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Abstract

GPR is a powerful tool for geophysical near-surface investigations. It is capable of delivering a high-resolution image of the

subsurface structure. However, if the underground consists of many reflecting events, the analysis and interpretation of the data can

be very complicated. In this paper, we present a new image decomposition technique that is based on Local Radon transforms. This

technique is a parametric local dip-decomposition method that allows us to extract features from or reconstruct GPR data.

In addition, it can also be applied to determine coherence attributes from the data. In particular, we show that after

reconstructing the data with only a subset of dips, the interpretability of GPR images improves significantly in as such that

reflectors in the migrated images are much easier to detect. We demonstrate the capabilities of this technique at GPR data acquired

at the highly fractured summit of Turtle Mountain (Alberta/Canada).

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Ground penetrating radar (GPR) has become a fre-

quently employed technique in geo-physical near sur-

face investigation. The electromagnetic waves

employed in GPR studies are sensitive to the dielectric

properties of the subsurface material. Hence, GPR data

are processed to obtain an image of the dielectric

structure of the subsurface with high vertical and hor-

izontal resolution. It has therefore gained popularity for

near-surface studies in many civil engineering and en-

vironmental applications (e.g., Zeng and McMechan,

1997) as well as archaeological studies (e.g., Goodman

et al., 1995), among others.
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When interpreting seismic or GPR data, we usual-

ly look for events that are coherent in some sense

over a certain portion of the data set. For example,

such coherent events could be diffraction hyperbolas

indicating a strong scattering anomaly in the subsur-

face or continuous events that are related to a geo-

logical structure. However, especially with highly

resolving techniques such as GPR, such coherent

features may be hidden when numerous reflectors

overlap. Then, the underlying structure is difficult to

detect, which hampers the interpretation and risks the

success of the survey. An example for this problem is

the GPR data that were acquired at Turtle Mountain,

Canada, to map bedding planes and fractures for a

slope stability estimation project (Theune et al., in

press). Fig. 1 displays a GPR data set acquired with

a 50 MHz antennae system. The data set consists of

465 traces with 837 data points along each trace. We
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Fig. 1. GPR data acquired at Turtle Mountain. Black arrows indicate the bdownward dippingQ pattern of reflectors, green arrows point to bupward
dippingQ reflectors.
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have applied only automated gain control to the data

to amplify amplitudes for later arrival times and

simple trace shifting to correct for small scale topo-

graphic variations.

The highly fractured nature of Turtle Mountain’s

summit becomes apparent in numerous reflectors that

differ in length and dip in the data. Despite the pattern

of almost randomly distributed short scale events, there

seem to be two reflector systems that appear to be more

coherent over the data set. These two systems are

indicated by black and green arrows in Fig. 1. However,

the presence of small scale reflections complicates the

detection of these events and the interpretation of the

data significantly. Therefore, a processing algorithm to

enhance or extract the interesting events in the data

would improve the interpretation of the GPR data

substantially.

Several techniques have been developed to extract

coherent features in geophysical data. Generally, a

method that allows the transformation of the data to a

domain where the overlapping dips are separated is

desirable. For further processing and analysis of the

data, we must also require that the transform is invert-

ible. In other words, two canonical transformations are

needed, one to map the data to a new domain (inverse

transform), the second to map the data from the trans-

form domain back to the original domain (forward

transform).

A common tool in seismic data processing to im-

prove feature interpretation is based on coherence anal-

ysis (e.g., Foster and Guinzy, 1967; Mack, 1974;

Marfurt et al., 1998; Cohen and Coifman, 2002).
These algorithms search for disruption in data continu-

ity that may be related to faults, channel structures, and

salt domes. However, coherency techniques fail if the

data to be analyzed are too noisy or composed, like in

our study, of a large superposition of events of different

characteristic length and dip. Additionally, these algo-

rithms transform the data to a domain where coherency

anomalies are highlighted, and do not allow for an

inverse transformation to reconstruct the data. In other

words, coherence methods that are designed for data

analysis and feature extraction do not produce a trans-

form pair capable of analyzing and reconstructing the

data.

Dip-dependent image decomposition can also be

achieved by applying 2-D Fourier transforms to the

data. The popular f–k (frequency–wavenumber) filter-

ing techniques are frequently used in seismic proces-

sing to separate signals propagating with different

velocities such as surface waves and reflected wave

energy (e.g., Yilmaz, 1987). Such events also distin-

guish themselves through different dips in the t�x

domain. Hence, the f–k filtering technique should also

be applicable for the image decomposition of the GPR

data set. However, the success of f–k filtering depends

strongly on the degree to which events with different

dips are mapped into distinguished regions in the f�k

domain. If, for example, many events with similar dips

are present in the data, these events overlap in the f�k

domain and their separation is complicated.

To circumvent this inherent problem of f–k filtering

for coherent noise suppression, Nuzzo and Quarta

(2004) employed linear Radon and wavelet transforms.
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Radon transforms have a long history in seismic data

processing to separate coherent noise from signal (e.g.,

Hampson, 1986). Radon transforms can be interpreted

as a summation of data amplitudes along predefined

trajectories. Most common in geophysical applications

are simple trajectories such as linear, parabolic, and

hyperbolic summation paths (e.g., Trad et al., 2003).

These trajectories are characterized by two parameters:

the intercept time s and, in the case of the linear Radon

transform, the dip (or slowness) p, and the velocity v in

the parabolic and hyperbolic case, respectively. If, for

example, a linear coherent event is aligned along a

linear trajectory, the summation will result in a large

value in the Radon domain for that particular s–p value

pair. This event will then be distinguishable from other

linear coherent events by its location in the Radon

domain. By using linear Radon or s–p transforms,

Nuzzo and Quarta (2004) were able to improve the

coherent noise suppression in GPR data. In principle,

Radon transforms can also be applied to dip-dependent

image decomposition. However, full-aperture trans-

forms, as they are usually applied in seismic processing

and by Nuzzo and Quarta (2004), do not honor the local

character of dip variations. Hence, a localized approach

to the application of Radon transforms would serve the

image decomposition better in such that the transform

can be adapted to dip variability.

In this paper, we describe a method that employs the

concepts of generalized convolution/deconvolution and

local linear Radon transforms and show how this meth-

od can be used to decompose an image into dip-depen-

dent data contribution. As we will show, this technique

allows for the efficient separation of dips in the data by

construction and also takes the local character of the

data variations into account. We will start with the

description of the theory and show subsequently in

details how this algorithm was applied to extract the

linear patterns in the GPR data set acquired at Turtle

Mountain.

2. Theory

Our method for dip-dependent image decomposition

is based on the assumption that the GPR data can be

considered as a superposition of local wavefield opera-

tors. This idea is similar to the well known concept of

Fourier synthesis, in which one constructs a signal from

fundamental harmonics. However, instead of adding

fundamental harmonic signals to synthesize the desired

data, as it is the case for the Fourier synthesis, the data

are constructed by a weighted sum of local 2-D func-

tions or waveforms.
In our technique, multichannel data d(x, t) are repre-

sented as a superposition of temporal and spatially

invariant operators as follows:

d x; tð Þ ¼
XN

i¼1

X

x0

X

t0

f x0; t0; pið Þb x� x0; t � t0; pið Þ:

ð1Þ

b(x, t,p) is a local wavefield operator in space–time

parameterized by the ray parameter p. The second

parameters, f(x0, t0,pi), are filter values that represent

a measure of the data coherence in the neighborhood of

a point (x0, t0) with respect to the dip pi. Sacchi et al.

(2004) interpreted these filters as shaping filters that

transform the wavefield operators into the data.

Eq. (1) can also be written in matrix form as D ¼P
i F pið Þ � B pið Þ where the matrices D, F( pi) and

B( pi) denote data, the Radon filters, and local wave-

field operators, respectively. The convolution operator

in Eq. (1) is now represented by the symbol �.
The local wavefield operator is analytically written

via the following expression:

b x; t; pð Þ ¼ F�1 b̃b x;x; pð Þ
� �

;

p ¼ pmin; . . . ; pmax: ð2Þ

The symbol F�1 is used to indicate the inverse

Fourier transform. The local wavefield operator in fre-

quency–space is given by

b̃b x;x; pð Þ ¼ s̃s xð Þh xð Þeixpdx; � S 0V x V S 0: ð3Þ

In this expression, s̃(x) is the source signature or

wavelet in the frequency domain. The variable h(x) is a

spatial taper that gives larger weights to the center of

the operator, the dip is denoted by p, and finally, S 0

defines the operator half-aperture.

The local wavefield operators are parameterized

with ray parameters or dips pi, i=1, . . . , N, where for

simplicity we have adopted constant increment dips of

the form p =pmin+Dp(i�1), i=1, . . . , N, with mini-

mum dip and increment chosen so as to span the dips

present in the data. However, to avoid aliasing of the

operators, the maximum dip must be chosen according

to the criterion defined in Turner (1990):

pmax ¼
1

2Dxfmax

ð4Þ

where Dx is the spatial sampling distance.

Fig. 2 shows examples of three operators with dif-

ferent dips p. In this synthetic model, we have

employed a Ricker wavelet with a center frequency of

50 MHz to approximate the source signal.



Fig. 2. Three wavefield operators. Left: minimum dip; center: zero dip; right: maximum dip. The 25 operators used in the analysis vary linearly

between the minimum and maximum dip.
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To avoid notational clutter we will concentrate on the

compact expression D ¼
P

i F pið Þ � B pið Þ. The Radon
filters F( pi), i=1, . . . , N are obtained by solving a least

squares problem. In this case, we find the operators

F( pi) by minimizing the following cost function

J ¼
����
����D�

X

i

F pið Þ � B pið Þ
����
����
2

ð5Þ

The cost function J is a figure of data fidelity, in other

words, we would like to find a set of Radon filters

F̂( pi), i=1, . . . , N that when convolved with local

wavefield operators yield a signal that reproduces the

original data within a predefined tolerance. At this

point it is important to point out that the cost function

J is minimized using the method of conjugate gradients

(Sacchi et al., 2004). The advantage of using conjugate

gradients is that computations can be done on the fly

without the requirement of computing the inverse of

large matrices. This strategy is very useful when com-

puting large inverse problems such as those arising in

Radon processing (Trad et al., 2003), and Migration/

Inversion methods (Nemeth et al., 1999).

The set of Radon filters that minimize the cost

function is designated as F̂( pi), i=1, . . . , N. Once

these operators are computed we are in condition of

defining the following quantities:

! Data ith-mode, D̂Di ¼ F̂F pið Þ � B pið Þ, which models

the data component with energy aligned in the pi
direction.

! By D̂DFR ¼
PN

i¼1 F̂F pið Þ � B pið Þ, we denote the full

reconstruction of the data using all the dips ( pi),

i =1, . . . , N. The associated error panel should con-

tain random noise.
! D̂DPR ¼
P

iaI F̂F pið Þ � B pið Þ represents the partial re-
construction of the data using a subset of dips I, for

instance, the dips containing modes that account for

by most of the energy of the data.

The convolution operation employed when recon-

structing the data and its similarity with the mathe-

matical convolution operation (i.e., the product of two

polynomials) leads to the term generalized convolu-

tion (Granlund and Knutsson, 1995). Similarly, we

can consider the process of partially reconstructing

the data as generalized filtering, and the technique

of determining the filters F( pi) from the data as

generalized deconvolution.

A few words about computational strategies to com-

pute the Radon filters are in order. First, the number of

iterations of the conjugate gradient method is used as a

trade-off parameter (Hansen, 1998). In other words, the

final iteration is reached when the data residuals do not

contain visible coherent energy. In general this is

achieved in 10–15 iterations. Secondly, the convolution

and cross-correlation operations required by the method

of conjugate gradients are performed using the Fast

Fourier Transform (FFT) as described in Sacchi et al.

(2004). The convolutional structure of Eq. (1) permits

for fast operations in the frequency–wavenumber do-

main. The cost of each conjugate gradients iterations is

proportional to the cost of 2D-FFTs times the number

of dips (N).

3. Field data example

We applied generalized deconvolution to a GPR data

set that was acquired at the highly fractured summit of
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Turtle Mountain in Alberta, Canada (see Theune et al.,

in press, for a detailed description of the surveys). The

main purpose of these measurements was to detect

fractures and to map bedding planes for geotechnical

slope stability studies.

The data were acquired on steep slopes using a 50

MHz system. Numerous reflecting events in the sub-

surface complicated the analysis of the data substantial-

ly. Fig. 1 shows one of the acquired data sets after

initial processing consisting of simple topographic cor-

rections and amplitude gain. There are two dominating

reflector patterns in the data that we have indicated by

black and green arrows, respectively. In the following,

we will refer to the fracture pattern indicated by black

arrows as bdownward dippingQ events. The second

pattern marked by green arrows will be referred to as

bupward dippingQ events. These reflections are most

likely caused by bedding planes and fractures at the

mountain’s summit.

The data were then migrated using a constant velocity

Kirchhoff migration algorithm. The migration velocity

that gave best results was found empirically to be v =0.08

m/ns (Theune et al., in press). After migration, the image

quality is even worse, as Fig. 3 shows. The detection of

coherent events in the migrated image, which are related

to bedding planes and fractures in the subsurface, is

inhibited by the presence and superposition of numerous

events with different dips. Nevertheless, the presence of

two dominant linear reflector patterns may allow for

successful dip-dependent image decomposition using

the proposed technique.

3.1. Dip-dependent data decomposition

To facilitate the image analysis, in particular the

determination of linear coherent features in the data,
Fig. 3. The migrated GPR image using the original data.
we decomposed the data into 25 dip-dependent compo-

nents, where the dip varied between �60.0 and 60.0 ns/
m. Since the wavelet of the propagating electro-mag-

netic wave is unknown, we approximated it by a Ricker

wavelet with a central frequency of 50 MHz, which is

the nominal frequency of the antennae system. Further-

more, we chose the aperture half-width (S 0) to be 1 m,

which is equivalent to including 11 GPR traces into the

local operator. Finally, a Hamming window was used as

the taper function h(x). The size of the resulting local

wavefield operator is 111�11 sample, which is small

compared to the size of the data set consisting of

837�465 samples.

To evaluate the practicability and accuracy of the

algorithm, we employed the following workflow for

dip-dependent image decomposition (Fig. 4):

1. We start with the GPR data after initial processing

consisting of topographic corrections, amplitude

gain, and bandpass filtering.

2. Then, we migrate the data using a constant veloc-

ity Kirchhoff migration algorithm. The resulting

image will be used as a benchmark for the data

interpretation.

3. Using generalized deconvolution, we decompose the

unmigrated data into N modes with different dips.

4. Now, we reconstruct the data using generalized con-

volution. This data set should be close to the original

data.

5. Alternatively, we will use only a subset of the avail-

able data modes to extract certain dips in the data

(i.e., generalized filtering). Then, we migrate the

new data set to image and interpret the synthesized

data. The interpretation of these data sets is then

compared to the results of the original data to eval-

uate the usefulness of this algorithm.
Note that the vertical axis is two-times exaggerated.



Fig. 5. The 25 dip-dependent data components of the original GPR data. The

labels have been omitted for the sake of clarity.

Fig. 4. Conceptual workflow for dip-dependent image decomposition.
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Fig. 5 displays the twenty-five data modes that we

obtained after the application of the algorithm to the

GPR data. The data modes are sorted such that the

component with highest coherence energy appears in

the top left corner (panel 1) and the one with least

coherent energy is plotted in the bottom right corner

(panel 25), where the coherence energy is calculated

according to Ec pð Þ ¼
P

xt d
2 x; t; pð Þ. It is interesting to

note that the first eight modes contain coherent data

energy for dips that represent the bupwardQ and

bdownward dippingQ events in the data. This shows

that these two reflector patterns dominate the GPR

image acquired at Turtle Mountain.

To test the decomposition algorithm, we first recon-

struct the data set using all data components. The

reconstruction is shown in Fig. 6 along with the original

data and the difference between the reconstructed and

original data set. The data difference plot shows that the

reconstruction works well except for two regions. First,

the algorithm is not able to model the abrupt change at
data are plotted versus offset and time as in Fig. 1; however, the axis



Fig. 6. Comparison of the original data (a) and the reconstructed data (b). c) Shows the reconstruction error amplified by a factor of 100.
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short arrival times that has been introduced when trun-

cating the direct wave in the data. This does, however,

not pose a problem in our application as this sudden

change is a processing artifact and can therefore be

neglected. Secondly, the magnitude of the mismatches

increases marginally for later arrival times. This effect

may be explained by dispersion that distort the wave

signal more for later arrival time, which is equivalent to

longer travel paths of the wave. When designing the

wavefield operators in Eq. (3), we assumed a constant

wavelet. Therefore, the algorithm is prone to have

difficulties in modelling the entire data set when the

real wavelet is not constant. However, these discrepan-

cies at later arrival times are small and can be neglected

in this case.

Before continuing with the application of general-

ized filtering for data synthesis, we briefly demonstrate

the significance of the filter panels f(x, t,p). Fig. 7a

shows the filter values calculated for a part of the

data set where the upward dipping reflector apparently
dominates the data. However, there are more reflectors

present with different dips in this part of the data set.

This is also reflected in the wide range of the filter

values. In fact, the analysis reveals that the strongest

filter value is associated with a positive dip, i.e., a

bdownwardQ dipping reflection. This is contrasted by

the data shown in Fig. 7b. Here, we have analyzed the

data for a point where a continuous bdownwardQ dip-
ping event is present. The filter values show a narrow

peak for the dip that represents the data locally best.

Also, the maximum of the filter values is larger than for

the first point. This shows that the filter values represent

a measure for the local data coherence. We will return

to this in the subsequent section.

We then applied generalized filtering to create two

reconstructed data sets that contain only one of the

dominating reflector pattern. From the 25 available

data modes, we chose those that contain bdownwardQ
dipping energy. We will refer to this synthesized data

set as DPR
I . The second synthesized data set (DPR

II )



Fig. 7. The absolute values of the shaping filters are plotted for two points of the data sets (marked by �).
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contains only upward dipping energy. The selected data

modes are summarized in Table 1. We also include the

coherence energy for the selected data mode normal-

ized by the total data energy. These values underline the

significance of the selected data modes in the data

reconstruction process and in the synthesis of the data

sets DPR
I and DPR

II , respectively. For instance, the data

set DPR
I accounts for 54.0% of the total data energy, the
Table 1

Data components used in the data synthesis

Data synthesis DPR
I Data synthesis DPR

II

Data

mode

p (ns/m) Ec /ET�100% Data

mode

p (ns/m) Ec /ET�100%

1 9.44 19.6 3 0.00 14.6

2 24.72 18.7 5 �4.72 11.4

4 14.16 11.8 6 �9.44 8.2

7 18.88 3.9 8 �14.16 3.9P
=54.0

P
=38.1

Refer to Fig. 5 for the meaning of the data mode numbers.
second synthesized data set contributes 38.1% to the

data energy, and the combined synthesized data sets

contribute 92.1% to the data.

Subsequently, we applied constant velocity Kirchh-

off migration (e.g. Yilmaz, 1987) to these data sets, the

results of which are shown in Fig. 8. As before, we used

a migration velocity of v =0.08 m/ns. The section at the

top results from migrating the original data. The inter-

pretation of this image between 15 and 40 m profile

length is complicated as numerous reflectors with dif-

ferent dips overlap in this part of the image. After dip-

dependent decomposition, the interpretation of this part

becomes much clearer. In addition, the decomposed

data sets show much more coherent features after mi-

gration (middle and bottom panel). This becomes even

more evident in the detail shown in Fig. 9. Coherent

events, previously hidden behind superposing reflec-

tors, appear clearly in the migrated data after image

decomposition and the interpretation will be less

ambiguous.



Fig. 8. Top: migration results using the original data. Center: image obtained using the synthesized data set DPR
II . Bottom: migrated image using the

synthesized data set DPR
I . Fig. 9 shows the details enclosed in the blue box.
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The improvement in image quality is also reflected

in the interpretation of the data set shown in Fig. 10.

This figure shows manually picked reflectors from the

original data set (Fig. 10a) and a combination of the two

synthetic data sets (Fig. 10b). The interpretation using

the synthetic data sets shows not only much more

details, but also the events seem to be more continuous

compared to the interpretation of the original data.

3.2. Data coherence analysis

When deriving the local Radon operators, we inter-

preted the shaping filters f(x, t,p) as a measure of local

data coherence. This interpretation of the values of the

shaping filters at a point in the data set is also evident

from the data shown in Fig. 7. When a point in a

strongly coherent neighborhood is analyzed, the varia-

tion of f-values shows a narrow peak for the dominating

dip (Fig. 7b). This is contrasted by a broad range of the

f-values in Fig. 7a, when many data dips are present.

We now extend the analysis of the shaping filters. To

investigate the potential of the shaping filters for data
coherence analysis, we create a map C(x, t) that for

each point contains the maximum value of the filter

values, i.e., C(x, t)=maxp[ f(x, t,p)]. The values in the

new data set represent a measure for the coherence of

the neighborhood for a point (x, t). Coherent events will

appear as an alignment of large values in this data set,

whereas areas of the data set with no coherent events

will be represented by low values of C. A second

attribute can be derived from the decomposition analy-

sis, which is the dip value corresponding to the maxi-

mum filter value at each data point.

In Fig. 11, we compare the data set C with the GPR

data. The top panel shows the original data, and the data

set C is plotted in Fig. 11b. The third panel shows a

map of the most coherent dip at each point of the data

set. When comparing the images in Fig. 11a and b, the

features present in the data are much clearer to see in

the coherence attribute map C. The coherence value of

features in the data that are smaller than the operator is

much less than those for coherent events. Thus, small

events in the data that we considered as bnoiseQ are

suppressed in the coherence map C. The second attri-



Fig. 9. Details of the migrated images in Fig. 8. Top: original data.

Middle: bupwardQ dipping events. Bottom: bdownwardQ dipping

events.
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bute map, displaying the data dip corresponding to the

largest value of the filters, does unfortunately not show

as many details. However, this map clearly indicates

regions in the data where downward and upward dip-

ping events dominate.
Fig. 10. Top: interpretation of the original data. Bottom: combined interpret

and bdownwardQ dipping data components (blue: bupwardQ dipping events,
This approach to analyzing the coherent structure of

data differs from the one by Marfurt et al. (1998) and

others. The coherence technique commonly applied in

seismic data analysis basically maps discontinuities of

data coherence, which are related to geological struc-

tures, for example faults and river channels. However,

these coherence analysis procedures do not work very

well in the presence of significant amount of coherent

noise, as it is the case for the GPR data from Turtle

Mountain. On the other hand, utilizing the maximum

value of the shaping filters leads to a representation of

coherent events that resemble the geological structure

very well.

4. Discussion and conclusions

The concept of generalized convolution applied to

local Radon transforms is a parametric processing al-

gorithm that allows for the decomposition into and

selective synthesis of local wavefield components. By

choosing local linear Radon transforms for the wave-

field operators, we were able to decompose a geophys-

ical data set into dip-dependent components that reflect

the local coherency structure of events in the data.

Therefore, we can consider the resulting data compo-

nents as the local coherency data modes of the data. The

values of these data modes depend on the coherence of

the data with respect to the dip and size of the decom-

position operator. Local events in the vicinity of a data

point with strong spatial and temporal coherence will
ation of the two synthesized images constructed using only bupwardQ
red: bdownwardQ dipping events).



Fig. 11. a) Original data; b) maximum coherence attribute map, c) maximum dip attribute map.
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result in a large value of the local coherence measure

f(x, t,p). These coherence measures then serve as oper-

ator weights in the image reconstruction process. By

using only selected data modes, events with energetic

and coherent dips can be extracted from the data for

further analysis and migration.

The application of generalized deconvolution and

filtering to the GPR data set demonstrate the potential

of this algorithm. The synthetic data sets constructed by

using only a small subset of the data modes improved

the analysis and interpretation of the data substantially.

After image decomposition and subsequent migration,

linear coherent patterns in the data become much more

apparent (Fig. 8). The detection of these events is

significantly facilitated, which is also reflected in the

interpretation of the data in Fig. 10. Whereas the inter-

pretation of the original data shows discontinuous
reflectors, which are due to the difficulty in detecting

coherent events, the combined interpretation of the two

synthetic data sets shows considerably more details as

well as continuity of the reflectors.

A few considerations on choosing the decomposition

parameters follow. In our example, we have chosen a

wide range for the dips p. As the data components in

Fig. 5 show, modes with large dips do not contain much

coherent energy. As such, we could have chosen a

narrower dip range for the data decomposition. How-

ever, a proper range is difficult to estimate a priori, and

therefore, choosing a wide range for p ensures that

most, if not all, dips in the data are included in the

decomposition. The second parameter to select is the

half aperture width of the operator, S 0. If we choose a

small value for S 0, short coherent features are recog-

nized in the analysis. On the other hand, selecting a
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larger operator mostly detects longer coherent features,

whereas short events experience less weight in the

generalized deconvolution process and are therefore

suppressed in the image reconstruction. Hence, a proper

choice for S 0 depends on the data. In our example, we

have chosen a value of 1 m for the aperture’s half-width,

which seems to be a good representative size of the

average linear coherent reflectors in the migrated data

(see Fig. 3). A proper choice for the center frequency of

the modelled wavelet, s̃(x), is difficult, especially in

case of GPR data, as the propagating wavelet is often

dispersive. In our example, we approximated the real

wavelet by a synthetic Ricker wavelet with a center

frequency of 50 MHz, which is the nominal frequency

used in the data acquisition. The reconstruction test,

shown in Fig. 6, indicates that this choice of s̃(x) is a

proper one. The reconstruction error is generally small.

Only for later arrival times, the mismatch of the original

and reconstructed data increases. One reason for this

can be that dispersive effects distort the real wavelet

substantially such that the approximation by the syn-

thetic wavelet is not as good as for earlier times. A

second explanation can be that for later arrival times,

data energy is reduced and random noise becomes

dominating. In this case, the presence and detection of

coherent events are reduced and the reconstruction of

the data using generalized convolution does not recover

the data anymore to a sufficient degree.

The filter values f(x, t,p) can serve as an attribute to

analyze the coherence of the data. As shown in Fig. 11,

this attribute map shows coherent events in the data

much clearer than the actual GPR data. As this attribute

is associated with the data coherence, it works well for

data that are severely contaminated with noise. This is a

major advantage over conventional coherence techni-

ques (such as the one by Cohen and Coifman, 2002,

among others), which display discontinuities of data

coherence.

In conclusion, we have presented an algorithm that

allows for dip-dependent image decomposition that

takes the local coherence structure of the data set into

account. This parametric technique was successfully

employed to extract coherent features from a GPR

data set that was severely contaminated with coherent

noise. The algorithm is robust in such that the image

reconstruction works well for low quality data as used

in the example, even if an approximation to the wavelet

s̃(x) must be used in constructing the operators.

Applications for this technique are numerous. Be-

sides the extraction of coherent features in GPR data as
shown in this paper, this method can also be used to

remove coherent and random noise, interpolation of

missing traces, and wavefield separation.
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