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High-resolution wave-equation AVA imaging: Algorithm and tests with a
data set from the Western Canadian Sedimentary Basin

Juefu Wang1, Henning Kuehl2, and Mauricio D. Sacchi1

ABSTRACT

This paper presents a 3D least-squares wave-
equation migration method that yields regularized
common-image gathers (CIGs) for amplitude-versus-
angle (AVA) analysis. In least-squares migration, we
pose seismic imaging as a linear inverse problem; this
provides at least two advantages. First, we are able to
incorporate model-space weighting operators that im-
prove the amplitude fidelity of CIGs. Second, the in-
fluence of improperly sampled data (footprint noise)
can be diminished by incorporating data-space weight-
ing operators. To investigate the viability of this class of
methods for oil and gas exploration, we test the algo-
rithm with a real-data example from the Western Cana-
dian Sedimentary Basin.

To make our problem computationally feasible, we
utilize the 3D common-azimuth approximation in the
migration algorithm. The inversion algorithm uses the
method of conjugate gradients with the addition of
a ray-parameter-dependent smoothing constraint that
minimizes sampling and aperture artifacts. We show
that more robust AVA attributes can be obtained by
properly selecting the model and data-space regulariza-
tion operators. The algorithm is implemented in con-
junction with a preconditioning strategy to accelerate
convergence.

Posing the migration problem as an inverse problem
leads to enhanced event continuity in CIGs and, hence,
more reliable AVA estimates. The vertical resolution
of the inverted image also improves as a consequence
of increased coherence in CIGs and, in addition, by im-
plicitly introducing migration deconvolution in the in-
version.
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INTRODUCTION

The reliable inversion of prestack seismic data is an impor-
tant step toward a robust and accurate estimate of physical
rock properties and fluid indicators, the ultimate goal of quan-
titative seismic interpretation. In this context, common image
gathers (CIGs) can yield valuable, reflection-angle-dependent
amplitude information. Conventionally, CIGs are generated
as a function of offset and are then converted to angle in a
subsequent step. Alternatively, imaging in the reflection an-
gle (Stolt and Weglein, 1985) or local ray-parameter domain
(de Bruin et al., 1990) directly yields amplitude variations ver-
sus angle (AVA) or amplitude variations versus ray parameter
(AVP), respectively. The latter can be converted from ray pa-
rameter to angle by simple scaling, taking the reflector dip and
the migration velocity into account (see Appendix A).

In recent years, numerous papers have addressed the theo-
retical and computational aspects of angle and ray-parameter
imaging for Kirchhoff migration and wave-equation migration
(e.g., Xu et al., 1998; Prucha et al., 1999; Wapenaar et al.,
1999; Mosher and Foster, 2000; Sava et al., 2001). At the
same time, in an effort to improve conventional migration,
Nemeth et al. (1999) and Duquet et al. (2000) have devel-
oped schemes for least-squares migration based on Kirchhoff
modeling/migration operators to mitigate artifacts caused by
data aliasing, acquisition footprint, and illumination issues.
Kuehl and Sacchi (2002, 2003) combine both developments
and show that regularized least-squares wave-equation mi-
gration can reduce aliasing in ray-parameter image gathers,
leading to more robust AVA estimates. They propose a for-
mulation of the least-squares migration problem in terms of
double-square-root (DSR) phase-shift propagators.

In this article, we present the 3D extension of the 2D in-
version algorithm described in Kuehl and Sacchi (2002). We
use the common-azimuth operator developed by Biondi and
Palacharla (1996) combined with a split-step correction for
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lateral velocity variations (Popovici, 1996). When the macrov-
elocity field has strong variations, we enhance the operator
accuracy with the phase-shift-plus-interpolation (PSPI) tech-
nique (Gazdag and Sguazzero, 1984). Common-azimuth mi-
gration results in significant computational cost savings. To
further reduce the turnaround time, we adopt a precondition-
ing strategy that follows the work on 2D least-squares migra-
tion by Prucha et al. (2002). An efficient algorithm is crucial if
least-squares migration is to be applied to data volumes of re-
alistic size. In any case, costly least-squares migration is not a
feasible method for several iterations of velocity analysis. The
least-squares migration approach is therefore intended to im-
prove the seismic image after a reasonably good velocity field
has been derived.

As an example, we apply least-squares migration to a 3D
data set from the Western Canadian Sedimentary Basin. A
comparison with borehole-derived synthetics and theoretical
AVA supports the case for regularized imaging methods in
situations where subtle stratigraphic features and fluid effects
need to be resolved.

REGULARIZED LEAST-SQUARES,
3D WAVE-EQUATION MIGRATION

Consider seismic data as the result of a linear transforma-
tion on an earth model m:

d = Lm + n, (1)

where d denotes the preprocessed data; L is the forward oper-
ator; m is the earth model, a set of ray-parameter-dependent
CIGs; and n denotes additive noise. Conventional migration
entails applying L′, the adjoint of L, to the observed data.
The adjoint operator L′ can be decomposed into two steps:
wavefield extrapolation and ray-parameter imaging (see Ap-
pendix A for more details). The second step amounts to a
change of variables by a radial-trace transform, which intro-
duces a transformation Jacobian (Sava et al., 2001). When the
data are properly sampled, the amplitude in the CIG can be
corrected by applying an approximate inverse of the imaging
Jacobian.

The Jacobian weighting attempts to make the adjoint op-
erator behave like the inverse. However, this correction is
not sufficient to achieve good amplitude fidelity in situations
where the image is corrupted by aliasing artifacts introduced
by inadequate spatial sampling. These artifacts can be allevi-
ated, however, by constraining the solution to exhibit a cer-
tain degree of smoothness along the ray-parameter axis. Here,
we adopt a cost function F [similar to the cost function intro-
duced by Ehinger and Lailly (1991)] to retrieve a least-squares
migrated image that fits the observations and also exhibits

Table 1. Model parameters for the 3D synthetic data.

Velocity Density Thickness
(m/s) (g/cm3) (m)

2000 2.25 500
2350 1.6 300
1900 2.3 300
2500 1.7 300
2500 2.0 Half-space

smoothness or continuity along the ray-parameter axis:

F (m) = ‖W(d − Lm)‖2 + λ2‖D1hxm‖2, (2)

where W is a diagonal weighting matrix (data-space weight-
ing) used to decrease the influence of missing observations in
the migrated image. The diagonal elements of W consist of
zeroes and ones, weighting dead traces and live traces, respec-
tively. The regularization operator D1hx (model-space weight-
ing) is a first-order derivative operator along the inline ray-
parameter direction. In regularized least-squares migration
(RLSM), we seek a model m by minimizing the sum of the
two norms where the trade-off parameter λ determines the
amount of smoothness. We minimize the objective function
using a conjugate-gradients (CG) algorithm (Hestenes and
Stiefel, 1952). Hence, the algorithm reduces to the sequen-
tial application of the following operators: migration L′, demi-
gration L, unsmoothing D1 hx , and the adjoint of unsmoothing
D′

1hx . The operator D1hx is a discrete derivative (high-pass fil-
ter), and the transpose operator D′

1hx is a discrete anticausal
derivative (Claerbout, 2004). The construction of the model-
ing and regularization operators and their adjoints is described
by Kuehl (2003). In this paper, we replace the 2D wave ex-
trapolator by a 3D common-azimuth extrapolator (Biondi and
Palacharla, 1996).

The choice of trade-off parameter λ can pose a challenge for
a large-scale linear problem such as regularized least-squares
migration. Obviously, it is not feasible to determine λ from
a trade-off curve [L-curve method, Hansen (1998)]. In prac-
tice, we therefore iterate the following procedure until a good
value for λ is found. We run least-squares migration for a cou-
ple of iterations for only a few frequencies, starting with a
small trade-off parameter — for example, λ = 0.0001 — and
monitor the data misfit of a few common-midpoint (CMP)
gathers. If, within the first two iterations, the data residual
norm reduces to 30% to 60% of the input data norm, the
trade-off parameter is accepted. If the fit is poor, we decrease
the trade-off parameter by 1/10. Conversely, if we are overfit-
ting the data, we increase λ by a factor of 10.

Synthetic data example

We created a simple 2D acoustic data set using a ray tracer
that accounts for the correct reflector AVA, cylindrical diver-
gence (line sources), and interface transmission losses in a lat-
erally invariant earth model. The data were then copied to a
number of inlines to simulate 3D common-azimuth data gen-
erated by line sources. The model consists of four flat layers
and a half-space. Table 1 describes the model in terms of ve-
locity and density. Note that cylindrical divergence is in agree-
ment with the assumptions made for the common-azimuth mi-
gration operator (Biondi and Palacharla, 1996). When dealing
with real data, we approximately transform point sources to
line sources by multiplying the data by the square root of the
two-way traveltime.

Each CMP gather has 61 offsets with a spacing of 25 m.
The data set consists of 10 inlines, each of which has 10 CMP
gathers. Both inline and crossline CMP spacings are 25 m. Fi-
nally, we randomly remove 70% of the traces to simulate a
very sparse 3D survey.
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Figure 1 illustrates the capability of RLSM to reconstruct
3D seismic data. Figure 1a displays four CMP gathers of the
original data, and Figure 1b shows the reconstructed CMP
gathers after 15 CG iterations. The residuals (Figure 1c) are
insignificant. This is a reassuring, albeit expected, result. Obvi-
ously, successful data reconstruction prior to conventional mi-
gration would be a more efficient alternative to least-squares
migration in this case. Many schemes for wavefield reconstruc-
tion have been proposed and successfully applied. For exam-
ple, Liu et al. (2003) have devised a Fourier reconstruction
method that can deal with sparse data similar to the example
shown in this section. However, the purpose of this study is to
glean the benefits of least-squares migration without resorting
to other processing techniques. This is not strictly of academic
interest, since least-squares migration promises to achieve
benefits beyond data reconstruction. Hu et al. (2001) demon-
strate that migration deconvolution, implicitly accounted for
in least-squares migration, can help to sharpen the seismic im-
age by deconvolving the migration point-spread function. The
point-spread function results from the band-limited nature of
the imaging process and tends to blur the seismic image. In our
real-data example, least-squares migration generates a higher-
resolution image than conventional migration, which agrees
with the assertion made by Hu et al. (2001).

Figure 2 compares CIGs (at the same spatial location) com-
puted via migration, RLSM after four CG iterations, and
RLSM after 15 iterations. With more CG iterations, the co-
herency of the CIG is gradually improved and aliasing arti-

Figure 1. Comparison between observed and reconstructed
data. (a) Four neighboring CMP gathers. Each gather has 61
offsets with 25-m spacing. (b) Reconstructed CMP gathers af-
ter 15 CG iterations. (c) Difference between the original live
traces and the corresponding reconstructions.

facts are further mitigated. Notice the limited aperture effect
in the migration result, manifesting itself as spurious tails. Part
of the problem lies in the fact that the highest invertible, full-
bandwidth ray parameter is determined by the upper limit of
the offset wavenumber. Going beyond this limit in the radial-
trace transform reduces the wavelet bandwidth. This is partic-
ularly obvious for the first event in our example. One has to be
aware of this, and muting the CIGs at the upper ray-parameter
limit may be advisable. However, suppression of this effect
would be preferable. Refer to Sava and Fomel (2003) for a
more detailed discussion on angle- and ray-parameter-domain
imaging.

Figure 3 compares the extracted AVA curves of the four
events by two different methods. The top panel shows the mi-
gration (with the imaging Jacobian correction applied), and
the bottom panel shows the RLSM result. For better compari-
son, the smoothed migrated AVA curves are also shown in the
top row. The migrated amplitudes are obviously distorted by
missing data. On the other hand, RLSM retrieves the AVA
closely within the invertible angle range. Kuehl (2003) finds
that least-squares migration is also beneficial in the presence
of white noise, despite an expected degradation of amplitude

Figure 2. CIGs with varying CG iterations. (a) CIG after mi-
gration. (b) CIG after four CG iterations. (c) CIG after fifteen
CG iterations.
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fidelity with decreasing signal-to-noise (S/N) ratio. Notice that
the effect of the imaging Jacobian is inherent in the inversion.

Figure 4 shows the relationship between the normalized
data residual norm and CG iteration. The misfit flattens out
after 15 iterations; more iterations do not significantly impact
the AVA estimate.

Figure 3. Extracted AVA curves produced by migration for
the events at depths (a) 500 m, (b) 800 m, (c) 1100 m, and
(d) 1400 m. The dashed lines are the theoretical AVA, the
solid lines are the migration result, and the circled lines are the
smoothed migration result (Hamming filtered). (e)–(h) Ex-
tracted AVA curves produced by RLSM (15 iterations). The
solid lines are the RLSM-inverted AVA.

Preconditioned implementation of RLSM

A negative aspect of RLSM is its computational cost.
Each CG iteration requires one full migration/demigration se-
quence, which clearly limits RLSM in industrial applications.

Preconditioning strategies for semi-iterative solvers can
help to speed up convergence and have been studied exten-
sively in applied mathematics (Saad, 1991; Hanke and Hansen,
1993). Indeed, preconditioning schemes have been applied
successfully in prestack imaging by coupled linearized inver-
sion (Ehinger and Lailly, 1991), wave-equation least-squares
migration (Prucha and Biondi, 2002), interpolation problems
(Fomel and Claerbout, 2003), and Radon processing (Trad
et al., 2003). In our implementation, equation 2 is solved with
a simple change of variable:

z = D1hxm. (3)

Substituting m in equation 2 leads to

F (z) = ‖W(d − LPz)‖2 + λ2‖z‖2

≡ ‖W(d − L̃z)‖2 + λ2‖z‖2, (4)

where P, in theory, is the inverse of D1hx . Here, rather than
inverting D1hx , we replace P by an operator that behaves sim-
ilarly as the inverse of D1hx . If D1hx is a discrete operator, we
can think of it as a high-pass operator or filter. Therefore, P
must be a low-pass operator. In our implementation, to apply
P is equivalent to applying a 1D low-pass filter (Hamming win-
dow) to the image gathers. The convolution, in this context, is
used to remove artifacts arising from incomplete sampling, ad-
ditive noise in the original data, and operator artifacts (Kuehl
and Sacchi, 2003).

The new cost function is similar but not identical to equa-
tion 3 since P is not exactly equivalent to the inverse of D1hx .
However, the solutions are expected to be of similar charac-
ter and quality. Indeed, our tests confirm that both techniques
yield almost indistinguishable results, but the preconditioned
solution is reached significantly faster.

Mathematically, the logic behind this step is that a good
preconditioner will change the distribution of eigenvalues of
the operator L′ L (Saad, 1991). Proper preconditioning will

Figure 4. Normalized residual norm ‖W(Lm − d)‖2 versus CG
iteration.
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introduce clustering of large eigenvalues; consequently, the
CG method will require fewer iterations to minimize the cost
function F. Although we have no formal proof of this, we
found that a low-pass filter as the preconditioner provides a
good solution within only a few CG iterations of least-squares
migration. Our preconditioning strategy is similar to the good-
pass operator used by Ronen et al. (1995) for dealiasing the
dip-moveout operator. Here, the good-pass operator is the
Hamming smoothing window and the bad-pass operator is the
first-order derivative.

Figure 5. Offset distribution per CMP bin for the Erskine data
set, Western Canadian Sedimentary Basin. The number of off-
sets in each bin is color coded.

Figure 6. Comparison between observed and reconstructed
data at inline 10. (a) Original CMP gathers. (b) Reconstructed
CMP gathers after eleven CG iterations. (c) Reconstructed
CMP gathers after four preconditioned CG iterations.

Furthermore, preconditioned least-squares migration al-
lows us to set the trade-off parameter λ to zero and let the
number of CG iterations control the data fitting (Hanke and
Hansen, 1993). This saves time otherwise required for finding
a proper trade-off parameter.

FIELD DATA EXAMPLE

We compare the performance of migration, RLSM, and
preconditioned RLSM using the Erskine data set acquired in
southern Alberta, Canada. The small 3D survey targets the
Leduc reef, a carbonate play in the Western Canadian Sed-
imentary Basin. The data were first binned, and a constant
common-azimuth subset was extracted. The binned data con-
sist of 157 inlines and 40 crosslines. The offset ranges from 75
to 3000 m, with a highly uneven and sparse distribution (Fig-
ure 5).

Figure 6a shows four adjacent CMP gathers extracted from
inline 10. Forward modeling, after inversion, is used to re-
cover the data on the complete input grid. The resulting re-
constructed gathers are depicted in Figure 6b (RLSM) and c
(preconditioned RLSM).

Figure 7 shows the CIGs with offset ray parameters ranging
from 0 to 800 µs/m and with an interval of 6.25 µs/m at inline

Figure 7. CIGs at crossline 10, inline 71. (a) CIG produced
by migration. (b) CIG after four CG iterations. (c) CIG after
eleven CG iterations. (d) CIG after four preconditioned CG
iterations.
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Figure 8. Normalized residual norm ‖W(Lm − d)‖2 versus CG
iteration. Dashed curve — preconditioned CG. Solid curve —
CG.

Figure 9. Stack of inline 71. (a) Stack produced by migration.
(b) Regularized least-squares migration (eleven iterations).
(c) Preconditioned regularized least-squares migration (four
iterations). The highlighted areas are enlarged in Figure 10.

Figure 10. Detailed image of inline 71 with CIG at crossline 10. (a) Stack after
migration. (b) CIG corresponding to (a). (c) Stack after eleven CG iterations. (d)
CIG corresponding to (c). (e) Stack after four preconditioned CG iterations. (f)
CIG corresponding to (e).

71 and crossline 10. The maximum ray parameter is 500 µs/m.
Figure 7a portrays the migrated CIG with obvious aliasing
artifacts, and Figure 7b and c depict the least-squares inverted
CIG after four and eleven iterations, respectively. Figure 7d
shows the result of preconditioned RLSM after only four
iterations with a quality similar to that of Figure 7c. The
evolution of the normalized residual norm, ‖W(Lm − d)‖2,
versus CG iteration can be seen in Figure 8. As expected, the
preconditioned RLSM converges faster than RLSM with no
preconditioning.

In general, to limit the computational cost of the inversion,
we stop the CG algorithm before complete convergence. We
monitor a small subset of the reconstructed data (see Figure 6)
to control the degree of fitting. This is important since overfit-
ting leads to artifacts. Conversely, underfitting leads to incom-
plete recovery of the missing observations.

The structural image is computed by stacking the CIGs. The
stacked images obtained with migration, the least-squares mi-
gration stack, and the preconditioned least-squares migrated
stack are displayed in Figure 9. Both RLSM and precondi-
tioned RLSM lead to better reflector continuity in low-fold
areas.

Figure 10a, c, and e show details of the stacks displayed in
Figure 9 and their associated CIGs (Figure 10b, d, and f) at
crossline 10. Note the considerably improved resolution. This
effect can be explained as follows: First, by imposing smooth-
ness on the inverted CIG, individual traces stack more coher-
ently. In particular, part of the smearing produced by the aper-
ture limitation (nonflatness at high ray parameters) is attenu-
ated; therefore, the stacked CIG better preserves the high fre-
quencies. Second, as mentioned earlier, least-squares migra-
tion automatically accounts for migration deconvolution de-
scribed by Hu et al. (2001), which helps to sharpen the image.
This is an important concept that can lead to higher resolution.

It is conceivable that adding a vertical
sparseness constraint could further increase
the vertical resolution. The deconvolution
effect is also visible in Figure 11, where we
compare stacked images at crossline 24.

For better performance assessment, we
generated a synthetic CIG based on avail-
able sonic-log data from a well located at in-
line 76 and crossline 24. A second well, lo-
cated outside the survey area, had density-
and sonic-log information. Correlation of
the two sonic logs allowed us to match the
density log to the log located within the sur-
vey. This relatively crude approach appears
to be justified, since the sonic logs agree
very well (Figure 12). The shear-wave veloc-
ities are assumed to follow Castagna’s mud-
rock regression Vs = (Vp − 1360 m/s)/1.16
(Castagna et al., 1985). Since Castagna’s for-
mula is not valid for carbonates, we restrict
the AVA analysis to the Ellerslie Forma-
tion (sandstone) and the Banff Formation
(shale) (see Figure 13) as indicated in the
stratigraphic column (Mossop and Shetsen,
1994). Unfortunately, by disregarding the
deeper carbonates, we exclude the Leduc
reef, which is the actual exploration tar-
get. However, this way we do not introduce
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further uncertainties by attempting to estimate the carbonate
shear-wave velocities. With the compressional-wave veloci-
ties, estimated shear-wave velocities, and the calibrated densi-
ties, we calculate the angle-dependent reflectivity traces using
the Aki and Richards approximation of Zoeppritz’s equations
(Aki and Richards, 1980).

The inverted CIG at the well location is displayed in Fig-
ure 14. Figure 15 compares the time-converted Aki and

Figure 11. Stack of crossline 24. (a) Migration. (b) Least-
squares migration after eleven CG iterations. (c) Precondi-
tioned least-squares migration after four iterations.

Figure 12. Depth correlation of log traces. (a) Sonic log trace
Vp outside the survey area. The red curve is the trace at the
original depth. The blue curve is the same trace with depth
calibrated to the local trace shown in (b). (b) Sonic-log trace at
inline 76, crossline 24. (c) Density-log trace outside the survey
area. The depth has been adjusted to match the sonic-log trace
within the survey area.

Richards synthetic CIG and the time-converted CIG in more
detail. Given the degree of uncertainty associated with the
synthetic CIG and the sparseness of the field data, the match is
acceptable, despite some discrepancies. The picked AVA for
the prominent Ellerslie/Banff event at 0.7 s in Figure 16 fits
the synthetic AVA well within 12◦ to 27◦. Outside this angle
range, the lack of offset data makes a reliable AVA estimate
impossible.

Figure 13. Strata correlation for the survey area of the Erskine
data set. The background is the stack of inline 76; the blue
curve is the local sonic log (same as Figure 12b). The stack
and the sonic log correlate relatively well.

Figure 14. CIG at inline 76, crossline 24. See Figure 15b for
the AVA and time conversion of the highlighted area.
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Figure 15. Comparison between (a) the synthetic CIG and (b)
the inverted CIG. Both CIGs are displayed in the time do-
main. The arrows point out the event at depth 1500 m. AVA
curves for this event are shown in Figure 16. Since the events
are quite flat, AVA is calculated from AVP using equation
A-5 with a zero inline dip angle.

Figure 16. Comparison between the synthetic AVA and the
inverted AVA. Dashed curve — synthetic AVA for the event
at depth 1500 m. Solid curve — inverted AVA for the same
event (see Figure 15).

DISCUSSION AND CONCLUSIONS

Good-quality CIGs are key for amplitude-supported seis-
mic interpretation aimed at estimating rock and fluid prop-
erties. Our field-data test supports the assertion that regular-
ized least-squares migration improves amplitude robustness
and image resolution, even when the data are very sparse and
aliasing hampers the AVA analysis. The preconditioned im-
plementation of regularized least-squares migration cuts the
computational cost significantly, so that an industry applica-

tion of least-squares migration can be considered. Each CG
iteration involves one migration/modeling sequence. In our
tests, we found good convergence can be achieved within four
iterations of preconditioned RLSM, which is a cost equiva-
lent to eight conventional migrations. This is a dramatic im-
provement over regularized least-squares migration, with a
cost equivalent to about 20 migrations.

Clearly, computationally less-demanding techniques, such
as interpolation prior to migration, attempt to address the data
issues discussed in this paper. Hence, to better appreciate the
added benefits of least-squares migration, a careful compar-
ative study between more conventional processing and least-
squares migration is in order.

In spite of this caveat, least-squares migration deserves spe-
cial attention as it is the unifying link between imaging and
inversion. It allows us to fit the seismic data and, at the same
time, impose geophysically sensible constraints on the seismic
model. We expect that other regularization schemes will be
proposed in the future. For instance, an inversion for CIGs
that are parameterized in terms of AVA intercept and gradi-
ent combined with a spatial smoothness constraint that con-
forms to the geological structure may be one avenue to de-
velop least-squares migration further.
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APPENDIX A

IMAGING 3D COMMON-AZIMUTH DATA

AVA imaging of 3D common-azimuth data can be de-
scribed as linking wavefield propagation, AVP imaging, and
AVP to AVA conversion. The surface wavefield is down-
ward continued in the earth by a phase-shift operator. At
each depth, AVP image gathers are produced by a radial-trace
transform. Finally, the AVP image gathers are converted to
angle by scaling the AVA gathers. This appendix lists the for-
mulas involved in wavefield propagation and imaging.

For computational efficiency, we adopt Biondi and
Palacharla’s common-azimuth phase-shift operator to prop-
agate the wavefield in the frequency domain ω (Biondi and
Palacharla, 1996):

P (z + dz, ω, kmx, kmy, khx) = P (z, ω, kmx, kmy, khx)

× e−ikzdz, (A-1)

where the vertical wavenumber kz is calculated by a modified
DSR equation:
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kz = ω

(√
1

v(r, z)2
− 1

4ω2

[
(kmx + khx)2 + (kmy + k̂hy)2

]

+
√

1
v(s, z)2

− 1
4ω2

[
(kmx − khx)2 + (kmy − k̂hy)2

])
.

(A-2)

Here, v(r, z) and v(s, z) are the velocities evaluated at depth z
and source and receiver locations r and s, respectively. Lateral
velocity variations can be accounted for by corrections such
as the split-step expansion (Popovici, 1996). In the case of
large variations, we use the PSPI technique (Gazdag and
Sguazzero, 1984) in conjunction with a split-step correction
(Kuehl and Sacchi, 2003). The spatial frequencies kmx and
kmy are the midpoint wavenumbers in the inline and crossline
direction, respectively. In addition, khx is the inline offset
wavenumber. The crossline offset wavenumber k̂hy is derived
by a stationary-phase approximation (Biondi and Palacharla,
1996):

k̂hy(z) =

kmy

√
1/v2

m − 1/4ω2(kmx + khx)2 −
√

1/v2
m − 1/4ω2(kmx − khx)2√

1/v2
m − 1/4ω2(kmx + khx)2 +

√
1/v2

m − 1/4ω2(kmx − khz)2
.

(A-3)

This formula is derived for constant velocities. But with
proper implementation (e.g., PSPI), it can also image media
with vertical and lateral velocity variations (Biondi and
Palacharla, 1996). However, it is important to note that the
stationary phase approximation entails a scaling factor that
converts point sources to line sources (Biondi, 2003). We have
omitted this factor here, keeping in mind that the data must
be scaled to approximately simulate line sources.

At each depth, the wavefield is imaged at time zero by con-
sidering the following two steps. First, use the radial-trace
transform to compute the image contribution of waves locally
propagating with ray parameter phx (Sava et al., 2001). The re-
lationship between offset ray parameter phx , frequency ω, and
offset wavenumber khx is given by

phx = khx

ω
. (A-4)

Second, sum the data along ω in the radial-trace domain
(Mosher and Foster, 2000).

The above algorithm produces CIGs in the ray-parameter
domain. These image gathers can be transformed to the angle
domain by the following expression (Prucha et al., 1999):

sin(θ) = v(m, z) phx

2 cos(φ)
, (A-5)

with the incident angle θ , velocity v(m, z) at the midpoint po-
sition m, and apparent structural dip φ along the inline direc-
tion. The formula is valid when the crossline dip is negligible.
Fomel (2004) provides a generalization of the above relation-
ship.
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