoff-type least-squares imaging techniques. In
this paper we investigate the possibility of using wavefield propagators
instead.

In the first part of this paper, we briefly review seismic data mod-
elling based on linear scattering theory. Furthermore, we discuss the use
of Green’s functions for seismic modelling in spatially varying reference
media. This leads to a linear operator equation that relates the subsur-
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face reflectivity with the seismic data. This review is mostly based on a
paper by Stolt and Weglein [26].

Next, we introduce a phase-shift propagator method to compute
Green’s functions in laterally invariant media that is described in Clay-
ton and Stolt [6].

The computation of the least-squares inverse requires the knowledge
of the adjoint of the modelling operator. The adjoint operator can be
regarded as a first approximation to the inverse problem (Claerbout, [5]).
In fact, applying the adjoint operator is often sufficient for structural
imaging. In this paper we define migration as the adjoint of modelling.
Following Stolt and Weglein [26] we describe how to extract amplitude
variation with angle (AVA) information from the migrated wavefield.

Since propagator techniques are most beneficial when applied to imag-
ing problems in complex environments, the modelling/migration opera-
tors are generalized for laterally varying media. This can be achieved by
expanding the operators used by Clayton and Stolt [6]. The expansion
we adopt here results in extended split-step propagators for modelling
and migration (Gazdag and Sguazzero, [10]; Stoffa et al., [25]; Kessinger,
[13]; Margrave and Ferguson, [18]).

As an alternative to AVA imaging/inversion one can use the offset
ray-parameter to obtain amplitude variation with ray-parameter (AVP)
information (de Bruin et al., [7]; Prucha et al., [23]; Mosher and Foster,
[19]). In this paper we will choose the AVP over the AVA parameteri-
zation.

To complete the discussion on migration using AVP imaging we briefly
mention the possibility to improve the adjoint operator by considering
the so-called imaging Jacobian (Stolt and Benson, [27]; Sava et al., [24]).
The analytical imaging Jacobian can also be used to precondition the
iterative least-squares migration discussed in the last part.

In least-squares migration we use the above generalized modelling/
migration operators to formulate a least-squares migration/inversion
scheme. We introduce a regularization of the inverse problem that
appears particularly beneficial when the emphasis is on obtaining am-
plitude variation with ray-parameter (AVP) information. An example
based on the synthetic Marmousi data set (Versteeg and Grau, [28]) is
given for illustration.

2 Seismic data modelling under the Born approximation.

Consider the 3-D acoustic wave-equation with variable density ρ(x) and
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compressional velocity α(x) in the frequency domain:

D(x, ω)Ψ(x, s, ω) =

(

∇ · 1

ρ(x)
∇ +

ω2

ρ(x)α2(x)

)

Ψ(x, s, ω)

= −δ(x− s),

(1)

where the time-dependence of the wavefield Ψ(x, s, ω) is given by e−iωt.
The operator D(x, ω) is the variable density Helmholtz operator. The
vector x = (x, y, z) denotes the spatial position in a coordinate system
with the positive z component pointing down into the earth (Figure 1).
The vector s is the position of the point source and the compressional
velocity α(x) and density ρ(x) are spatially varying. We define the bulk-
modulus K(x) = ρ(x)α2(x) and follow Stolt and Weglein [26] and cast
the problem as a perturbation about a reference solution by introducing
the reference operator D0:

(2) D0(x, ω) = ∇ · 1

ρ0(x)
∇ +

ω2

K0(x)
,

where K0(x) and ρ0(x) are slowly varying local averages of the true
values K(x) and ρ(x), too slowly varying to produce significant reflection
energy.

The scattering operator (scattering potential) V(x, ω) that generates
the seismic reflection data is defined as:

V(x, ω) = D(x, ω) −D0(x, ω)

= ∇ ·
(

1

ρ(x)
− 1

ρ0(x)

)

∇ + ω2

(

1

K(x)
− 1

K0(x)

)

= ∇ ·
(

a2(x)

ρ0(x)

)

∇ + ω2

(

a1(x)

K0(x)

)

,

(3)

where a1(x) = ρ0(x)
ρ(x) − 1 = ∆ρ(x)

ρ(x) and a2(x) = K0(x)
K(x) − 1 = ∆K(x)

K(x) .

The coefficients a1(x) and a2(x) are unknown fractional changes of the
medium properties describing the subsurface. The differential operators
in the term containing a2 cause an angle dependence of the scattering
potential.

We substitute D = V + D0 in equation (1) and obtain:

(4) D0Ψ(x, s) = −VΨ(x, s) − δ(x − s).
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FIGURE 1: The coordinate system with the z axis pointing into the
earth. The scattering potential V is zero for z < 0. The integration
boundaries in equation (5) span the entire (model) space. A free surface
boundary is not considered.

The solution of (4) can be written as an integral equation (Lippman–
Schwinger equation):

(5) Ψ(x, s, ω) = Ψ0(x, s, ω) +

∫

dx′Ψ0(x,x′, ω)V(x′, ω)Ψ(x′, s, ω),

where

(6) D0Ψ0(x, s) = −δ(x − s).

The solution Ψ0(x, s) is the Green’s function propagating through the
known reference medium. The band-limited seismic scattering data are
given by:

(7) Ψs(r, s, ω) = S(ω)[Ψ(x, s, ω) − Ψ0(x, s, ω)],

where S(ω) represents the band-limited source signature. Using the first
order Born approximation (single scattering approximation) we substi-
tute Ψ(x, s, ω) = Ψ0(x, s, ω) in (5) and obtain a linearized modelling
equation for the seismic data:

(8) Ψs(r, s, ω) = S(ω)

∫

dxΨ0(r,x, ω)V(x, ω)Ψ0(x, s, ω),

where the vector r denotes the seismic receiver position. We note that
the single scattering assumption can be a significant source of error. We
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FIGURE 2: A source/receiver ray-pair that is coincident at a subsurface
position. The source and receiver slowness vectors ps and pr are tan-
gential to the rays. At the point of coincidence they describe a rhombus
with diagonals pm and ph. The diagonals are perpendicular with re-
spect to each other. If we assume a (locally) plane reflector the angle of

incidence is given by θ = arctan( |ph|
|pm|

). The vector ph is parallel to the
reflector plane and the vector pm is parallel to the reflector normal n.

interpret the scattering potential V(x, ω) by way of ray-theory. Invok-
ing the high-frequency approximation for the Green’s functions of the
reference operator D0 yields for the source (Beydon and Keho, [2]):

(9) Ψ0(x, s, ω) = A(x, s)eiωτ(x,s).

The term A(x, s) is the slowly varying amplitude determined by the
transport equation (Bleistein, [3]):

(10) 2∇τ · ∇
(

A
1√
ρ0

)

+ 4τ

(

A
1√
ρ0

)

= 0,

and τ is the traveltime given by the eikonal equation:

(11) (∇τ)2 =
1

α2
0(x)

= psps.

The vector ∇τ = ps is the slowness vector and is everywhere tangential
to the ray-path. The slowness vector has magnitude α−1

0 (x) (slowness).



DRAFT: October 3, 2003 14:01 File: kuehl-sacchi pp.307–329 Page 313 Sheet 7 of 23

LEAST-SQUARES SEISMIC MIGRATION 313

The functions τ and A must also satisfy τ = 0 for x = s and |x− s|A →
1/4π, as x → s (Bleistein, [3]).

Using the high frequency approximation in equation (8) and integra-
tion by parts yields:

(12) Ψs(r, s, ω) = ω2S(ω)

∫

dxA(r,x)A(x, s)
v(x, θ)

K0(x)
eiw(τ(x,r)+τ(x,s)),

where:

(13) v(x, θ) = a1(x) + cos(2θ)a2(x).

The angle 2θ is the angle between the local source slowness vector ps

and the local receiver slowness vector pr at the depth-point where the
two ray-paths coincide (Figure 2). The source and receiver slowness
vectors describe a rhombus with diagonals pm = pr + ps and ph =
pr − ps. If we interpret the reflection scattering to be caused by a
(locally) plane reflector (specular reflection), the diagonals are directly
related to reflector dip Φ and angle of incidence θ as demonstrated in
Figure 2. As we shall see later, the vectors pm and ph are also related
to the midpoint-offset domain, a coordinate system frequently used in
seismic processing.

For simplicity we restrict the theory to the two-dimensional case. If
we assume a line source and invariant medium properties along the y
direction, equation (12) simplifies to:1

Ψs(r, 0|s, 0, ω) = ω2S(ω)

∫∫

dx dzA(r, 0|x, z)A(x, z|s, 0)

× v(x, z, θ)

K0(x, z)
eiw(τ(x,z|r,0)+τ(x,z|s,0)) ,

(14)

where we have switched from the vector to a coordinate notation. Fur-
thermore, we assume that sources and receivers are placed along a level
datum at z = 0. Equation (14) can be implemented by calculating
the amplitude terms and traveltimes numerically using a (paraxial) ray-
tracing algorithm (Beydon and Keho, [2]). However, here we would
like to employ a wavefield propagator technique. We abandon the ray-
theoretical Green’s functions and write equation (14) again in the more

1Strictly speaking, this formula is only valid when applied to synthetic data based
on the two dimensional wave-equation. When dealing with real-world data 2 1

2
-D

effects should be considered (Stolt and Weglein, [26]; Bleistein, [3]).
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general form:

Ψs(r, 0|s, 0, ω)

= ω2S(ω)

∫∫

dx dzΨ0(r, 0|x, z, ω)
v(x, z, θ)

K0(x, z)
Ψ0(x, z|s, 0, ω).

(15)

The interpretation of the interaction between the reflector element and
the wavefield remains valid since it involves only local quantities at the
reflection point.

2.1 Modelling using propagators in laterally invariant refer-

ence media. For laterally invariant reference media the Green’s func-
tions in equation (15) can be replaced by the WKBJ Green’s function
obtained for the depth-separated wave equation (Clayton and Stolt, [6]).
The depth separation is achieved by Fourier transforms along the hori-
zontal coordinates in equation (6). The Green’s function for the source
has the analytical expression (Clayton and Stolt, [6]):
(16)

Ψ0(x, z|s, 0, ω) =

√

ρ0(z)ρ0(0)

2π

∫

dksxeiksx(s−x) ieiω
∫

z

0
psz(z′) dz′

2ω
√

psz(z)psz(0)
,

where psz is the vertical receiver slowness component. The vertical slow-
ness component is calculated from the horizontal source wavenumber ksx

and the dispersion relation of the wave equation:

(17) ωpsz(z) = ksz(z) =
ω

α0(z)

√

1 − k2
sxα2

0(z)

ω2
,

where ksz(z) is the vertical source wavenumber. The receiver Green’s
function is obtained in an analogous way. Inserting the Green’s func-
tions in (15) gives the modelling formula in the frequency-wavenumber
(Clayton and Stolt, [6]; Stolt and Benson, [27]):2

Ψs(krx, 0|ksx, 0, ω) = −ω2S(ω)

∫

dz
ρ0(0)ρ0(z)

4
√

krz(0)krz(z)ksz(0)ksz(z)

× v(krx + ksx, z, θ)

K0(krx + ksx, z, θ)
ei

∫

z

0
krz(z′)+ksz(z′) dz′

.

(18)

2Rather than defining new symbols when a function is transformed to a new
domain, we use the same symbol with the new arguments.
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ks = (ksx, ksz) kr = (krx, krz)

ps = ks

ω
pr = kr

ω

ps = (sin Γs,cos Γs)
α0

pr = (sin Γr,cos Γr)
α0

km = ks + kr kh = kr − ks

pm = km

ω
ph = kh

ω

ks = 1/2(km − kh) kr = 1/2(km + kh)

ksz = ω
α0

√

1 − α2

0
k2

sx

ω2 krz = ω
α0

√

1 − α2

0
k2

rx

ω2

TABLE 1: Important relationships in source-receiver and midpoint-
offset coordinates.

The sum of the source and receiver surface wavenumbers in the scattering
potential suggests that there exists a more convenient coordinate system.
We transform equation (18) to midpoint offset coordinates3 by defining
midpoint and offset wavenumbers4 km = (kmx, kz) = ks + kr and kh =
(khx, khz) = kr − ks, respectively. The modelling formula (18) reads
now:

Ψs(kmx, 0|khx, 0, ω) = −ω2S(ω)

∫

dz
ρ0(0)ρ0(z)

4
√

krz(0)krz(z)ksz(0)ksz(z)

× v(kmx, z, θ)

K0(kmx, z, θ)
ei

∫

z

0
kz(z′) dz′

.

(19)

The vertical source and receiver wavenumbers are calculated from their
midpoint-offset counterparts (Table 1) by the relationships ks =
1/2(km − kh) and kr = 1/2(km + kh). It is important to note that
we restrict equation (19) to real values of kz . That is, evanescent energy
is not considered in the following.

The angle θ in the scattering potential is an implicit function of the
midpoint and offset wavenumbers. To see this, we note that we have
pm · ph = 0 at the point where source and receiver rays are coincident.

3The horizontal midpoint-offset space coordinates are given by the transformation
m = r+s

2
and h = r−s

2
at the source-receiver datum.

4To avoid more notational clutter we use kz rather than kmz for the vertical
midpoint wavenumber.
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From Figure 2 we find (Stolt and Weglein, [26]):

(20) tan θ =
|ph|
|pm| =

phx

pmz

=
khx

kz

.

The ray-parameters in (20) are understood to be taken at the reflection
point.

The horizontal slowness components are constant along the rays, since
there are no lateral velocity variations in the reference medium. This fact
can be used to formulate modelling/migration algorithms that operate
directly in the horizontal offset ray-parameter domain (Ottolini, [21]).
However, we will drop this assumption further below which will make
the recalculation of the horizontal wavefield spectrum at each depth level
inevitable.

To simplify the notation the data modelling formula (19) is written
in terms of a symbolic operator notation. First we define an angle-
dependent model function f by:

(21) f
(

kmx,
khx

kz

, z
)

=
−ω2v

(

kmx, z, arctan(khx

kz

)
)

K0

(

kmx, z, arctan(khx

kz

)
) .

This function is made suitable for wavefield propagation by mapping
f(kmx, khx

kz

, z) to f(kmx, khx, z) in a preparation step prior to modelling:

(22) f(kmx, khx, z) = F−1
z R′

θFzf
(

kmx,
khx

kz

, z
)

,

where Fz and F−1
z are the forward and inverse Fourier transform along z,

respectively. The operator R′
θ is the adjoint of the radial-trace transform

Rθ from the (kz, khx) to (kz, θ) space.5 This mapping procedure is
illustrated in Figure 3.

The forward modelling operation is now written symbolically as:

(23) Ψ(kmx, 0|khx, 0, ω) =

∫

dzAPf(kmx, khx, z),

with the diagonal WKBJ amplitude scaling operator:

(24) A =
ρ0(0)ρ0(z)

4
√

krz(0)krz(z)ksz(0)ksz(z)
5The radial-trace transform Rθ is equivalent to the more intuitive slant-stack

(Ottolini, 1984) in the offset-depth domain.
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FIGURE 3: The radial trace transform Rθ extracts the wavefield along
radial lines in the (kz, khx) space and maps the result into the (kz, θ)
space. The limited range of the offset wavenumbers due to the finite
acquisition aperture causes truncation effects in the (kz, θ) space. The
adjoint operator R

′
θ maps the angle-dependent model function f from

the (kz, θ) space to the (kz, khx) space. In modelling, R′
θ is applied as

a preparation step to make the model function suitable for the DSR
phase-shift propagator. In migration, Rθ is used to convert the function
f(kmx, khx, kz) into the angle dependent function f(kmx, khx

kz
, kz) (after

Sava et al., [24]).

and the propagator:

(25) P = ei
∫

z

0
kz(z′) dz′

.

The operator P is known as the DSR (double-square-root) phase-shift
propagator (Gazdag, [9]). For a given model function f(kmx, khx, z) the
data Ψ(kmx, 0|khx, 0, ω) are obtained by propagating the model con-
tributions for all z and summing them into the data-space function
Ψ(kmx, 0|khx, 0, ω). We have omitted S(ω) for simplicity but keep in
mind that all frequency dependent quantities are bandlimited. The
complete modelling procedure is summarized with the application of



DRAFT: October 3, 2003 14:01 File: kuehl-sacchi pp.307–329 Page 318 Sheet 12 of 23

318 HENNING KUEHL AND MAURICIO D. SACCHI

the operator L:

Ψ(kmx, 0|khx, 0, ω) =

∫

dzPF−1
z R′

θFzf
(

kmx,
khx

kz

, z
)

= Lf
(

kmx,
khx

kz

, z
)

.
(26)

Notice that we have conveniently dropped the scaling factor A in equa-
tion (26). In fact, Wapenaar [30] shows that this is justified, since the
employed Green’s function should be normalized with respect to the en-
ergy flux across interfaces separating regions of different medium param-
eters. Effectively, energy flux normalization amounts to a cancellation
of the WKBJ amplitude term A and warrants that seismic reciprocity
is honored (Wapenaar, [30]).

3 Seismic migration. Our goal is to invert the seismic data for
the angle dependence of f(kmx, khx

kz

, z). The function f is determined
by the two unknowns a1 and a2. Here, we are just concerned with
producing an estimate of the amplitude variation with incident angle
(AVA) of f(kmx, khx

kz

, z). In fact, the relevance of the quantities a1 and
a2 for seismic inversion is debatable (Wapenaar, [29]). Seismic data are
mostly generated by reflecting interfaces. For a plane wave incident on
a plane reflecting interface in an elastic medium the Zoeppritz equa-
tions determine the amplitude behavior as a function of angle (Aki and
Richards, 1980). Stolt and Weglein [26] relate the scattering potential to
the linearized Zoeppritz equation (Aki and Richards, [1]) for the reflec-
tion of a compressional wave on a plane interface. However, to achieve
this they introduce additional scaling factors and a normal derivative to
be applied during inversion. Instead, Wapenaar [29] demonstrates that
these steps are not necessary and that the scattering potential can be
identified directly with the reflection coefficient for specularly reflected
compressional waves. That is, the particular form of the scattering po-
tential is merely an artifact of the linear Born approximation and, for
specular reflections, can be replaced ad hoc by the specular reflectivity
function (Bleistein et al., [4]). However, we must keep in mind that the
assumption of a low contrast medium due to the linear Born approx-
imation (weak scattering) is implicit in our formulas. This is because
transmission loss due to energy partitioning at the interfaces and mul-
tiple scattering are not accounted for.

In any case, the function f(kmx, khx

kz

, z) exhibits angle dependence and
the migration/inversion should attempt to preserve this dependence as
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faithfully as possible. Ideally, we would like to carry out the inversion for
f(kmx, khx

kz

, z) in the least-squares sense by minimizing an appropriate
cost function. The first step to finding the least-squares solution is
to formulate the adjoint operator L′ defined by 〈Ψ,Lf〉ω = 〈L′Ψ, f〉z,
where the brackets represent the (complex) inner products in the data
and model space, respectively. The adjoint operator can be seen as a
first approximation to the inverse problem (Claerbout, [5]). In fact, we
define seismic migration as the adjoint of the modelling operator (26).
The application of the migration operator L′ gives the estimate:

f̃
(

kmx,
khx

kz

, z
)

= F−1
z RθFz

∫

dωP ′Ψ(kmx, 0|khx, 0, ω)

= L′Ψ(kmx, 0|khx, 0, ω).

(27)

The integral in equation (27) is the DSR migration formula. First, the
data Ψ(kmx, 0|khx, 0, ω) are downward propagated from the surface to
the depth level z by the propagator P ′. Then they are summed over
frequency to yield the model estimate f̃(kmx, khx, z) in terms of hori-
zontal midpoint and offset wavenumber and depth z. The summation
over frequency is known as the seismic imaging condition. The fre-
quency summation is equivalent to evaluating the wavefield at t = 0. In
other words, migration is achieved by propagation of the source-receiver
wavefield to a depth-level z (downward continuation) and the applica-
tion of the causality principle. When the migration is complete for all z,
the cascaded operators F−1

z RθFz are applied to f̃(kmx, khx, z) as a post-
processing step. The operator Rθ is the radial-trace transform shown
in Figure 3. The angle transformed function f̃(kmx, khx

kz

, z) exhibits an
approximation of the amplitude variation with angle (AVA) information
we are seeking. We remark that the AVA fidelity of migration can be
improved by considering additional measures to obtain a better “approx-
imate inverse” to the modelling relationship. We will discuss this point
in the section on offset ray-parameter imaging.

4 Modelling and migration using recursive propagators in

laterally varying reference media. The propagators P and P ′ in
(23) and (27) were derived under the assumption of laterally constant
reference velocities. This restriction can be partially lifted by employing
a recursive propagator approach. To this end we first discuss the com-
puter implementation of the modelling and migration operators in more
detail.
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In a numerical implementation the integrals in the phase-shift opera-
tors of (23) and (27) are replaced by summations and dz becomes a finite
depth interval ∆z. The velocities are assumed to be constant along the
vertical range ∆z. The phase-shift propagator can then be implemented
as a non-recursive or recursive algorithm. In the non-recursive imple-
mentation the propagation between the surface-data and the depth-level
z is carried out by computation of the complete phase-integral prior to
propagation. In the recursive implementation the wavefield is succes-
sively propagated by iterative application of the phase-shift propagator
in steps ∆z.

Both implementations have certain advantages and disadvantages.
Beneficial consequences of the non-recursive implementation are demon-
strated in Kuehl and Sacchi [15]. However, in order to accommodate
lateral velocity variations we must implement the modelling and mi-
gration formulas as recursive algorithms. This allows us to extend the
phase-shift propagator by a local operator expansion. To this end we
expand the square-root expression for the vertical source wavenumber
in (17) using the split-step approximation (Stoffa et al., [25]). For the
source we have:

(28) ksz(s, z) ≈
√

ω2

α2
0 ref(z)

− k2
sx +

(

ω

α0(s, z)
− ω

α0 ref(z)

)

.

The same approximation is used for the receiver square-root operator.
The reference velocity α0 ref(z) is computed by laterally averaging the
slowness variations for each propagation step ∆z. The additional term
in (28) is the split-step correction. It is applied at the source and receiver
locations after the wavefield has been transformed to the space domain.
This results in a recursive marching algorithm that alternates between
the horizontal wavenumber and space domain at each depth level. This
type of algorithm is known to give relatively accurate structural images
even in complex media (Popovici, [22]).

The wide-angle accuracy of the split-step approximation can be im-
proved by using multiple reference velocities for the propagation. The
phase-shift propagators and the split-step correction are then applied in
a data windowing mode (Gazdag and Sguazzero, [10]; Kessinger, [13];
Margrave and Ferguson, [18]). The standard and the windowed split-
step approach can be applied to both the modelling and the migration
operator.
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5 Modelling and migration with the offset ray-parameter.

One may ask how meaningful the interpretation of θ as the “angle of
incidence” really is. In seismic imaging/inversion one deals mostly with
regular geological interfaces. So one would like to relate the scattering
potential to the reflectivity of the interfaces and interpret the angle θ as
the local angle of incidence. For this interpretation to be true, the inter-
face curvature has to be moderate so that the reflection mechanism is
predominantly specular. Furthermore, the conversion to “angle of inci-
dence” is dependent on the reference velocity model (migration velocity
field), since the vertical wavenumber is a function of α0. Unfortunately,
the reference velocity is only known roughly in general. In practice, AVA
estimation is an interpretive process and breaks down in areas where the
above conditions are not fulfilled.
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FIGURE 4: The radial trace transform Rp extracts the wavefield along
radial lines in the (ω, khx) space and maps the result into the (ω, phx)
space. The limited range of the offset wavenumbers due to the fi-
nite acquisition aperture causes truncation effects in the (ω, phx) space.
Since in offset ray-parameter imaging the radial trace transform and
the actual seismic imaging condition (summation over ω) are one pro-
cessing step the imaging condition is included in this schematic dia-
gram as the operator Σ. The operator Σ′ is the adjoint of the imag-
ing condition. Σ′ is used to generate the ray-parameter dependent
function f(kmx, phx, ω, z). The adjoint operator R

′
p maps the function

f(kmx, phx, ω, z) to f(kmx, khx, ω, z). The convergent and divergent ar-
rows indicate summation (integration) and “spreading”, respectively.
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The uncertainty with respect to reference velocity field motivates an
alternative approach to angle imaging. Instead of “angle of incidence” we
use the horizontal offset ray-parameter to obtain an amplitude variation
with ray-parameter (AVP) estimate of the subsurface (de Bruin et al.,
[7]; Prucha and Biondi, [23]; Mosher and Foster, [19]). This is achieved
by parameterizing the model function f with phx = khx

ω
and by using

the relation θ = arcsin( α0phx

2 cos Φ) (see Figure 2): f(kmx, khx

ω
, Φ, z). The

dip angle Φ of the reflector element is now an implicit parameter of
the model function f and is omitted in the following for convenience.
A conversion from AVP to AVA requires the dip angle Φ as an input
parameter that is provided by an interpreter. The dip is measured on
the structural image. Hence, we do not rely on the reference velocity
field for the local dip information. This extra step could, in some cases,
help to improve the robustness of AVA estimation.

The offset ray-parameter is a quantity belonging to the data space and
not the model space. This is because of the ω dependence of phx. In order
to perform modelling we first map f(kmx, khx

ω
, z) to f(kmx, khx, ω, z):

(29) f(kmx, khx, ω, z) = R′
pf

(

kmx,
khx

ω
, z

)

.

This mapping results in the “spreading” of the values f(kmx, khx

ω
, z)

along the ω axis (Figure 4). The subsequent transform R′
p is the adjoint

of the radial trace transformation from the (ω, khx) to the (ω, phx) space
as shown in Figure 4.

The modelling is completed by applying the DSR propagator and
summing the contribution of all depth levels into the data function:

(30) Ψ(kmx, 0|khx, 0, ω) =

∫

dzPf(kmx, khx, ω, z).

We note that the conversion from the model to the data space was
achieved implicitly in equation (29). As opposed to the previously out-
lined AVA mapping, the ray-parameter conversion is absorbed in the
modelling process. We write (29) and (30) in one symbolic operator
equation:
(31)

Ψ(kmx, 0|khx, 0, ω) =

∫

dzPR′
pf

(

kmx,
khx

ω
, z

)

= Lf
(

kmx,
khx

ω
, z

)

.

The migration formula is again found by formulating the adjoint opera-
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tor:

f̃
(

kmx,
khx

ω
, z

)

=

∫

dwRpP ′Ψ(kmx, 0|khx, 0, ω)

= L′Ψ(kmx, 0|khx, 0, ω).

(32)

Again we can choose a recursive implementation of (31) and (32) and
employ the (generalized) split-step operator expansion to make formulas
suitable for laterally varying media.

The modelling/migration operator pair (31) and (32) is used in the
next section to invert seismic data in the least-squares sense. If instead
only the adjoint (migration) operator (32) is to be applied the approxi-
mation of the inverse problem can be improved as shown by Sava et al.
[24]. Their technique involves the computation of the local imaging
Jacobian J = dω

dkz

|z (Stolt and Benson, [27]). For AVP imaging, the
vertical wavenumber kz must be expressed as a function of offset ray-
parameter. The resulting diagonal operator Jp evaluated at depth z
is used by Sava et al. [24] to obtain an analytical approximate inverse
operator:

f̃inv

(

kmx,
khx

ω
, z

)

=

∫

dwJ−1
p RpP ′Ψ(kmx, 0|khx, 0, ω)

= L′
invΨ(kmx, 0|khx, 0, ω).

(33)

However, this approximation is not satisfactory if the inversion is plagued
with, for instance, incomplete data sampling and numerical operator ar-
tifacts.

6 Least-squares migration for AVP imaging. In least-squares
migration/inversion we use the modelling and migration operators to
invert the linear system (Kuehl and Sacchi, [16]):

(34) Ψ(m, 0|h, 0, ω) = Lf(m, phx, z) + n,

where Ψ(m, 0|h, 0, ω) is the often incomplete seismic data in the mid-
point-offset space-domain and n represents the noise. The function f
is the ray-parameter dependent model function in midpoint-depth co-
ordinates. The operator L now includes forward and backward Fourier
transforms for midpoint and offset.
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The following cost function is iteratively minimized by a gradient
method (Hestenes and Stiefel, [12]):

F (f) =
∥

∥W
(

Ψ(m, 0|h, 0, ω) − Lf(m, phx, z)
)
∥

∥

2

+ λ2‖∂phx
f(m, phx, z)‖2,

(35)

where W is a diagonal weighting operator. The operator W is derived
from the data covariance matrix and has zero weights in the case of dead
traces and non-zero weights for live traces (Kuehl and Sacchi, [14]). The
minimization amounts to an iterative application of L′ and L. Besides
the data-misfit term, we have added a regularization term that penal-
izes “roughness” along the ray-parameter phx. The λ2 factor allows us
to control the amount of smoothing. The concept of smoothing is based
on the desire to retrieve a continuous function f along the ray-parameter
axis. This is justified by the logic that the angle/ray-parameter depen-
dence should be continuous. Discontinuities or rapid amplitude changes
are attributed to missing data (data aliasing) and numerical operator
artifacts.

6.1 Synthetic data example. We illustrate least-squares AVP imag-
ing with ray-parameter smoothing using the Marmousi data set (Ver-
steeg and Grau, [28]). The synthetic Marmousi data are based on a
variable velocity (Figure 5) and density model (not shown). Since the
data were modelled with the acoustic wave equation, the angle depen-
dence of the reflectors corresponds to the AVA/AVP of a fluid-fluid in-
terface.

Figure 6A is the AVP gather at midpoint 175 out of a total of 240
midpoint positions (see also Figure 5). To generate the gathers the mi-
gration operator in equation (33) was applied to the regularly sampled
data set. The gathers were produced with offset ray-parameters rang-
ing from 0 to 760 µs/m. AVP effects and numerical imaging artifacts
are apparent. We have previously shown for selected reflection events
that the retrieved AVA/AVP matches the theoretical AVA/AVP closely
(Kuehl and Sacchi, [17]).

To test the influence of missing data on the imaging result we ran-
domly replaced 80% of the data with dead traces prior to migration.
Figure 6B shows the resulting AVP gathers. They exhibit stronger in-
coherent noise and the continuity along the ray-parameter axis is de-
teriorated. The effect of least-squares migration with moderate ray-
parameter smoothing is demonstrated in Figure 6C. This result was
obtained after 3 iterations of the minimization algorithm (conjugate gra-
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Midpoint location shown in Figure 6

FIGURE 5: The Marmousi velocity model. The velocities range from
1500 to 5500 m/s. Darker shades denote higher velocities. The synthetic
seismic data generated with a finite difference implementation of the
acoustic wave-equation is widely used for benchmarking seismic imaging
algorithms (Versteeg and Grau, [28]). The density model is not shown.

dients). Least-squares migration partially restores the continuity along
the offset ray-parameter and improves the signal to noise ratio. After
6 iterations the smoothing effect is more pronounced and the ampli-
tude variation is more smeared along the ray-parameter (Figure 6D).
Smoothing should be applied carefully in order to preserve the AVP. In
Figure 6E the velocity profile at midpoint 175 is depicted for comparison.

Figures 7A/B and 7C/D illustrate the effect of missing data and the
benefits of least-squares migration for seismic imaging using a single
constant ray-parameter, respectively. The least-squares migrated im-
ages delineate the geological structures better than the conventionally
migrated incomplete data.

7 Discussion and conclusion. In this paper we follow Stolt and
Weglein [26] and cast wavefield propagator and recently developed angle
imaging techniques within the general framework of scattering theory.
It is clear, however, that results based on simplified and linearized mod-
elling and migration formulas have to be interpreted with care. We have
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FIGURE 6: AVP gathers and velocity profile of the midpoint location
indicated in Figure 5. A: The AVP gather of the complete midpoint
dataset obtained by migration. B: The AVP gather of the reduced mid-
point data set obtained by migration. About 80% of the data have
been randomly removed prior to imaging. C: The same data after 3
iterations of least-squares migration. D: The result after 6 iterations of
least-squares migration. E: The velocity profile.

emphasized this point throughout the paper. Nonetheless, AVA/AVP
preserved imaging is critical if an interpretation of the properties of the
subsurface based on these gathers is to be successful.

The known excellent imaging performance of the propagator meth-
ods makes them worthwhile and attractive for migration/inversion in
complex media. If care is taken that modelling and migration are ad-
joint operators we can fit the seismic data by minimizing an appropriate
cost function. This approach opens the opportunity to impose certain
desirable characteristics and constraints on the least-squares solution.
We have exemplified this in a regularization of the least-squares inver-
sion based on ray-parameter dependent smoothing of the AVP gathers.
The smoothness constraint helps to mitigate discontinuities that are at-
tributed to incomplete data and numerical operator artifacts and yields
an AVP/AVA that exhibits the desired smoothly varying angle depen-
dence.
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FIGURE 7: Structural images generated with a single constant offset
ray-parameter of 160 µs/m. A: Constant offset ray-parameter migration
of the regularly sampled and complete dataset. B: Constant offset ray-
parameter migration of the incomplete data (80% of the data were set to
zero). C: Least-squares migration with ray-parameter smoothing of the
incomplete data after 3 iterations of the conjugate gradients algorithm.
D: Result after 6 iterations.

In practice, the incomplete data issue becomes more significant when
imaging is to be done in 3 spatial dimensions. This is due to the often
encountered sparseness and irregularity of 3-D seismic surveys due to
economical and practical reasons. It is conceivable that the least-squares
imaging approach becomes particularly beneficial in such cases.
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