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ABSTRACT

We propose a new scheme for high-resolution amplitude-
variation-with-ray-parameter �AVP� imaging that uses non-
quadratic regularization. We pose migration as an inverse
problem and propose a cost function that uses a priori infor-
mation about common-image gathers �CIGs�. In particular,
we introduce two regularization constraints: smoothness
along the offset-ray-parameter axis and sparseness in depth.
The two-step regularization yields high-resolution CIGs with
robust estimates ofAVP. We use an iterative reweighted least-
squares conjugate gradient algorithm to minimize the cost
function of the problem. We test the algorithm with synthetic
data �a wedge model and the Marmousi data set� and a real
data set �Erskine area, Alberta�. Tests show our method helps
to enhance the vertical resolution of CIGs and improves am-
plitude accuracy along the ray-parameter direction.

INTRODUCTION

It has been shown �Nemeth et al., 1999; Duquet et al., 2000; Kuehl
nd Sacchi, 2002, 2003� that seismic resolution can be improved by
nverting the demigration/migration kernel and by enforcing a regu-
arization constraint, for example, by introducing smoothness in the
olution. However, as the results of these methods show, there are
any artifacts present in the solution because of operator mismatch,
avefield sampling, and noise.
One possible way to further enhance the resolution and attenuate

rtifacts is by taking advantage of the solution itself. Iteratively us-
ng the result as a model-space regularization can lead to high-reso-
ution, artifact-free seismic images. This idea has been used in many
elds of signal and image processing �Sacchi and Ulrych, 1995;
harbonnier et al., 1997; Youzwishen, 2001; Sacchi et al., 2003;
rad et al., 2003; Downtown and Lines, 2004�. In this paper, we uti-

ize a model-dependent sparse regularization and a model-indepen-
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S11
ent smoothing regularization to estimate amplitude-variation-
ith-ray-parameter �AVP� common-image gathers �CIGs�. Model-
ependent sparse regularization is introduced via a nonquadratic
orm �Cauchy norm�. Smoothing, on the other hand, is implemented
ia a convolutional operator applied to AVP CIGs along the ray-pa-
ameter direction. This idea is used to develop an algorithm to simul-
aneously improve the structural interpretability and amplitude ac-
uracy of seismic images.

It is important to point out the similarities between our algorithm
nd methods for impedance inversion based on sparse spike decon-
olution of poststack cubes �Oldenburg et al., 1983; Debeye and van
iel, 1990�. In principle, we are using very similar concepts to find a

olution that exhibits predefined properties such as sparseness and
moothness. The main difference of our method from sparse spike
nversion strategies is that our operator is a one-way wave-equation
orward-modeling operator rather than a convolutional kernel. In ad-
ition, our inversion results are in depth, and the input data are
restack volumes as opposed to time-domain reflectivity estimates
nd poststack volumes, respectively. We believe our method pro-
ides a unifying thread between convolution-based sparse spike in-
ersion and regularized migration/inversion methods.

METHODOLOGY

One advantage of imaging via regularized inversion is that we can
se a priori information about the unknown image model �Prucha
nd Biondi, 2002�. Robust inversion algorithms can be developed by
roperly honoring such information. For example, Kuehl and Sacchi
2002, 2003� show that applying smoothing regularization on the
ay-parameter axis helps to remove artifacts introduced by missing
nformation, aliasing, noise, and operator mismatch. The scheme is
ased on minimizing a quadratic cost function. In addition, Sacchi et
l. �2003� show that higher resolution can be acquired by solving a
onquadratic problem.

In this paper, we reformulate the cost function for the least-
quares wave-equation AVP/amplitude-variation-with-angle-of-in-
idence �AVA� migration problem as follows:
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S12 Wang and Sacchi
J�m� = �W�Lm − d��2
2 + �2F�SH�m�� , �1�

here m is the earth model in terms of AVP CIGs, L is a 2D/3D
ave-equation modeling operator that transforms the model to
restack seismic data, d is the seismic data, and W is a sampling ma-
rix used to accommodate missing data in the inversion. The model-
ng operator is synthesized via the double square root upward-con-
inuation operator with split-step corrections in conjunction with a
adial transform that converts ray-parameter-dependent reflectivity
o local wavefields �Kuehl and Sacchi, 2003�. The operator H is a

odel-independent high-pass filter that we use to penalize non-
mooth solutions along ray-parameter direction, S is a stacking oper-
tor that converts CIGs to a stacked image, F is a model-dependent
unctional used to enforce sparseness, and � is a trade-off parameter
hat controls the amount of regularization. By using the Cauchy
orm �Sacchi and Ulrych, 1995�, the sparse regularization operator
is given by

F�m� = �i=1
n ln�1 +

mi
2

�2 � , �2�

here �2 is a scale parameter of the Cauchy distribution, n is the
umber of elements of the stacked image, and mi is the amplitude of
he ith element of the stacked image. By adopting a preconditioning
trategy �Prucha and Biondi, 2002; Fomel and Claerbout, 2003; Trad
t al., 2003; Wang et al., 2004�, the cost function can be expressed as

J = �W�LPz − d��2
2 + �2F�Sz� , �3�

here P is a preconditioning matrix and z is the model modified by
he preconditioner. It is clear that m = Pz. In our implementation,
e use a low-pass filter as the preconditioner operator P. In particu-

ar, applying P entails convolution along the ray-parameter axis with
Hamming window �Wang et al., 2004�. The adjoint operator P� is a
imple crosscorrelation procedure �Claerbout, 1992�. To minimize
he cost function J, we solve the problem dJ/dm = 0. The latter
eads to the following nonlinear system of equations �proven in Ap-
endix A�:

�P�L�W�WLP + �2S�QS�z = P�L�W�d , �4�

here � = �/� and Q is a diagonal matrix defined by a vector s
Sz. The ith diagonal element of Q can be expressed as

Qii =
1

1 + � si

�
�2 , �5�

here si is the ith element of s
The nonlinear system given by expression 4 has been solved in the

ontext of high-resolution Radon transforms �Sacchi and Ulrych,
995� using the iterative reweighted least-squares �IRLS� method
Scales and Smith, 1994�. The IRLS algorithm is generalized as be-
ow:

1. Choose the hyperparameters � and �, and initialize the algo-
rithm with k = 0, zk = 0.

2. For k = 1,2,. . .
Compute Qk = Q�Szk−1�
Solve �P�L�W�WLP + �2S�QkS�zk = P�L�W�d
mk = Pzk

Compute the predicted data dk = Lmk and residuals d − dk to
monitor convergence
End
This procedure requires about three or four updates �iterations� to
btain a solution that is sparse in depth and smooth with respect to
he ray parameter. In addition, as discussed by Kuehl and Sacchi
2003�, the constrained linear system of equations at the second step
ithin the loop can be solved efficiently with the method of conju-
ate gradients �CG�. In this method, we do not need to configure op-
rators in explicit matrix form.

Finally, it is important to define a strategy to provide the scale pa-
ameter �. We have obtained encouraging results by setting � to
ome percentage of the maximum amplitude of the vector Szk−1. In
ther words, we introduce a new parameter � such that � = �
max��Szk−1��. The problem is then reduced to finding two parame-

ers, � and �. Based on our experience, pairs of � and � with a con-
tant product lead to similar solutions. In addition, large values of �
ield low-resolution results �Wang, 2005�. Therefore, we usually set
to an arbitrary small number �in our tests, we set it to 0.02� and ad-

ust the trade-off parameter � to obtain a satisfactory fitting. We first
ry � = 0.1. If the solution is not sparse enough, we increase the pa-
ameter ten times �� = 1.0�. If the solution is too sparse, we decrease
he parameter ten times �� = 0.01�. We repeat this trial-and-error
outine until we find a good trade-off parameter.

One may wonder why we can introduce sparseness in the solution
ithout destroying the AVA features of the CIGs. The reason is that
e apply the regularization in two steps. First, we smooth the CIGs

n the prestack ray-parameter direction. Then we apply diagonal
eighting operator Q to the stacked image. In other words, the

parseness constraint is applied to the stacked image and not directly
o the prestack CIGs. In this way, image points at a given depth re-
eive the same weight, thereby preserving the amplitude ratio of dif-
erent ray parameters.

Note that when we turn off the sparse regularization by setting � to
ero in equation 3, the problem is reduced to the preconditioned
east-squares migration �PLSM� �Wang et al., 2004�. To glean the
enefits and shortcomings of various imaging methods, we compare
heir image quality and accuracy in the following synthetic and real
ata examples.

EXAMPLES

ultichannel deconvolution

The combination of sparseness and smoothness constraints is an
nteresting idea. Before applying it to least-squares �LS� migration,
e would rather validate its efficiency using a much cheaper opera-

or — a multichannel deconvolution. This is an unrealistic scenario
n seismic deconvolution, yet it is a fast way to test the algorithm.
he procedure, however, may be used to deconvolve time-migrated
IGs. Figure 1a is a time-domain model with 20 offsets. We con-
olve the model with a zero-phase wavelet and remove three offsets
trace number equals 2, 6, and 9� to test the procedure in situations of
issing information. The data are portrayed in Figure 1b.
We compared two methods of inversion, preconditioned LS in-

ersion �Wang et al., 2004� and sparse LS inversion. Figure 1c is the
esult of the preconditioned LS inversion after 50 iterations of the
G algorithm. It is evident that the inversion successfully fills the
aps in the incomplete data. However, the vertical resolution is un-
atisfactory. Spurious side lobes are present in the inverted reflectiv-
ty model. On the other hand, the sparse inversion provides a superi-
r result �Figure 1d�. It is almost identical to the real reflectivity
odel �Figure 1a�; the wavelet is properly compressed. In addition,

he amplitude variation with offset �AVO� signature is preserved.
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High-resolutionAVP imaging S13
Figure 1e compares the spectra of the results obtained via the LS
nd sparse LS deconvolutions. The results are quite similar at low
nd middle frequencies �0–80 Hz�. The sparse inversion, however,
rovides a much broader amplitude response with an important am-
litude gain for frequencies above 80 Hz.

Figure 1f shows a potential shortcoming of sparse inversion meth-
ds. When the trade-off parameter � is too large, we may lose valu-
ble information. In other words, if the solution becomes too sparse,
mall reflections can be annihilated. This problem is also encoun-
ered in the application of sparse deconvolution �Oldenburg et al.,
983� and high-resolution Radon transforms �Sacchi and Ulrych,
995�.

edge model

A 2D synthetic data set was used to test the algorithm. We pre-
ared the data by applying the forward operator L to a constant-ve-
ocity wedge model, represented by a set of AVP CIGs. Ideally, the
nversion should be able to reconstruct the CIGs, and the stacked im-
ge of these CIGs should clearly portray the modeled structure.

We processed the data by three methods: conventional migration
the adjoint of the modeling operator�, PLSM �Wang et al., 2004�,
nd sparse least-squares migration �SLSM� proposed in this paper.
igure 2 shows the stacked images. The result of the adjoint is quite
lurry because the algorithm is incapable of reconstructing high fre-
uencies not present in the data. On the other hand, both PLSM and
LSM are able to recover high frequencies in the structural images.
n addition, the SLSM algorithm produces a highly resolved CIG.
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igure 1. A multichannel deconvolution example to compare the
reconditioned least-squares �LS� inversion and the sparse LS inver-
ion. �a� Reflectivity model. �b� Incomplete multichannel data. Ar-
ows mark the locations of the muted traces. �c� Result of the precon-
itioned LS inversion. �d� Result of the sparse LS inversion ��
10.0�. �e� Average spectra of �c� �thin curve� and �e� �bold curve�.

f� Result of the sparse LS inversion �� = 1000.0�.
his is a consequence of using a sparseness constraint that attempts
o collapse the band-limited seismic wavelet into a broadband im-
ulsive signal.

Figure 3a–c displays a zoomed view of three CIGs produced by
hese methods. The SLSM method has the ability of suppressing the
ide lobes introduced by the band-limited wavelet. To complete our
nalysis, we extracted the amplitude of the tilted event and plotted
VA curves for the three methods in Figure 3d. Both PLSM and
LSM are able to preserve the amplitude response of the reflection.
Figure 4 compares the data misfit of the two inversion methods.

he PLSM method starts to converge at the seventh iteration. As
hown in Figure 3d, the method provides accurate amplitude for an
ngle range between 0° and 40°. However, the structural image is
nsatisfactory because of the tuning effects. The SLSM method con-
erges to a sparse solution in four iterations of the IRLS algorithm.
n this test, the estimated amplitude response completely fits the the-
retical AVA curve. In addition, the SLSM method has completely
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igure 2. Stacked images of the wedge model, obtained with �a� mi-
ration, �b� PLSM, and �c� SLSM.
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igure 3. CIGs and AVA curves at x = 500 m for the wedge model.
a� Migration. �b� PLSM. �c� SLSM. �d� AVA curves for the first
vent: red dashed curve — the theoretical curve, green curve — mi-
ration, blue curve — PLSM. Black curve — SLSM.
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S14 Wang and Sacchi
ompressed the seismic wavelet. Figure 5 compares the original
ata, the reconstructed data by PLSM, and the residual panel. The
ata fitting for the SLSM method is portrayed in Figure 6. Both
ethods fit the input data quite well.
Note that least-squares migration is much more expensive than

onventional migration. Each CG iteration involves one migration
nd one forward modeling �demigration�. Usually the PLSM algo-
ithm starts to converge in less than 10 CG iterations. The cost of the
LSM algorithm is usually three or four times that of the PLSM al-
orithm.

he Marmousi data set

We also applied the algorithm to the Marmousi data set. We ran-
omly removed 70% of the traces to simulate a sparse data acquisi-
ion. Figure 7 compares the stacked images obtained by migration,
LSM, and SLSM. Both PLSM and SLSM provide images with
igher resolution than conventional migration. SLSM cleans up the
mage further than PLSM because of the sparse regularization.
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igure 4. Data misfit of two inversion methods. Red curve — PLSM.
lue curves — SLSM. The four blue curves represent four iterations
f the IRLS algorithm. From left to right, the first blue curve repre-
ents the first iteration of the IRLS algorithm, the second represents
he second iteration, and so on. At the beginning of each IRLS itera-
ion, the model is initialized with zeros. Therefore, within each itera-
ion, the data misfit always decreases from the same maximum value
ntil convergence.
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igure 5. �a� The original data, �b� data reconstructed by PLSM, and
c� the residual at x = 500 m.
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igure 6. �a� The original data, �b� data reconstructed by SLSM, and
c� the residual at x = 500 m.
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igure 7. Stacked images of the Marmousi model: �a� migration, �b�
LSM �four iterations�, �c� SLSM �three IRLS iterations�. We use

he same clipping percentage for these figures.
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High-resolutionAVP imaging S15
igure 8 shows the CIGs calculated by these three methods. It is
lear that many artifacts are present in the CIG obtained with the mi-
ration algorithm. These artifacts are substantially removed from
he images obtained with PLSM and SLSM.

For comparison, we calculated the reflectivity series by using the
rue velocity and density model. A side-by-side comparison con-
rms that the SLSM has properly reconstructed the model. We ob-
erve again, as in our previous examples, an important attenuation of
inging arising from the band-limited wavelet in the data. To evalu-
te the amplitude-preserving properties of our algorithm, we ob-
ained AVA curves for the event at depth z = 800 m. The amplitude
esponse obtained with the migrated image is difficult to extract be-
ause of sampling artifacts. The invertedAVAresponses �PLSM and
LSM�, on the other hand, are in good agreement with the theoreti-
al value.

rskine data set (WCSB)

As an experiment, we also processed a field data set with the
LSM algorithm. The data set corresponds to a 3D orthogonal sur-
ey acquired in the Erskine area �Alberta, Canada�; the seismic data
re typical of exploratory plays in the Western Canadian Sedimenta-
y Basin �WCSB�. To save computing time and avoid overfitting the
oisy data, we only ran the IRLS program for three iterations.

A comparison of the stacked images of an inline of the data �see
igure 9� shows that both PLSM and SLSM provide higher resolu-

ion than conventional migration. For example, PLSM and SLSM
elp to separate the overlapping events above 1500-m depth. As a
enefit, SLSM provides higher resolution than PLSM. One example
s the event below 2000-m depth �marked with hollow arrows�.
learly, the wavelet is suppressed better by SLSM.
Figure 10 compares the CIGs at midpoint position 1155 m. Both

LSM and SLSM greatly improve the coherence of the CIG. Again,
e can see that SLSM resolves events better by suppressing the
avelet.
To complete our analysis, we compare the spectra of the stacked

mages in Figure 11. We observe that both PLSM and SLSM en-
ance the high-frequency components of the solution. As expected,
LSM increases the amplitude response at large vertical wavenum-
ers �or high frequencies in the temporal-fre-
uency domain� better than the PLSM method.
e need to clarify that if a full-band forward-
odeling operator is applied to the inverted

parse solution, the modeled data will not fit the
riginal band-limited seismic data. However, in
ur inversion, both the forward operator and its
djoint �migration� are applied within a limited
requency band. The latter allows us to honor the
bserved data in a limited seismic bandwidth.
he effects of wavelet mismatch within the limit-
d frequency band are examined by Wang �2005�.
is tests on synthetic data show that when the
avelet is not precisely known, the SLSM algo-

ithm can recover a highly resolved image of the
ubsurface. However, the solution is not as good
s that inverted with a precisely known wavelet.

There is one caveat in the application of SLSM.
verregularization can lead to too sparse solu-

ions and therefore loss of our ability to image
eak reflections. Processors and interpreters
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hould compare the result obtained with SLSM to that with conven-
ional migration to avoid this problem. In the Marmousi and Erskine
xamples, we tried different parameters � and chose a conservative
ne to avoid overregularization.

INFLUENCE OF VELOCITY ERRORS

Providing a good velocity model is fundamental to achieving op-
imal migration results. In reality, one can never expect to have ac-
ess to the true velocity. The practical idea is to estimate a velocity
odel close to the true one. Wave-equation migration techniques

till perform well when the input velocity is smoothed �Duquet et al.,
002�. To test whether this is also true for PLSM and SLSM, we use
he Marmousi data set �after removing 70% of the traces� to show
hat our algorithm can tolerate reasonable velocity errors.

In the first test, we smoothed the velocity model using a 10-point
oving average. Then we ran migration, PLSM, and SLSM; the re-

ults are shown in Figure 12. Again, PLSM and SLSM improve the
uality of the CIGs. Smoothing the velocity field is acceptable not
nly in standard migration techniques but also in least-squares mi-
ration methods.

In the second test, we perturbed the velocity field by 5%. Figure
3 portrays the results of migration. PLSM, and SLSM. As in the
revious example, the data were severely decimated �70% of the
race were removed�. The migrated CIG is dominated by artifacts.
n the other hand, these artifacts have been alleviated by PLSM and
LSM. We notice, in addition, that residual moveout has not been
estroyed by PLSM and SLSM. However, we do not recommend re-
ying on PLSM or SLSM to handle velocity errors. Instead, one
hould minimize velocity errors before migration. Our examples are
rovided for the purpose of examining the robustness of PLSM and
LSM when dealing with smooth and/or inaccurate velocity fields.

DISCUSSION

Our algorithm obtains high-resolution AVA gathers. The algo-
ithm removes spurious artifacts by constraining the solution to be
mooth in the ray-parameter direction and sparse in depth.

Our tests show that overregularization leads to loss of valuable in-
ormation that is often contained in events with small amplitudes.
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S16 Wang and Sacchi
his problem is also encountered in techniques for poststack inver-
ion of seismic data that are based on the sparse reflectivity assump-
ion.

Imaging/inversion with the introduction of quadratic and nonqua-
ratic constraints could lead to a new class of imaging algorithms
here the resolution of the inverted image can be enhanced beyond

he limits imposed by the data �bandwidth and aperture�. This is not a
ompletely new idea. Geophysicists have been using similar con-
epts to invert poststack data �sparse spike inversion� to construct
ighly resolved impedance profiles; in addition, similar concepts are
sed in high-resolution Radon transforms for multiple elimination
nd data reconstruction. What constitutes an optimal regularization
trategy for imaging problems is a topic of current study. Presently,
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et, obtained with migration, PLSM, and SLSM. Dotted curve —
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.05 m−1.
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igure 12. Results of migration, PLSM, and SLSM using a
moothed velocity model: �a� Stacked image �migration�, �b� CIG
migration� at 7500 m, �c� stacked image �PLSM�, �d� CIG �PLSM�
t 7500 m, �e� stacked image �SLSM�, and �f� CIG �SLSM� at
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moothing the CIGs �in the offset- or ray-parameter axis� plus verti-
al sparseness appears to be a regularization goal that is simple and
onsistent with the estimation of high-resolution CIGs for subse-
uent studies such as estimatingAVO signatures.

In the current implementation of our SLSM, we are not consider-
ng the source wavelet. Therefore, operator mismatch exists in the
ata domain. Some of our tests �Wang, 2005� show that including the
ource wavelet in the modeling routine can help to acquire a sparser
olution. However, as we know, estimation of the source wavelet is a
ifficult problem. For prestack data, the wavelet can be offset depen-
ent, which makes the problem more complicated �B. Biondi, 2005,
ersonal communication�.An alternative approach is to use half-mi-
ration methods as proposed by Zhang and Wapenaar �2006�. In this
ethod, the image is converted to the time domain, and the wavelet

an be handled in an easier way.
Future research directions call for methods to mitigate operator
ismatch, efficient numerical optimization methods for large-scale

roblems, regularization methods capable of incorporating the re-
ectivity character �color� into our subsurface estimates, and exten-
ive field data tests to properly access the benefits of regularized mi-
ration.
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APPENDIX A

COST FUNCTION FOR LEAST-SQUARES
MIGRATION WITH SMOOTHNESS AND

SPARSENESS CONSTRAINTS

The transition from equation 3 to equation 4 is provided in this ap-
endix. We first note that the cost function for sparse least-squares
igration is given by the expression

J = JM + �2JR, �A-1�

here the misfit and regularization terms are given by

JM = �W�LPz − d��2
2 �A-2�

nd

JR = F�Sz� = F�s� = �
i

ln�1 +
si

2

�2� . �A-3�

he minimum of J satisfies

dJ

dz
=

dJM

dz
+ �2dJR

dz
= 0. �A-4�

he first term in the gradient can be shown to be

dJM

dz
= 2�P�L�W�WLP�z − 2P�L�W�d . �A-5�

he second term requires a bit more work. We first express s = Sz in
lement form, si = � jSijzj, and notice that

dJR

dzk
= �

i

2si

� 2�1 +
si

2

� 2�
dsi

dzk
=

2

�2�
l
��

i

SikQiiSil�zl.

�A-6�

he latter is the kth element of the gradient of the regularization
erm, which can be written in vector form as follows:

dJR

dz
=

2

� 2S�QSz , �A-7�

here the elements of the diagonal operator Q are given by equation
. Combining equationsA-4,A-5, andA-7 leads to

dJ

dz
= 2�P�L�W�WLP�z − 2P�L�W�d +

2�2

� 2 S�QSz = 0.

�A-8�

fter rearranging terms and defining �2 = �2/� 2, equation A-8 is
qual to expression 4 in the main text.
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