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ABSTRACT

We adopted the robust Radon transform to eliminate
erratic incoherent noise that arises in common receiver gath-
ers when simultaneous source data are acquired. The pro-
posed robust Radon transform was posed as an inverse
problem using an l1 misfit that is not sensitive to erratic
noise. The latter permitted us to design Radon algorithms
that are capable of eliminating incoherent noise in common
receiver gathers. We also compared nonrobust and robust
Radon transforms that are implemented via a quadratic
(l2) or a sparse (l1) penalty term in the cost function.
The results demonstrated the importance of incorporating
a robust misfit functional in the Radon transform to cope
with simultaneous source interferences. Synthetic and real
data examples proved that the robust Radon transform pro-
duces more accurate data estimates than least-squares and
sparse Radon transforms.

INTRODUCTION

Several simultaneous source data acquisition methods have been
proposed to reduce the cost of seismic surveys and improve illumi-
nation by increasing source density (Garotta, 1983; Beasley et al.,
1998; Berkhout, 2008; Ikelle, 2010). However, most seismic data
processing and imaging techniques are designed to handle data with
nonoverlapping sources (conventional acquisition). Therefore, the
separation of these blended source data into their equivalent non-
overlapped sources data is an important step prior to classical
processing sequences. Blending is equivalent to time-shifting data
from individual sources and summing them according to a prede-
fined scheme. This blending process can be represented mathemati-
cally by the following equation:

b ¼ ΓD; (1)

where b is the blended data, D represents the original data cube that
would be recorded without source overlapping, and Γ is the blend-
ing operator. The blending operator can be expressed in the fre-
quency-space domain via the following expression:

½Γ�ij ¼ eiωτij ; (2)

where τij is the delay of the ith source firing time with respect to the
detector j and ω indicates the temporal frequency.
Simultaneous source separation (also known as deblending)

methods can be sorted into two main categories. In the first cat-
egory, deblending is posed as an inverse problem in which one min-
imizes a cost function that includes a data misfit and a regularization
term. In addition, rather than inverting directly for the deblended
data D, one can invert for the representation of the data in terms
of coefficients c in an auxiliary domain. In other words, if the data
are represented in terms of coefficients c in a basis Φ, such that
D ¼ Φc, the aim is to estimate c by minimizing the following cost
function:

J ¼ kb − ΓΦck22 þ μRðcÞ: (3)

By choosing the appropriate basis Φ, seismic reflections can be fo-
cused into a small number of coefficients c. This is equivalent to
synthesizing the data via a sparse collection of basis functions.
The regularization termRðcÞ is needed because Γ is a noninvertible
operator. Algorithms in this category include the sparse Radon in-
version (Akerberg et al., 2008; Moore et al., 2008), iterative f-k
filtering (Mahdad et al., 2011; Doulgeris et al., 2012), and curve-
let-based source separation (Lin and Herrmann, 2009; Wason et al.,
2011). This inversion process can also be posed via a projected gra-
dient optimization algorithm (Abma et al., 2010). All these methods
attempt to retain coherent signal in common receiver gathers by im-
posing sparsity in the coefficients c.
A second category of deblending methods estimates D directly

from the pseudodeblended data:

~D ¼ ΓHb (4)
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via denoising techniques (Beasley et al., 1998; Beasley, 2008; Kim
et al., 2009; Huo et al., 2012). Pseudodeblending is equivalent to
applying time shifts and dividing long blended records onto the
time length of that one would have obtained via standard non-
overlapping acquisitions. However, pseudodeblending does not
remove interferences resulting from the overlapping of different
sources, and pseudodeblended records contain a considerable
amount of interferences. Source interferences are coherent in
common source gathers and incoherent in common receiver
gathers (Berkhout, 2008). The denoising methods use the incoher-
ency of the noise when data are processed in common receiver
gathers.
Seismic reflections can be represented by the superposition of

hyperbolic events. Consequently, they can be decomposed using
hyperbolic Radon transforms. Transformations that use a hyper-
bolic basis are a variant of the classical Radon transform (Beylkin,
1987). Radon transforms are nonorthogonal transformations, and
the accurate recovery of data from the estimated Radon domain
is not a simple task. Thorson and Claerbout (1985) suggest treating
the problem of estimating the Radon coefficients as an inversion
problem. This inversion of the Radon transform demands the inclu-
sion of a regularization term to estimate a stable and unique model.
One common approach is the zero-order quadratic (l2) regulariza-
tion (Beylkin, 1987). Designing the Radon transform via an l2

regularization term produces a linear system of equations, and
its solution is the estimated Radon coefficients. However, l2 regu-
larization methods produce unfocused (low-resolution) Radon co-
efficients (Sacchi and Ulrych, 1995a). Because the Radon basis
functions can be tailored to fit the data, one should expect an ideal
Radon model that consists of a sparse collection of coefficients. The
latter is the idea used by high-resolution (also called sparse) Radon
transforms (Thorson and Claerbout, 1985; Sacchi and Ulrych,
1995a, 1995b; Trad et al., 2003). Sparse Radon transforms use a
sparsity-promoting regularization term (l1 or Cauchy norm) and
a quadratic misfit function to obtain the data representation in
the Radon domain. The quadratic misfit function often results in
Radon model coefficients that are sensitive to the presence of erratic
noise in the data. This sensitivity can be reduced by adopting a ro-
bust misfit function that is capable of modeling data with erratic
noise (Claerbout and Muir, 1973). In this case, one can adopt an
l1 misfit function to design Radon transforms that can tolerate
erratic noise (Guitton and Symes, 2003; Ji, 2006, 2012; Li
et al., 2012).
This article proposes to adopt the robust Radon transform (Ji,

2006, 2012) for deblending seismic data. The robust Radon trans-
form can be incorporated into the deblending problem in two differ-
ent ways. Similar to the first category of deblending methods,
deblended data can be recovered by concatenating the blending
and Radon operators and minimizing the cost function given by
equation 3 to estimate the vector of coefficients c that synthesizes
the data D. However, our tests indicate that a more computational
efficient approach entails treating the deblending problem via robust
Radon transforms as a denoising problem in common receiver gath-
ers (similar to the second category of the deblending methods). In
other words, we provide a practical algorithm that uses Radon trans-
forms to denoise common receiver gathers contaminated with
erratic noise. The proposed algorithm is used to estimate a
noise-free Radon model that synthesizes data free of incoherent
interferences.

In our method, the pseudodeblending operator is adopted to sep-
arate each blended shot gathers into a data cube composed of
common receiver gathers (equation 4). The robust Radon transform
using an l1 misfit is adopted to individually denoise each common
receiver gather. We would like to point out that high-resolution
(nonrobust) apex-shifted Radon transforms are also proposed by
Trad et al. (2012) for fast source separation. Trad et al. (2012) sug-
gest to use the sparse Radon inversion in the common source gather
followed by apex domain filtering. They used the difference in lo-
cation of the reflection hyperbolas apexes for source separation.
This is only valid when reflections produced by difference sources
have separate apex locations in the Radon model, which is expected
in some acquisition schemes.

RADON TRANSFORMS

Transforms that map images and signals into new domains like
the Radon transform are a subject of extensive research (Jones,
2013). In general, data are transformed to a new domain to facilitate
separation of their components and to differentiate signals from
noise. Radon transforms in both frequency and time domains have
been used to model seismic reflections and to attenuate the coherent
noise. For instance, the parabolic Radon transform (Hampson,
1986) has been widely used for multiple suppression in common
midpoint gathers after normal moveout (NMO) correction. Simi-
larly, hyperbolic Radon transforms have been used to attenuate mul-
tiples in common midpoint gathers prior to NMO correction.
Hyperbolic Radon transforms with shifted apex terms have been
proposed to attenuate diffractions (Trad, 2003), to eliminate surface
related multiples (Hokstad and Sollie, 2006), to separate a simulta-
neous source (Trad et al., 2012), and to denoise microseismic data
(Sabbione et al., 2013). The improvement of the computational ef-
ficiency and accuracy of the Radon transform are subjects of on-
going research. Thorson and Claerbout (1985) are the first
authors to cast the Radon transform as an inverse problem. They
also propose a sparse inversion method to obtain highly focused
Radon gathers in the time domain. The original frequency-domain
parabolic Radon transform that Hampson (1986) propose is modi-
fied by Sacchi and Ulrych (1995a) to incorporate sparsity as
well. Cary (1998) observes that time-domain operators can enforce
sparsity in both time and in the Radon parameter simultaneously.
Herrmann et al. (2000) propose to redesign Radon operators to
deal with aliasing by carrying model weights from nonaliased to
aliased frequencies. Robust and high-resolution Radon transforms
are explored by Ji (2006, 2012). Recently, Hu et al. (2013) propose
to use a fast butterfly algorithm to speed computation of the Radon
transform.
In our analysis, we deal with 2D seismic data acquisition, but the

same concept can be expanded to the 3D case. We consider the data
organized in common receiver gathers that have been obtained via
pseudodeblending. To avoid notational clutter, we will designate the
common receiver gathers as dðt; hÞ or in vector form d. The vari-
ables t and h indicate time and offset, respectively. The Radon trans-
form is an integral transform that in its discrete form can be
expressed via the following two expressions:

~mðτ; ξÞ ¼
X
h

dðt ¼ ~ϕðτ; h; ξÞ; hÞ; (5)
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dðt; hÞ ¼
X
ξ

mðτ ¼ ϕðt; h; ξÞ; ξÞ; (6)

where ~mðq; ξÞ are Radon coefficients that one can obtain using the
adjoint Radon operator. The parameter ξ is the Radon parameter that
depends on the type of integration path that one adopts for the
Radon integral. Popular variants of the Radon transform are the lin-
ear, parabolic, hyperbolic, or apex-shifted hyperbolic Radon trans-
form (Table 1). In operator form, the adjoint Radon transform can
be expressed as

~m ¼ LTd: (7)

Similarly, the forward Radon transform can be represented by the
following expression:

d ¼ Lm: (8)

We use equation 8 to estimate m via an inversion procedure. The
estimated Radon model is subsequently used to recover an im-
proved version of d using the forward Radon transform.

ROBUST INVERSION

We assume that the data are contaminated with noise, and there-
fore we pose the estimation of m via the minimization of the vector
of residuals:

r ¼ d − Lm: (9)

This is an ill-posed problem, and, therefore, a regularization term
must be included to estimate a unique and stable model m. For ex-
ample, the l2 regularization term results in smooth estimates of m.
On the other hand, an l1 regularization term induces solutions that
are sparse. Thus, the inversion problem can be formulated by min-
imizing the following cost function:

J ¼ krkpp þ μkmkqq
¼ kd − Lmkpp þ μkmkqq; (10)

where the first term on the right-hand side is the misfit term and
the second term is the regularization term. In both terms, we

assume that the lp and lq norms are given by the general expres-
sions lp ¼ P

ijrijp and lq ¼ P
ijmijq. By minimizing the cost

function with respect to the unknown vector of Radon coeffi-
cients m, one finds a solution that honors the observations d.
The parameters p and q represent the exponent of the p-norm
of the misfit and the q-norm of the model regularization term, re-
spectively. We adopt p ¼ 2 when the data contains Gaussian addi-
tive noise. On the other hand, we adopt p ¼ 1 when the data are
contaminated with erratic (non-Gaussian) noise (Claerbout and
Muir, 1973). For the model regularization, we adopt q ¼ 2 for low-
resolution Radon transforms and q ¼ 1 for high-resolution (sparse)
Radon transforms.
In this article, we test four Radon transform for the removal of

erratic blending noise in common receiver gathers. The first trans-
form is the classical least-squares (nonrobust) Radon transform ob-
tained via quadratic regularization (low resolution) that corresponds
to p ¼ 2 and q ¼ 2 (Hampson, 1986). The second transform is the
classical high-resolution (nonrobust) Radon transform (Sacchi and
Ulrych, 1995b; Trad et al., 2003) that corresponds to p ¼ 2

and q ¼ 1. The third transform is the robust Radon transform with
quadratic regularization ( p ¼ 1 and q ¼ 2). Finally, the fourth
transform is the robust Radon transform with sparse regularization
( p ¼ 1 and q ¼ 1).
Iterative algorithms such as iteratively reweighed least squares

(IRLS) can be used to estimatemwhen either p ¼ 1 or q ¼ 1 (Trad
et al., 2003). Our implementation of IRLS starts by defining the p
(and q) norm by the following expression:

kxkpp ¼
X
i

jxijjxijp−2jxij ¼ kWxxk22; (11)

where ½Wx�ii ¼ jxijðp−2Þ∕2 and 0 < p ≤ 2. The weighting matrix
cannot be computed for xi ¼ 0. Therefore, the weighting matrix
for m will be redefined as follows:

½Wm�ii ¼
8<
:

1ffiffiffiffiffiffiffiffiffiffi
jmij2−p

p if mi > ϵm;

1ffiffiffiffiffiffiffi
ϵ2−pm

p if mi ≤ ϵm:
(12)

Similarly, we redefine the weighting matrix for the residuals as
follows:

½Wr�ii ¼
8<
:

1ffiffiffiffiffiffiffiffiffi
jrij2−q

p if ri > ϵr;

1ffiffiffiffiffiffi
ϵ2−qr

p if ri ≤ ϵr:
(13)

Both ϵr and ϵm represent small numbers to avoid the singularity at
r ¼ 0 and m ¼ 0. Holland and Welsch (1977) use robust statistics
to estimate the optimal value of ϵr

ϵr ¼ br
MADðrÞ
0.6745

; (14a)

where MAD indicates the median absolute deviation of the resid-
uals r. The parameter br is a tuning parameter. Holland and Welsch
(1977) recommend using br ¼ 1.345. The parameter ϵm is com-
puted via the following expression:

Table 1. Radon operators: HRT, hyperbolic Radon
transform; ASHRT, apex-shifted hyperbolic Radon
transform; PRT, parabolic Radon transform; ASPRT, apex-
shifted parabolic Radon transform; LRT, linear Radon
transform; h, offset; v, velocity; h0, apex; q, curvature; and
p, dip.

Operator ξ ϕðτ; h; ξÞ ~ϕðt; h; ξÞ

HRT ξ ¼ v t ¼ ðτ2 þ h2

v2Þ1∕2 τ ¼ ðt2 − h2

v2Þ1∕2
ASHRT ξ ¼ ½v; h0� t ¼ ðτ2 þ ðh−h0Þ2

v2 Þ1∕2 τ ¼ ðt2 − ðh−h0Þ2
v2 Þ1∕2

PRT ξ ¼ q t ¼ τ þ qh2 τ ¼ t − qh2

ASPRT ξ ¼ ½q; h0� t ¼ τ þ qðh − h0Þ2 τ ¼ t − qðh − h0Þ2
LRT ξ ¼ p t ¼ τ þ ph τ ¼ t − ph

Source separation using robust Radon V3



ϵm ¼ bm
max jmj
100

; (14b)

where bm is a tuning parameter that in our simulations was
selected in an heuristic fashion (Trad et al., 2003; Ji, 2006).
We can now represent the inversion by the following new cost
function:

J ¼ kWrrk22 þ μkWmmk22: (15)

Thus, we have turned the nonquadratic problem into a sequence
of quadratic minimization problems for fixed weighting matrices
Wr and Wm that depends on unknowns r and m, respectively.
Equation 15 can be written in its standard form (Hansen, 1998)
by a simple change of variable u ¼ Wmm:

J ¼ kWr½LðWmÞ−1u − d�k22 þ μkuk22: (16)

Equation 16 is minimized via the method of conjugate gradients
followed by an update of the matrices of weights Wr and Wm. We
follow the method described by Trad et al. (2003) in which the regu-
larization term in equation 16 is omitted by setting μ ¼ 0 and the
number of iterations of the method of conjugate gradients replaces
the trade-off parameter μ (Hansen, 1998). In essence, we have an
internal iteration to minimize equation 16 via the method of con-
jugate gradients and an external iteration to update the weights. The
algorithm is stopped when the misfit change between iterations is
less than a defined tolerance value (tolerance ¼ 0.01) or when it
reaches a maximum number of iterations.
Finally, we want to clarify that the forward Radon operator is also

convolved with a wavelet. This permits representing a constant
amplitude hyperbola via a single coefficient in the Radon space.
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Figure 1. Source firing times for numerically blended synthetic
data example.
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Figure 2. Synthetic data common receiver gather. (a) Original
gather. (b) Pseudodeblended gather.
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Figure 3. Radon models obtained via inversion with (a) p ¼ 2 and
q ¼ 2, (b) p ¼ 2 and q ¼ 1, (c) p ¼ 1 and q ¼ 2, and (d) p ¼ 1
and q ¼ 1.
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Consequently, the adjoint operator requires crosscorrelation with
the wavelet. In other words, in our algorithm, we have replaced
the operators L by CL and LT by LTCT. The operators C and
CT correspond to the convolution and crosscorrelation with a
known wavelet, respectively (Claerbout, 1992). We have selected
a zero phase wavelet with an amplitude spectrum similar to the
amplitude spectrum of the wavelet in the data.

SYNTHETIC EXAMPLE

We tested the robust Radon transform with a blended synthetic
data set. The data are numerically blended with a 50% reduction in
time compared to conventional acquisition. The firing times of
the sources for conventional and blended acquisition sources are
shown in Figure 1. The blending scheme represents one-source

firing with random delays. One common receiver gather prior to
blending is shown in Figure 2a. The data are numerically blended
and pseudodeblended into common receiver gathers to obtain
Figure 2b.
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Figure 4. Synthetic common receiver gather recovered using non-
robust transforms. (a) Recovered using p ¼ 2 and q ¼ 2. (b) Error
display for (a). (c) Recovered using p ¼ 2 and q ¼ 1. (d) Error dis-
plays for (c).
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Figure 5. Synthetic common receiver gather recovered using robust
transforms. (a) Recovered using p ¼ 1 and q ¼ 2. (b) Error dis-
plays for (a). (c) Recovered using p ¼ 1 and q ¼ 1. (d) Error dis-
play for (c).

Table 2. Q-values of synthetic and real data recovered
common receiver gathers.

p ¼ 2 and
q ¼ 2

p ¼ 2 and
q ¼ 1

p ¼ 1 and
q ¼ 2

p ¼ 1 and
q ¼ 1

Synthetic
example

6.38 7.73 10.52 27.56

Real example 7.52 7.63 13.01 12.88
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Figure 7. Synthetic data cube. (a) Original data. (b) Pseudode-
blended data. (c) Data recovered by forward modeling the Radon
coefficients estimated via the robust Radon transform p ¼ 1 and
q ¼ 1. (d) Difference between the recovered and the original data
cubes.
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The synthetic data are created using a horizontally layered
earth model that results in reflection hyperbolas with their apex
at zero offset. This permits us to carry out our tests using the hy-
perbolic Radon transform, which is more computationally effi-
cient than the apex-shifted Radon transform. Radon models
estimated from the pseudodeblended common receiver gather
via the different inversion schemes are shown in Figure 3. The
data recovered by forward modeling the nonrobust Radon models
are shown in Figure 4a (p ¼ q ¼ 2) and 4c (p ¼ 2; q ¼ 1). On the
other hand, the data recovered from the robust Radon models
are shown in Figure 5a (p ¼ 1, q ¼ 2) and 5c (p ¼ 1, q ¼ 1).
The quality of the recovered data is measured using the following
expression:

Q ¼ 10Log
kdoriginalk22

kdoriginal − drecoveredk22
: (17)

The Q-values for the recovered synthetic data common receiver
gathers are listed in Table 2. The results show that the inversion
using both robustness and sparsity (p ¼ 1, q ¼ 1) produce the best
results (27.56 dB). However, high-quality results were also ob-
tained using the robust Radon transform with quadratic regulari-
zation (p ¼ 1 and q ¼ 2). It is important to stress that the results
with the nonrobust Radon transforms were suboptimal for the
quadratic and the sparse regularization (p ¼ 2, q ¼ 1; 2). Figure 6
shows the average frequency spectrum of the original (noise free)
and deblended gather (p ¼ q ¼ 1). The average spectrum of the
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Figure 11. One velocity panel of the apex-shifted Radon models
obtained via inversion with (a) p ¼ 2 and q ¼ 2, (b) p ¼ 2 and
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obtained via inversion with (a) p ¼ 2 and q ¼ 2, (b) p ¼ 2 and
q ¼ 1, (c) p ¼ 1 and q ¼ 2, and (d) p ¼ 1 and q ¼ 1. We show
3 velocity panels of the total of 10 panels used in the apex-shifted
Radon transform. The velocity panels correspond to 4400, 4533,
and 4666 ft∕s. Each velocity panel contains 17 apexes ranging from
–2800 to 2800 ft.

Source separation using robust Radon V7



original noise-free common receiver gather is identical to the aver-
age spectrum of the deblended gather. Finally, Figure 7 shows the
deblended data cube using (p ¼ 1, q ¼ 1) inversion.

REAL DATA EXAMPLE

We also tested the robust Radon transform with a marine data set
from the Gulf of Mexico. The data are numerically blended with a
50% time reduction compared to the conventional acquisition. The
source firing times versus source location for the first 30 sources
(a total of 92 sources are used in this example) are displayed in
Figure 8. The blending scheme represents one-source firing with
random delays. One common receiver gather prior to blending is
shown in Figure 9a, and a close-up of it is shown in Figure 9c.

The data are numerically blended and pseudodeblended into
common receiver gathers to obtain Figure 9b, and a close-up of
them is shown in Figure 9d.
In this example, we adopt the apex-shifted Radon transform be-

cause we cannot guarantee that the reflection hyperbolas apexes are
centered at zero offset. The models estimated from the pseudode-
blended common receiver gather using different inversion schemes
are shown in Figure 10. We found it difficult to impose both sparsity
and robustness simultaneously in the case of real data. The sparsity
constraint requires representing a single reflection hyperbola with a
single Radon coefficient. This is often not feasible with real data due
to the mismatch between the theoretical traveltime hyperbola used
by the Radon transform and the traveltimes of the actual reflections.
Amplitude variations with offset further complicates the problem.

2

3

4

T
im

e 
(s

)

–5000 0
Source location (ft)a)

2

3

4

T
im

e 
(s

)

–5000 0
Source location (ft)b)

2

3

4

T
im

e 
(s

)

Source location (ft)c)

2

3

4

T
im

e 
(s

)

–5000 0 –5000 0
Source location (ft)d)

Figure 12. Real data common receiver gather recovered using non-
robust inversions. (a) Recovered using p ¼ 2 and q ¼ 2. (b) Error
display for (a). (c) Recovered using p ¼ 2 and q ¼ 1. (d) Error
displays for (c).

2

3

4

T
im

e 
(s

)

–3000 –2500 –2000
Source location (ft)a)

2

3

4

T
im

e 
(s

)

–3000 –2500 –2000
Source location (ft)b)

2

3

4

T
im

e 
(s

)

–3000 –2500 –2000
Source location (ft)c)

2

3

4

T
im

e 
(s

)

–3000 –2500 –2000
Source location (ft)d)

Figure 13. Close-up of real data common receiver gather recovered
using non-robust inversions. (a) Recovered using p ¼ 2 and q ¼ 2.
(b) Error display for (a). (c) Recovered using p ¼ 2 and q ¼ 1.
(d) Error displays for (c).
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For these reasons, the choice of optimal regularization parameters
for robust inversion with sparse regularization (p ¼ q ¼ 1) is rather
difficult. Five velocity panels (in time, apex), each containing 17
apex locations estimated using different inversion schemes, are
displayed in Figure 10. In the Radon transform, we used velocity
ranges from 4400 to 5600 ft. The minimum apex corresponds to
−2800 ft and the maximum to 2800 ft. We used 10 velocities
and 17 apex locations. Notice that only three velocity panels out
of 10 are displayed in Figure 10 and only 4533 ft∕s velocity panel
is shown in Figure 11 for clarity.
The data recovered by forward modeling the nonrobust Radon

transforms models are shown in Figure 12a (p ¼ q ¼ 2) and 12c
(p ¼ 2; q ¼ 1). Figure 13 shows a close-up of the nonrobust Radon
transforms results that are shown in Figure 12. The data recovered
from the robust Radon transforms are shown in Figure 14a (p ¼ 1,
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Figure 14. Real data common receiver gather recovered using ro-
bust inversions. (a) Recovered using p ¼ 1 and q ¼ 2. (b) Error
display for (a). (c) Recovered using p ¼ 1 and q ¼ 1. (d) Error dis-
plays for (c).
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Figure 15. Close-up of real data common receiver gather recovered
using robust inversions. (a) Recovered using p ¼ 1 and q ¼ 2.
(b) Error display for (a). (c) Recovered using p ¼ 1 and q ¼ 1.
(d) Error displays for (c).
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deblended real data common receiver gather recovered via the ro-
bust Radon transform with p ¼ 1 and q ¼ 2.
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q ¼ 2) and 14c (p ¼ 1, q ¼ 1). Figure 15 shows a close-up of
the robust Radon transforms results shown in Figure 14. The resid-
uals in Figures 14 and 15 confirm that the robust inversion
represents an effective method for removing blending noise. The
Q-values for the recovered real data common receiver gathers
are listed in Table 2. Our tests show that inversion using both robust-
ness and quadratic regularization (p ¼ 1, q ¼ 2) produce the best
results (Q ¼ 13.01 dB). This illustrates quantitatively that the
robust Radon transform can remove the interferences effectively
while not degrading the data quality. The frequency spectrum of

the original and the deblended common receiver gather (p ¼ 1,
q ¼ 2) is shown in Figure 16. The difference between the average
spectra in Figure 16 at low and high frequencies could be attributed
to additive noise eliminated by our algorithm. Finally, Figure 17
shows the deblended data cube using (p ¼ 1, q ¼ 2) inversion.
Regarding the real data example, imposing both robustness and

sparsity (p ¼ q ¼ 1) is not as simple as one might think. In this
case, the algorithm becomes sensitive to the selection of ϵr, ϵm,
and the number of internal and external iterations of the IRLS
method. Recent results in the area of robust deconvolution that in-

clude sparsity constraints (Gholami and Sacchi,
2012) suggest that more sophisticated algorithms
are needed to obtain sparse and robust solutions
that are not prone to failure due to incorrect
parameter selection (Li et al., 2012).

CONCLUSIONS

We have implemented robust Radon trans-
forms to eliminate the erratic incoherent noise
that arises in common receiver gathers when si-
multaneous source data are acquired. We showed
that source interferences in common receiver
gathers can be removed via a robust Radon
transform.
Our synthetic data example shows superior re-

sults when a sparse (q ¼ 1) and robust (p ¼ 1)
Radon transform are adopted. It is well known
that the stringent requirement of sparsity can
be easily satisfied with simulated data. Con-
versely, imposing sparsity in the Radon coeffi-
cients is not an easy task when there is a
mismatch between the traveltimes and ampli-
tudes of the data and those modeled by the trans-
form. The latter limits the benefit of the sparsity
constraint for real data applications. However,
our real data tests show that the Radon transform
with a robust misfit (p ¼ 1) and a simple quad-
ratic regularization (q ¼ 2) provides an effective
algorithm to eliminate erratic source interfer-
ences in common receiver gathers.
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