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ABSTRACT
Convolution of a minimum-phase wavelet with an all-pass wavelet provides a means
of varying the phase of the minimum-phase wavelet without affecting its amplitude
spectrum. This observation leads to a parametrization of a mixed-phase wavelet being
obtained in terms of a minimum-phase wavelet and an all-pass operator. The Wiener–
Levinson algorithm allows the minimum-phase wavelet to be estimated from the
data. It is known that the fourth-order cumulant preserves the phase information
of the wavelet, provided that the underlying reflectivity sequence is a non-Gaussian,
independent and identically distributed process. This property is used to estimate the
all-pass operator from the data that have been whitened by the deconvolution of the
estimated minimum-phase wavelet. Wavelet estimation based on a cumulant-matching
technique is dependent on the bandwidth-to-central-frequency ratio of the data. For
the cumulants to be sensitive to the phase signatures, it is imperative that the ratio of
bandwidth to central frequency is at least greater than one, and preferably close to two.
Pre-whitening of the data with the estimated minimum-phase wavelet helps to increase
the bandwidth, resulting in a more favourable bandwidth-to-central-frequency ratio.
The proposed technique makes use of this property to estimate the all-pass wavelet
from the prewhitened data. The paper also compares the results obtained from both
prewhitened and non-whitened data. The results show that the use of prewhitened
data leads to a significant improvement in the estimation of the mixed-phase wavelet
when the data are severely band-limited. The proposed algorithm was further tested
on real data, followed by a test involving the introduction of a 90◦-phase-rotated
wavelet and then recovery of the wavelet. The test was successful.

I N T R O D U C T I O N

The process of deconvolution requires a proper estimation
of the wavelet so as to obtain a more accurate estimation
of the underlying reflectivity series. The reflectivity series is
commonly assumed to be white, even though it is a well-
known fact that it is not white in the majority of the cases
(Walden and Nunn 1988; Rosa and Ulrych 1991; Saggaf and
Robinson 2000). We do not attempt to address the problem
of the non-white behaviour of the reflectivity series here. We
make the assumption that the reflectivity series is a stationary,
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non-Gaussian and statistically independent random process
(Walden 1985). Convolution of the reflectivity with the source
wavelet makes the reflectivity series lose the high-frequency
components. Deconvolution, with the assumption that the
wavelet is minimum phase, removes the wavelet-amplitude
signature from the data quite effectively. However, it leaves
behind a spurious phase signature in the data. In order that
the wavelet phase response is also effectively removed, it is nec-
essary to deconvolve the data with an optimum mixed-phase
wavelet. Classical approaches such as the Wiener–Levinson
predictive deconvolution are intended to estimate the inverse
minimum-phase wavelet in the data. These methods are based
on second-order statistical assumptions (Robinson 1967;
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Peacock and Treitel 1969; Robinson and Treitel 1980). In
other words, by assuming that the reflectivity is white, auto-
correlation of the seismic trace can be used as an estimator of
the autocorrelation of the wavelet. Since the autocorrelation of
the wavelet does not contain phase information, an additional
assumption about the wavelet is required. In general, the addi-
tional assumption is that the wavelet is minimum phase. With
these two assumptions of white reflectivity and minimum-
phase wavelet, it is possible to recover the seismic wavelet
by measuring the autocorrelation of the trace. It is clear that
if the wavelet contains non-minimum-phase components, the
classical procedure outlined above is sure to fail. Fortunately,
it is possible to design wavelet-estimation strategies based on
higher-order statistical estimators such as the third-order and
fourth-order cumulants. Unlike the autocorrelation function,
which is a second-order cumulant, the third- and fourth-order
cumulants do preserve the phase of the wavelet when the re-
flectivity consists of a non-Gaussian white process (Mendel
1991; Lazear 1993). Following Lazear (1993) and Velis and
Ulrych (1996), we preferred to use the fourth-order cumulants
rather than the third-order cumulants, because the third-order
cumulant vanishes for symmetric distributions. Since there is
no evidence that suggests that reflection coefficients should be
modelled via a non-symmetric distribution, we preferred not
to utilize the third-order cumulant. The fourth-order cumu-
lants, on the other hand, do not suffer from this shortcoming.

Many different approaches have been made to bypassing the
minimum-phase assumption when estimating a wavelet that
shows mixed-phase character. Such methods include homo-
morphic deconvolution (Oppenheim et al. 1968; Ulrych 1971;
Ulrych et al. 1995), minimum entropy deconvolution (Wiggins
1978), fourth-order-cumulant matching (Lazear 1993), and
others.

Tugnait (1987) proposed a fourth-order-cumulant-
matching technique to estimate a mixed-phase moving
average wavelet. Lazear (1993) applied this technique to real
seismic data. Velis and Ulrych (1996) applied the technique
with a non-linear optimization approach. They estimated
the mixed-phase wavelet from the fourth-order cumulant
of the trace by means of the very fast simulated-annealing
optimization method. They showed the dependence of the
cumulant-matching technique on the ratio of bandwidth to
central frequency of the data.

An improvement over the previous cumulant-matching ap-
proaches to mixed-phase deconvolution is proposed here.
Parametrization of the mixed-phase wavelet as a convolu-
tion of a minimum-phase wavelet with an all-pass wavelet
(Porsani and Ursin 1998; Porsani and Ursin 2000) can sim-

plify the problem significantly. Deconvolving the seismic trace
by the estimated minimum-phase wavelet helps to broaden
the bandwidth of the deconvolved data. This is a desirable
effect. As pointed out earlier by Velis and Ulrych (1996), a
proper estimation of the mixed-phase wavelet by a cumulant-
matching technique is possible when the ratio of the band-
width to central frequency is greater than 1 and preferably
close to 2. Hence, deconvolution by the estimated minimum-
phase wavelet works favourably for the cumulant-matching
technique. Optimization for the all-pass wavelet is performed
by means of the technique of simulated annealing (Sen and
Stoffa 1995). The optimization could be performed by lin-
earizing the problem. In blind deconvolution problems like the
one we are trying to solve, the topology of the cost function is
unknown and it could have multiple minima. This prompted
us to prefer a stochastic global-optimization approach over the
linearization approach so that the problems associated with a
possible multimodal cost function could be reduced.

T H E O RY

With the assumptions that the reflectivity series is non-
Gaussian, stationary and a statistically independent random
process, the fourth-order cumulant of the trace is equal to,
within a scale factor, the fourth-order moment of the wavelet
(Lazear 1993; Velis and Ulrych 1996; Liang, Cai and Li 2002).
A further discussion about this is provided in the next sec-
tion. We have already mentioned that the assumption that the
reflectivity is a white process is questionable, as far as the
true nature of the reflectivity series is concerned (Saggaf and
Robinson 2000). However, in the present context, the above
assumption is considered to be valid and the algorithm is based
purely upon the validity of the white reflectivity assumption.
The issue that relates to the estimation of the wavelet phase
and the non-white nature of the reflectivity series is not ad-
dressed here and is considered beyond the scope of the pa-
per. When the wavelet is parametrized as a convolution of a
minimum-phase wavelet and an all-pass wavelet, the fourth-
order cumulant of the whitened trace (deconvolved by the
minimum-phase wavelet) is equal to, within a scale factor, the
fourth-order moment of the all-pass wavelet. The cumulants
and moments are discussed in the Appendix. The minimum-
phase wavelet estimated from the autocorrelation of the trace
has the same amplitude spectrum as that of the correspond-
ing mixed-phase wavelet. Thus, deconvolving the trace with
the minimum-phase wavelet not only removes the wavelet-
amplitude spectrum from the data but also increases the band-
width. This is a favourable result as a higher ratio of the data
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bandwidth to central frequency is desired for more reliable
wavelet estimation. The whitened trace now contains only the
phase information of the wavelet. Hence, an all-pass wavelet
remains to be optimized from the whitened data.

The seismic data can be expressed as

dt = rt ∗ wt, (1)

where dt is the seismic data, rt is the reflectivity series and wt is
the mixed-phase wavelet. The asterisk indicates convolution
between the reflectivity sequence and the wavelet. As already
mentioned, wt can be parametrized as the convolution of the
minimum-phase wavelet and the all-pass wavelet (Porsani and
Ursin 1998). Thus,

wt = w̃t ∗ ft, (2)

where w̃t is the minimum-phase wavelet estimated from the
trace and f t is the all-pass wavelet. The Z-transform of the
all-pass wavelet can be written as (Porsani and Ursin 1998)

F (Z) = Zp B(Z−1)
B(Z)

, (3)

where B(Z) = b0 + b1Z + b2Z2 + · · · + bαZp and the term
Zp accounts for the time shift required to make the all-pass
wavelet causal. It is important to mention here that the time
series, bt = b0, b1, . . . , bp, is minimum phase. This is a very
simple parametrization with bt = b0, b1, . . . , bp and p as
unknowns. In this problem, the term Zp in equation (3) is not
important because it only accounts for the time shift in the
final estimation of the wavelet.
Substituting for wt in equation (1), we have

dt = rt ∗ w̃t ∗ ft. (4)

Using the Z-transform, the above equation can be represented
as

D(Z) = R(Z)W̃(Z)F (Z). (5)

Deconvolution by the minimum-phase wavelet yields

D̃(Z) = R(Z)F (Z), (6)

where D̃(Z) is the deconvolved trace that has been whitened
by the removal of the minimum-phase wavelet. Thus, ideally,
the reflectivity sequence can be obtained by deconvolving the
whitened trace by an optimum all-pass wavelet.
Taking the Z-transform of both sides of equation (2), we ob-
tain

W(Z) = W̃(Z)F (Z). (7)

This can be written as

|W(Z)|eiθ (Z) =
∣∣∣W̃(Z)

∣∣∣eiθmin(Z)
∣∣∣F (Z)

∣∣∣eiθF (Z), (8)

where |W(Z)| is the amplitude spectrum of the mixed-phase
wavelet, |W̃(Z)| is the amplitude spectrum of the estimated
minimum-phase wavelet and |F(Z)| is the amplitude spectrum
of the all-pass wavelet, which is equal to 1. Also, θ (Z) is the
phase of the mixed-phase wavelet, θmin(Z) is the phase of the
minimum-phase wavelet and θF(Z) is the phase of the all-pass
wavelet. Since |W(Z)| = |W̃(Z)|, we have

θ (Z) = θmin(Z) + θF (Z). (9)

The problem of estimating the mixed-phase wavelet can
now be posed as a problem of estimating the optimum phase
of the all-pass wavelet from the data whitened by an estimated
minimum-phase wavelet. Whitening the data by an estimated
minimum-phase wavelet has a trade-off in terms of offering
a wider bandwidth and enhanced noise level. It is observed
that, in general, the practice of whitening deconvolution helps
to enhance the bandwidth in a frequency zone where the signal
is stronger than the noise. In the problems of wavelet-phase
estimation, the accuracy of the estimated phase depends, to
a large extent, on the bandwidth of the data. Any amount of
enhanced bandwidth in a frequency zone where the signal is
stronger than the noise would greatly help in the phase estima-
tion of the wavelet. Even though prewhitening of the data does
not introduce any new information into the data, it certainly
helps in shaping the data in such a way that the phase esti-
mation is performed in a more conducive data environment
(White 1988, pers. comm.; White and Simm 2003).

D E V E L O P M E N T O F T H E A L G O R I T H M

The phase estimation by the cumulant-matching technique is
performed using the simulated-annealing algorithm, which is a
non-linear stochastic optimization tool. Simulated annealing
has been applied quite successfully in many geophysical in-
version problems. Many variants of the simulated-annealing
technique, such as the Metropolis algorithm (Metropolis
et al. 1953; Kirkpatrick et al. 1983), the heat bath algorithm
(Creutz 1984; Geeman and Geeman 1984; Rebbi 1984; Roth-
man 1986), simulated annealing (Greene and Supowit 1986),
fast simulated annealing (Szu and Hartley 1987), very fast
simulated annealing (Ingber 1989) and mean field annealing
(Peterson and Anderson 1987, 1988; Peterson and Soderberg
1989) have been developed with wide and successful
applications.
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We used the Metropolis algorithm to optimize for the model
parameters bt, the Z-transform of which forms the denomina-
tor of the all-pass wavelet (equation 3). The unknowns here
are the length of bt(p) and its coefficients. The optimization
is performed by fixing p at a value of 4. This is the minimum
length of bt that can produce a combination of real and imag-
inary roots in the Z-plane. It is also noted that bt is minimum
phase in character. A minimum-phase sequence is obtained
by the Kolmogoroff technique (Claerbout 1992) applied to a
randomly generated sequence. The cost function for the opti-
mization is obtained from the Bartlett–Brillinger–Rosenblatt
formula (Mendel 1991; Lazear 1993). The formula is given by
the following convolutional equation:

Cs
4(τ1, τ2, τ3) = Cr

4(τ1, τ2, τ3)∗Mw
4 (τ1, τ2, τ3) + Cv

4(τ1, τ2, τ3),

(10)

where C s
4 (τ 1, τ 2, τ 3) is the fourth-order cumulant of the seis-

mic trace, C r
4 (τ 1, τ 2, τ 3) is the fourth-order cumulant of a non-

Gaussian, statistically independent and identically distributed
reflectivity sequence, Mw

4 (τ 1, τ 2, τ 3) is the fourth-order mo-
ment of the wavelet and C v

4 (τ 1, τ 2, τ 3) is the fourth-order
cumulant of a Gaussian additive noise. The lags are repre-
sented by τ 1, τ 2 and τ 3. Under the assumption that there exist
an infinite number of data, along with the other assumptions
about the reflectivity sequence mentioned previously, the term
C r

4 (τ 1, τ 2, τ 3) reduces to an impulse at the central lag, scaled
by the kurtosis (γ r) of the reflectivity series. The term Cv

4 (τ 1,
τ 2, τ 3) involving the Gaussian noise reduces to zero. Hence,
under the above assumptions, equation (10) becomes

Cs
4(τ1, τ2, τ3) = γ r Mw

4 (τ1, τ2, τ3), (11)

where γ r is the kurtosis of the reflectivity sequence which is
a constant. γ r is zero for a purely Gaussian reflectivity series
(Lazear 1993).
Thus, the cost function for the optimization is given by

J =
∑
τ1

∑
τ2

∑
τ3

[
C̃s

4(τ1, τ2, τ3) − M̃w
4 (τ1, τ2, τ3)

]2
, (12)

where C̃s
4(τ1, τ2, τ3) is the fourth-order trace cumulant (nor-

malized by the central lag cumulant) and M̃w
4 (τ1, τ2, τ3) is the

fourth-order wavelet moment (normalized by the central lag
moment). A detailed explanation of the cost function is pro-
vided in the Appendix. Figs 1(a,b) shows the flowcharts for
the estimation of the mixed-phase wavelet from the whitened
data.

Cost function
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Input data

Data ACF

Wiener-Levinson
Algorithm

Minimum phase
wavelet

Deconvolution

Whitened data

Non-linear
optimization

Estimated all-
pass wavelet
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mixed phase
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(b)

Initial model
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Minimum phase
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All-pass wavelet
(model)

4th order
moment
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Output

Model
update with
Metropolis
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Figure 1 The flowcharts. (a) Flowchart for the estimation of the
mixed-phase wavelet. (b) Flowchart for the non-linear optimization
of the all-pass operators.

S Y N T H E T I C D ATA E X A M P L E

The proposed algorithm for estimating the mixed-phase
wavelet is tested by designing a synthetic mixed-phase wavelet
and a synthetic trace. Table 1 shows the roots of the Z-
transform of the wavelet coefficients that are considered
to generate the synthetic mixed-phase wavelet. A similar
wavelet was used by Porsani and Ursin (2000) to test their
algorithm.

Fig. 2(a) shows the synthetic trace. The synthetic trace was
generated by convolving a Laplacian mixture distribution of
reflectivity sequence (number of data points N = 250) with
the true mixed-phase wavelet. This particular distribution of
the reflectivity series is chosen so as to obtain a better ap-
proximation of the true reflectivity distribution (Walden and
Hosken 1986). The Laplacian mixture distribution was ob-
tained by generating two separate Laplacian random deviates
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Table 1 The roots of the synthetic wavelet. Negative phase angles indicate the complex
conjugate of the corresponding roots

No. 1 2 3 4 5 6 7 8 9

Magnitude 1/1.3 1/1.5 1/1.11 1.2 1.3 1.8 1.95 1.25 1.8
Phase (degree) 0 0 +45 +5 +60 0 180 +120 +160

−45 −5 −60 −120 −160

and mixing them together by means of a mixing parameter.
The first Laplacian deviate was generated using a Laplace pa-
rameter (σ 1) equal to 0.007. The second Laplacian deviate was
generated using a Laplace parameter (σ 2) equal to 0.017. The
mixing parameter in our case was chosen to be 23% of the de-
viates generated by the smaller Laplace parameter. The trace
does not contain any noise component. Fig. 2(b) shows the
data after deconvolution with the estimated minimum-phase
wavelet. The whitened data obtained in this way have a larger
bandwidth compared to the original data and contain only
the phase information of the wavelet as the amplitude infor-
mation has been effectively removed by the deconvolution.
Hence, the technique of cumulant matching reduces to the
matching of the fourth-order moment of the all-pass wavelet
and the fourth-order cumulant of the whitened data. Fig. 2(c)
shows the true mixed-phase wavelet. Fig. 2(d) shows the es-
timated minimum-phase wavelet obtained from the data by
the Wiener–Levinson algorithm. Fig. 2(e) shows the estimated
mixed-phase wavelet for a model length p = 4. The corre-
lation measure between the true wavelet and the estimated
mixed wavelet is 0.99.

Comparison of results

A comparison is called for between the estimation of the
mixed-phase wavelet using the proposed algorithm and that
obtained directly from the data. The cumulant-matching tech-
nique is not sensitive when the data bandwidth-to-central-
frequency ratio is less than 1. Hence, it is expected that the
cumulant-matching technique will not be able to perform
well when the mixed-phase wavelet is estimated from severely
band-limited data that have a ratio of bandwidth to central
frequency of less than 1. The proposed technique has the ad-
vantage of removing the wavelet-amplitude spectrum from the
data, thus resulting in a wider bandwidth of the whitened
data within a frequency zone where the signal is stronger than
the noise. This allows the cumulant-matching technique to be

carried out in a favourable domain and hence the result is
expected to be better.

A mixed-phase wavelet with a bandwidth-to-central-
frequency ratio of 0.5 was chosen for the purpose of illus-
tration. Fig. 3(a) shows the synthetic trace that was generated
by convolving a band-limited wavelet with a reflectivity se-
ries of length N = 250. The reflectivity series has a Laplacian
mixture distribution generated by the same parameters men-
tioned above. The synthetic trace does not have any noise
component. Fig. 3(b) shows the whitened data after decon-
volving the data with the estimated minimum-phase wavelet;
Fig. 3(c) shows the true band-limited wavelet with the
bandwidth-to-central-frequency ratio equal to 0.5; Fig. 3(d)
shows the corresponding minimum-phase wavelet estimated
from the data. Fig. 4(a) shows the estimated mixed-phase
wavelet for a model length p = 4. The estimation is performed
over a whitened trace that is obtained by deconvolving the
trace with the estimated minimum-phase wavelet. The corre-
lation measure between the estimated wavelet and the true
wavelet is calculated to be 0.99. The algorithm was further
applied to the same data and the mixed-phase wavelet was
estimated without deconvolving the trace with the estimated
minimum-phase wavelet. Fig. 4(b) shows the estimated mixed-
phase wavelet obtained from the non-whitened data. The cor-
relation measure obtained for this estimation was found to be
0.89, which is much lower than with the estimated wavelet
obtained from the whitened data.

In order to substantiate the above test further, we conducted
200 Monte-Carlo simulations with different realizations of
the synthetic data for different numbers of data points. We
used a zero-phase band-limited Ricker wavelet (central fre-
quency = 30 Hz, time sample interval = 0.004 s) in our sim-
ulations. The simulations for estimations from whitened and
non-whitened data were performed for the numbers of data
points, N = 250 and N = 500. Fig. 5(a) shows the correla-
tion measures between the estimated and the true wavelets for
both prewhitened and non-whitened data. The dashed line
represents the estimation from non-whitened data and the
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Figure 2 (a) The synthetic data. (b) The data whitened by deconvolu-
tion with the estimated minimum-phase wavelet. (c) The true synthetic
wavelet. (d) The estimated minimum-phase wavelet. (e) The estimated
mixed-phase wavelet for a model length p = 4. The estimated wavelet
has a correlation measure of 0.99 with the true wavelet. Number of
data points N = 250.

solid line represents the estimation from the prewhitened data.
Fig. 5(b) shows the error bars for the root-mean-square
(rms) error between the estimated and the true wavelets for
200 simulations for N = 250. Fig. 5(c) shows the correla-
tion between the estimated and the true wavelets for 200

Figure 3 (a) The synthetic data. (b) The data whitened by deconvolu-
tion with the estimated minimum-phase wavelet. (c) The true mixed-
phase wavelet with a bandwidth-to-central-frequency ratio of 0.5.
(d) The estimated minimum-phase wavelet. Number of data points
N = 250.

Figure 4 Mixed-phase wavelet estimation from the whitened and
non-whitened data. (a) The estimated mixed-phase wavelet from the
prewhitened data. Model length p = 4. The correlation with the true
wavelet (Fig. 3c) is 0.99. (b) The estimated mixed-phase wavelet from
non-whitened data for model length p = 4. The correlation of the es-
timated wavelet with the true wavelet is 0.89. Number of data points
N = 250.
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Figure 5 Comparison between the estimations from prewhitened and non-whitened data. N is number of data points considered for estimation.
The dashed line represents the estimations from non-whitened data and the solid line represents the estimations from the prewhitened data. (a)
The correlation measure between the estimated and true wavelets for N = 250. (b) The rms error between the estimated and the true wavelets
for N = 250. (c) The correlation measure between the estimated and true wavelets for N = 500. (d) The rms error between the estimated and
the true wavelets for N = 500. 200 Monte-Carlo simulations were used.

Figure 6 Test of the stability of the algo-
rithm with different signal-to-noise ratios.
(a) The correlation measure plotted against
SNR. (b) The rms error plotted against SNR.
SNR = [4, 20, 50, 100]. 200 Monte-Carlo
simulations were used.

simulations with N = 500. Fig. 5(d) shows rms error between
the estimated and true wavelets for N = 500. It can be seen
that the mean correlation is high with low variance when the
estimation is performed over prewhitened data as compared to
that when the estimation is performed with the non-whitened
data. It can also be observed that the rms error is low with
smaller variance when the estimation is carried out with the
prewhitened data.

These observations corroborate the fact that the cumulant-
matching technique is sensitive to the ratio of the bandwidth

to central frequency. A better estimation of the wavelet was
obtained because this ratio could be improved by whitening
the trace with the estimated minimum-phase wavelet.

Effect of noise and number of data points

The algorithm was tested with different levels of noise in
the synthetic data. The data were synthetically generated by
convolving a zero-phase Ricker wavelet (central frequency =
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Figure 7 The error bars for the de-trended phase spectrum of the
estimated wavelet for different noise levels in the data, defined in
terms of the signal-to-noise ratio. (a) SNR = 4. (b) SNR = 20.
(c) SNR = 50. (d) SNR = 100. Number of data points N = 500.
200 Monte-Carlo simulations were used.

30 Hz and sampling interval = 0.004 s) with a randomly gen-
erated reflectivity sequence that followed a Laplacian mixture
distribution. The distribution of the data was obtained using
the Laplace parameters and the mixing parameter mentioned
above. The test was carried out over 500 data samples. A to-
tal of 200 Monte-Carlo simulations were performed for each
noise level defined in terms of the signal-to-noise ratio (SNR),
given by the following equation:

SNR = max |d|
σ

, (13)

where d is the data and s is the standard deviation of the
noise. The following signal-to-noise ratio values, SNR = [4,
20, 50, 100] were considered in order to test the stability of
the algorithm.

Fig. 6(a) shows the error bars for the correlation measure
between the true wavelet and the estimated wavelet. As antic-
ipated, the correlation measure between the true wavelet and
the estimated wavelet shows an increase as SNR is increased
from 4 to 20, and it then remains almost constant as the algo-
rithm enters into a more stable regime of the SNR. Fig. 6(b)
shows the rms error plotted against SNR. The rms error be-
tween the true wavelet and the estimated wavelet decreases
as SNR is increased from 4 to 20 and it then remains almost
constant. The constant region indicates that the algorithm is
operating in a more stable regime of the SNR. There exists a
trade-off between the degree of prewhitening and the enhance-

Figure 8 Test of the stability of the algorithm with different numbers
of data. (a) The correlation measure plotted against the number of
data. (b) The rms error plotted against the number of data. SNR =
40. 200 Monte-Carlo simulations were used.

ment of noise (White 1984, 1988; White and Simm 2003). The
Monte-Carlo simulations show that the algorithm operates in
a more stable domain when SNR is close to 20 and above.
Fig. 7 shows the phase spectrum of the estimated wavelet
for the 200 Monte-Carlo simulations. The phase spectrum
has been de-trended to remove the linear trend in the phase
that was introduced by the constant time shift. Since the true
wavelet is zero-phase, it is expected that the recovered phase
(after de-trending) should be close to zero for all frequencies.
We considered 200 Monte-Carlo simulations for a total of 500
data points with a signal-to-noise ratio, SNR = [4, 20, 50,
100]. Figs 7(a.b.c.d) shows the error bars for the de-trended
phase spectra for SNR = 4, 20, 50, 100, respectively. It can be
seen that as SNR increases, the accuracy in the phase estima-
tion also increases.

It is known that the statistical methods of wavelet estimation
depend significantly on the data volume. As discussed previ-
ously, the cost function (equation 12) is obtained under the
assumption (along with the assumptions about the statistical
properties of the reflectivity sequence) that an infinite number
of data exist. This makes it necessary to run the proposed al-
gorithm on varying numbers of data so as to obtain a measure
of the stability of the algorithm. The following numbers of
data points, N = [100, 250, 500], were considered in order to
test the algorithm.

A total of 200 Monte-Carlo simulations were performed
for a given number of data points. SNR was kept fixed at
40 during all the simulations. Fig. 8(a) shows the correla-
tion measure for different numbers of data points. As an-
ticipated, the correlation measure between the true wavelet
and the estimated wavelet increased as the number of data
points increased from 100 to 250 and then to 500. Fig. 8(b)
shows the rms error plotted against the number of data points.
The rms error is calculated between the true wavelet and the
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estimated wavelet and it decreases as the number of data points
is increased. It appears that for all practical purposes, with a
reasonable number of data points, the algorithm is capable of
estimating the wavelet with reasonable accuracy.

The estimation of the wavelet from a given set of data is
also dependent on the non-stationarity issues involving the
wavelet. However, in the present context, it is assumed that
the wavelet is stationary in both spatial and temporal axes, and
the non-stationarity issues are considered beyond the scope of
the paper.

Figure 9 (a) The estimated minimum-phase wavelet obtained from
the real data. (b) The estimated mixed-phase wavelet.

Figure 10 Real data example. (a) A window
of the data. (b) Minimum-phase deconvolu-
tion of the data. (c) Mixed-phase deconvolu-
tion of the data. The result of the minimum-
phase deconvolution is illustrated here for
comparison with the result obtained from
the mixed-phase deconvolution. The aver-
age fourth-order cumulant is calculated over
77 traces and 200 time samples.

R E A L D ATA E X A M P L E

A stacked seismic section was considered for testing the algo-
rithm. Seismic data with 77 traces and 200 time samples were
windowed from the stacked section. The average cumulant
was calculated for the data window and incorporated in the
cost function (equation 12) for the estimation of the all-pass
operator. An average minimum-phase wavelet was estimated
from the data using the Wiener–Levinson algorithm. The data
were prewhitened by deconvolving them with the estimated
minimum-phase wavelet.

Fig. 9(a) shows the estimated minimum-phase wavelet
obtained from the data using the Wiener–Levinson al-
gorithm and Fig. 9(b) shows the estimated mixed-phase
wavelet obtained from the data with the proposed algorithm.
Fig. 10(a) shows the true stacked section; Fig. 10(b) shows
the section after deconvolution with the estimated minimum-
phase wavelet; Fig. 10(c) shows the dephased stacked section
after subtracting the phase of the estimated all-pass opera-
tor from the minimum-phase deconvolved data shown in Fig.
10(b). The algorithm was test run on a real data set that
shows less interference between the reflection events. This
data set provided the preliminary information about the type
of wavelet that is present in the data. Fig. 10(a) shows a re-
flection event positioned approximately midway between 0 s
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Figure 11 (a) The true 90◦-constant-phase-rotated wavelet. (b) The
recovered wavelet.

and 0.1 s (the first coherent event in the seismic section) on
the time axis. This event is fairly isolated and does not indi-
cate any large degree of interference from the nearby reflection
events. It provides an indication about the type of wavelet that
is present in the data. The algorithm was able to estimate a
wavelet from the data that resembled the preliminary informa-
tion obtained from the isolated reflection event. In order to test
the algorithm, the deconvolved data were further convolved
with a 90◦-constant-phase-rotated synthetic wavelet. The al-
gorithm was applied to this data to check if the new phase-
rotated wavelet could be effectively recovered (Hargreaves
1994). Fig. 11(a) shows the true synthetic 90◦-phase-rotated
wavelet. Fig. 11(b) shows the wavelet recovered by the pro-
posed algorithm. It can be seen that the algorithm was able to
estimate the convolved wavelet effectively.

C O N C L U S I O N S

Deconvolution with the estimated minimum-phase wavelet
results in enhancing the bandwidth of the deconvolved
data. Since the mixed-phase wavelet and its corresponding
minimum-phase wavelet have the same amplitude spectrum,
deconvolution with the minimum-phase wavelet effectively
removes the amplitude spectrum of the wavelet. This leaves
the data that require only a phase correction. The required
phase correction is attainable by means of a simple and short
parametrization of the mixed-phase wavelet. This is the main
advantage of the proposed algorithm. The optimization algo-
rithm involves the matching of the fourth-order cumulant of

the whitened data with the fourth-order moment of the all-
pass operator. The cumulant-matching technique works well
when the bandwidth-to-central-frequency ratio of the data
is greater than 1. The technique is most suitable when this
ratio is close to 2, i.e. the data is full band. The proposed
technique separates the minimum-phase part of the wavelet
from the data by deconvolving the data with an estimated
minimum-phase wavelet. As a result, the deconvolved data
contain only the phase signature of the mixed-phase wavelet.
This also allows the cumulant-matching technique to work
in a favourable regime of the bandwidth-to-central-frequency
ratio. The synthetic examples showed that the Metropolis al-
gorithm can be used quite effectively to estimate the all-pass
wavelet and hence the mixed-phase wavelet. A comparison
between the wavelet estimated from the whitened data and
the wavelet estimated from the non-whitened data when the
wavelet was severely band-limited was also presented. The
proposed algorithm allows for whitening the data using the
estimated minimum-phase wavelet obtained by the Wiener–
Levinson algorithm. It can be observed that when the data
were band-limited, there was relatively poor correlation be-
tween the estimated mixed-phase wavelet and the true wavelet.
However, suitable parametrization of the wavelet and subse-
quent whitening of the data improved the estimation of the
mixed-phase wavelet. This is an encouraging result for the
proposed algorithm. The algorithm was also tested on real
data. The estimated mixed-phase wavelet from the real data
compared well with the isolated reflection event, which is a
good indicator of the wavelet present in the data. The test car-
ried out by artificially convolving a 90◦-phase-rotated wavelet
and subsequently recovering it, was also successful.
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A P P E N D I X

The estimation of the pth-order moment of a real, stationary
and discrete time series s(n) is defined as

Ms
p(τ1, τ2, ... , τp−1)

= 1
N

∑
n

s(n)s(n + τ1)s(n + τ2)...s(n + τp−1), (A1)

where τ 1, τ 2 . . . are the lags and N is the length of the time
series s(n).
The pth-order cumulant of the above time series is defined as

Cs
p(τ1, τ2, ..., τp−1)

= Ms
p(τ1, τ2, ... , τp−1) − MG

p (τ1, τ2, ... , τp−1), (A2)

where MG
p is the moment of an equivalent Gaussian time se-

ries having the same mean and autocorrelation as that of s(n)
(Mendel 1991).
For p = 4 and a zero-mean time series s(n),

MG
4 (τ1, τ2, τ3) = Ms

2(τ1)Ms
2(τ3 − τ2)

+Ms
2(τ2)Ms

2(τ3 − τ1) + Ms
2(τ3)Ms

2(τ2 − τ1).

(A3)

Thus, combining equation. (A1), (A2) and (A3), we obtain the
expression for the estimation of the fourth-order cumulant of
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the time series s(n):

Cs
4(τ1, τ2, τ3) = 1

N

∑
n

s(n)s(n + τ1)s(n + τ2)s(n + τ3)

− [
Ms

2(τ1)Ms
2(τ3 − τ2) + Ms

2(τ2)Ms
2(τ3 − τ1)

+Ms
2(τ3)Ms

2(τ2 − τ1)
]
. (A4)

When the mean of s(n) is zero, the second- and third-order
moments are equal to the respective cumulants (Mendel 1991;
Lazear 1993).

The cost function, defined in equation (10), uses the normal-
ized fourth-order cumulant of the trace, defined as

C̃s
4(τ1, τ2, τ3) = Cs

4(τ1, τ2, τ3)
Cs

4(0, 0, 0)
, (A5)

and the normalized fourth-order moment of the wavelet,
defined as

M̃w
4 (τ1, τ2, τ3) = Mw

4 (τ1, τ2, τ3)
Mw

4 (0, 0, 0)
. (A6)
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