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ABSTRACT

We have developed a rank-reduction algorithm based on sin-
gular spectrum analysis (SSA) that is capable of suppressing the
interferences generated by simultaneous source acquisition. We
evaluated an inversion scheme that minimizes the misfit be-
tween predicted and observed blended data in t‐x domain sub-
ject to a low-rank constraint that is applied to data in the f‐x
domain. In particular, we developed an iterative algorithm by
adopting the projected gradient method with the SSA filter act-
ing as the projection operator. This method entails extracting
small patches of data from a common receiver gather and organ-
izing the spatial data at a given monochromatic frequency into a
Hankel matrix. For the ideal unblended data, Hankel matrices

extracted from the data are of low rank. The incoherent inter-
ferences in common-receiver domain caused by simultaneously
fired shots increase the rank of the aforementioned Hankel ma-
trices. Therefore, rank-reduction filtering is an effective way to
annihilate source interferences while preserving the unblended
signal. Through tests with synthetic examples, we found that the
interference can be effectively suppressed by the proposed
method. In addition, we found that the proposed algorithm
can be modified to simultaneously cope with deblending and
data recovery. A real survey acquired in the Gulf of Mexico
was used to mimic a simultaneous-source acquisition with miss-
ing shot locations. The algorithm was able to recover the missing
shot gathers from the blended acquisition with an improvement of
the signal quality of approximately 12 dB.

INTRODUCTION

Simultaneous source acquisition techniques have been gaining
popularity as a low-cost strategy to increase survey density. By
allowing temporal overlap between closely fired sources, one
can acquire multiple shots in a time-efficient fashion and thereby
reduce the cost of seismic data acquisition (Silverman, 1979; Beas-
ley et al., 1998; Stefani et al., 2007; Hampson et al., 2008). Early
work on simultaneous source techniques focused on land acquisi-
tion via Vibroseis systems (Silverman, 1979). Different phase-
encoding schemes have been introduced to eliminate the crosstalk
noise that is generated by having multiple Vibroseis systems oper-
ating at the same time on different spatial positions (Bagaini, 2006).
In marine seismic surveys, on the other hand, phase-encoding tech-
niques are not applicable for impulsive sources such as airguns. In
this case, the separation of simultaneous sources relies on source
geometric distances and/or specific firing times schemes (Beasley
et al., 1998; Abma and Ross, 2013). For instance, Stefani et al.
(2007) and Hampson et al. (2008) propose to randomize firing times

to produce interferences that are incoherent in domains, such as
common receiver gathers and common offset gathers.
Processing steps such as prestack time migration are considered

as passive separation methods that can suppress source interfaces
caused by simultaneous source acquisition in the migrated seismic
image (Krey, 1987; Lynn et al., 1987). However, the latter might not
be an optimal solution when performing amplitude-sensitive analy-
sis on prestack data, such as amplitude variation with offset inver-
sion and time-lapse seismic monitoring (Ayeni et al., 2011). For this
reason, additional processing steps are often required to eliminate
the interferences. One strategy entails converting source separation
into an incoherent noise removal problem in common receiver gath-
ers (Spitz et al., 2011; Ibrahim and Sacchi, 2013) or common offset
gathers (Huo et al., 2009; Maraschini et al., 2012; Peng and Liu,
2013). For instance, one can adopt coherent pass operators includ-
ing median filters, f‐x prediction filters, and Radon transforms to
suppress the incoherent interferences. Another family of methods
treats source separation by solving an inverse problem. In this case,
the data are transformed to auxiliary domains, in which constraints
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to eliminate incoherent interferences are effectively implemented by
sparse inversion techniques (Akerberg et al., 2008; Moore et al.,
2008; Lin and Herrmann, 2009; Abma et al., 2010; Mansour et al.,
2012; Li et al., 2013; Chen et al., 2014). The latter is done in con-
junction with the minimization of a misfit function to guarantee that
the separated data reproduce the simultaneous source data. Com-
pared with filtering techniques, deblending via inversion methods
usually leads to better separation results (Moore, 2010; van Borse-
len et al., 2012).
Research on seismic signal processing via rank reduction tech-

niques has been applied to signal-to-noise-ratio enhancement (Jones
and Levy, 1987; Freire and Ulrych, 1988; Marchisio et al., 1988;
Al-Yahya, 1991; Trickett, 2003; Chen and Sacchi, 2013) and, more
recently, to the problem of seismic data reconstruction (Sacchi,
2009; Trickett and Burroughs, 2009; Oropeza and Sacchi, 2011).
Rank-reduction methods for signal enhancement that are based
on Cadzow filtering (Cadzow, 1988; Trickett and Burroughs, 2009)
or singular spectrum analysis (SSA) filtering (Sacchi, 2009; Oro-
peza and Sacchi, 2011; Gao et al., 2013) are of special interest
to this work. Cadzow or SSA filtering denotes a family of methods,
where rank reduction is applied to Hankel matrices formed from
noisy and often incomplete observations. These methodologies are
found under different names in signal and image processing (Cad-
zow, 1988), time-series and spectral analysis (Vautard and Ghil,
1989; Hua, 1992), and dynamical systems (Broomhead and King,
1986). For instance, researchers in the field of time series analysis
and dynamical systems frequently adopt the name SSA. On the con-
trary, researchers in the field of communications often use the name
Cadzow’s iterative denoising (Blu et al., 2008). In this paper, we
will use the designation adopted by Sacchi (2009), Oropeza and
Sacchi (2011), and Gao et al. (2013), and therefore, we will call
our rank-reduction denoising method SSA filtering. We are aware,
however, that equivalent denoising and reconstruction algorithms
have been extensively studied in seismic data processing by Trickett
and Burroughs (2009) who use the name Cadzow filtering.
Our main contribution is the introduction of the SSA reduced-

rank filter in conjunction with an inversion scheme for suppressing
interferences that arise in simultaneous source acquisition (Cheng

and Sacchi, 2013). The method is formulated in terms of a projected
gradient optimization approach (Fazel, 2002; Meka et al., 2010), in
which a cost function is minimized subject to a rank constraint. The
rank constraint is imposed on small windows via the SSA filter.

PRELIMINARIES

A signal model for representing simultaneous
source data

Seismic data acquired via a conventional seismic acquisition sur-
vey are denoted as dðt; r; sÞ, where t, r, and s are used to indicate the
time, receiver, and source indices, respectively. The trace recorded by
one receiver (rj) by firing simultaneous sources is denoted by

bðt; rjÞ ¼
X
k∈S

dðtþ τk; rj; skÞ; (1)

where S indicates a group of shots with firing time and location pairs
ðτk; skÞ. For the jth receiver, the last expression can be written in
operator form as follows:

b ¼ Bd; (2)

where B symbolizes the blending operator (Berkhout, 2008), b is the
blended data, and d denotes the ideal unblended common receiver
gather for receiver j. Note that to avoid notational clutter, we drop
the subindex j and understand that the proposed analysis is carried
out for all receivers. In other words, equation 2 represents one detec-
tor j. The pseudo-deblended data are obtained by truncating and
shifting samples of b into a common receiver gather,

d̂ ¼ B�b; (3)

the operatorB� denotes the pseudo-deblended operator that also turns
out to be the adjoint of the operatorB (Berkhout, 2008;Mahdad et al.,
2011).
Furthermore, we will decompose the ideal common receiver

gather that one would have obtained via standard acquisition into
small overlapping windows (Figure 1). We assume that each win-

dow is composed of a superposition of a finite
number of linear dips. The synthesis of the data
in terms of small windows is written as follows
(Claerbout, 1997):

d ¼
XL
l¼1

Wldl; (4)

where dl is the lth data window and Wl repre-
sents an operator that translates data windows
with proper tapering in the areas where adjacent
windows overlap. Similarly, we define an adjoint
operator of the form

dl ¼ W�
l d; l ¼ 1; : : : L; (5)

whereW�
l represents an operator that extracts the

window l from the data with proper tapering in
the areas where adjacent windows overlap. The
operatorsWl andW�

l are written in explicit form,
and special attention has been taken to guarantee

Figure 1. The windowing operator and its adjoint operator. The windowing operatorW
extracts small patches of data from an entire gather. The adjoint operator W� combines
all the processed small patches back into a gather. A cosine taper is used to combine
areas with overlap.
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that they pass the dot product test. The latter ensures that expres-
sions 4 and 5 are a forward-adjoint pair (Claerbout, 1992). The afore-
mentioned windowing strategy can be extended to multidimensional
seismic data.

Reduced-rank filtering

We provide a short review of reduced-rank filtering for noise attenu-
ation. The method can be found in the literature as Cadzow filtering or
SSA. The details associated with the implementation of SSA for seis-
mic noise attenuation and seismic data reconstruction can be found in
Oropeza and Sacchi (2011). We discuss the 2D (t‐x) implementation
of reduced-rank filtering via SSA. However, we make the point that
SSA for multidimensional volumes has been extensively discussed by
Trickett et al. (2010), Oropeza and Sacchi (2011), and Gao et al.
(2011). Seismic data in a small window can be represented in the fre-
quency-space domain via the superposition of plane waves

DðωÞ ¼
XK
k¼1

AkðωÞeiωηkjΔx; (6)

where i ¼ ffiffiffiffiffiffi
−1

p
, j ¼ 1; 2; : : : ; N is the trace index in the spatial axis,

and ω represents temporal frequency. In this equation, we assume that
the data are composed of K linear events with distinct dips ηk. We
denote AkðωÞ as the complex amplitude of the kth plane wave,
and Δx indicates the spatial interval between seismograms. The re-
duced-rank filtering method can be summarized as follows: We first
construct a trajectory matrix by embedding complex amplitudes at one
frequency DðωÞ ¼ ½D1ðωÞ; D2ðωÞ; : : : ; DNðωÞ�T in the following
Hankel matrix:

MðωÞ ¼ H½DðωÞ�

¼

2
666664

D1ðωÞ D2ðωÞ · · · DN−Lþ1ðωÞ
D2ðωÞ D3ðωÞ · · · DN−Lþ2ðωÞ

..

. ..
. . .

. ..
.

DLðωÞ DLþ1ðωÞ · · · DNðωÞ

3
777775
; (7)

where the symbolH is used to indicate the Hankel operator. For con-
venience, we choose L ¼ bN

2
c þ 1 to make the Hankel matrix approx-

imately square (Trickett and Burroughs, 2009; Oropeza and Sacchi,
2011), MðωÞ ∈ CL×ðN−Lþ1Þ. We will omit the symbol ω and under-
stand that the analysis is carried out for all frequencies. For a super-
position of K plane waves, one can show that rankðMÞ ¼ K (Hua,
1992; Yang and Hua, 1996). Additive noise inD will increase the rank
of matrixM. Then, one can use rank reduction to attenuate the additive
noise. The SSA filter can be represented via the following expression:

DF ¼ A½R½H½D��� ¼ PD; (8)

where A is the antidiagonal averaging operator, R is the rank-
reduction operator that approximates M by a rank-K matrix and H
is the Hankel operator. The operatorA transforms back a Hankel form
into a vector by averaging across antidiagonals. Finally, the reduced-
rank filter is summarized by the operator P. Equation 8 represents the
reduced-rank filtering in the frequency-space domain. For our analysis,
it is more convenient to represent the SSA filter in the t‐x domain

dF ¼ F �A½R½HF ½d��� ¼ Pd; (9)

where F and F � represent forward and inverse Fourier operators to
transform data from the t‐x domain to the f‐x domain and from the
f‐x domain to the t‐x domain, respectively. The operator P represents
the SSA rank-reduction filter that will be used by our source separation
algorithm.

SOURCE SEPARATION VIA PROJECTED
GRADIENTS METHOD

We assume that the ideal data before blending (common receiver
gather) can be represented by the superposition of the t‐x domain
windows (equation 4). We also assume that each window is com-
posed of a finite number of linear events. Therefore, in the f‐x do-
main, the data lead to low-rank Hankel structures that were discussed
in the preceding section. Combining equations 2 and 4 and after con-
sidering additive noise in the blended data,

b ¼ B
X
l

Wldl þ n: (10)

The separation of sources can be expressed as finding the
solution of

dl ¼ argmin
dl

����b − B
X
l

Wldl

����
2

2

; l ¼ 1; : : : ; L: (11)

Clearly, once dl; l ¼ 1; : : : ; L are found, equation 11 is used to re-
construct the common receiver gather. However, the cost function
(11) does not have a unique solution. Therefore, an additional con-
straint is needed to solve the problem. Our constraint is given by

dl ¼ Pdl; l ¼ 1; : : : ; L: (12)

The problem is solved using a projected gradient method (Bertsekas,
1999). We define the gradient of equation 11 by

gl ¼ W�
lB

�
�
B
X
m

Wmdm − b
�
; l; m ¼ 1; : : : L: (13)

The projected gradient update rule can bewritten in the following way:

d½νþ1�
l ¼ P

�
d½ν�l − λW�

lB
�
�
B
X
m

Wmd
½ν�
m − b

��
;

l; m ¼ 1; : : : L;

(14)

where ν denotes iteration number and λ½ν� is the step size (Goldstein,
1964; Levitin and Polyak, 1966; Bertsekas, 1976). Similar iteration
strategies have been used to deblend simultaneous sources by Cheng
and Sacchi (2013), Peng and Liu (2013), and Chen et al. (2014).
In each iteration, we minimize the cost function by updating the

solution in the gradient descent direction. The solutions are then pro-
jected to a set of low-rank matrices in the f‐x domain. The projection
operatorP separates the signal and the interferences, while preserving
the ideal Hankel structure associated to each window. A similar algo-
rithm, known as the fixed point iterative algorithm or singular value
projection, has been discussed in the context of matrix completion by
Meka et al. (2010), Ma et al. (2011), and Tanner and Wei (2013).
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The projected gradient method intends to find the shortest dis-
tance, or the intersection of two closed sets: the set of minimum
misfit and the set of the low-rank matrices. If both of the two sets
were convex, the algorithm converges to the local optimal, which is
also the global optimal of the cost function. In our case, due to the
nonconvex nature of the set of low-rank matrices, it is difficult to
prove the convergence of the algorithm to a global minimum. The
iterative algorithm can be trapped into local minima if the initial
point and step size are not properly selected (Fazel, 2002). How-
ever, Ma et al. (2011) has shown that the convergence of the fixed
point algorithm can be guaranteed when

λ½0� < 2∕σmax; (15)

where σmax is the maximum eigenvalue of the operator B�B. In this
paper, a reasonable candidate for the initial solution is the pseudo-
deblended data. This is because the pseudo-deblended data contain

exactly the desired common receiver gather and is likely close to the
true solution. Convergence can be achieved by equation 15 and di-
minishing step lengths (Bertsekas, 1999; Nedic and Bertsekas,
2001). In the example, the step size is decreased according to
λ½ν� ¼ λ½0�∕

ffiffiffi
ν

p
. Our selection of step size guarantees the conver-

gence. However, there might be other step-size schedules that might
speed up the convergence of the algorithm (Mahdad et al., 2011).

Joint separation and reconstruction
of seismic sources

We turn our attention to the case in which the seismic data are not
regularly sampled in the source coordinate. In other words, we as-
sume that some sources were not fired. The aforementioned source
separation algorithm will encounter problems because our f‐x do-
main model is effective only when the sources satisfy a regular spatial
distribution. However, the data in the unblended domain can be ap-

proximated as the entrywise product of the com-
plete data set and a sampling operator T . The
operator T multiplies traces that are alive by 1,
whereas dead traces are multiplied by 0 (Sacchi
and Liu, 2005). Without losing generality, the
new problem is solved via

dl ¼ argmin
dl

����b − BT
X
l

Wldlj
����
2

2

;

l ¼ 1; : : : ; L:

(16)

Therefore, the projected gradient method turns into

d½νþ1�
l ¼ P

�
d½ν�l − λW�

l T
�B�

�
BT

X
m

Wmd
½ν�
m − b

��
;

l; m ¼ 1; : : : L; (17)

where it is easy to show that T ¼ T � and T �T ¼
T (Liu and Sacchi, 2004; Naghizadeh and Sac-
chi, 2010).

EXAMPLES

Comparison of projection operators

To test the performance of the proposed de-
blending method, we first synthesize an example
with three crossing linear events to mimic a small
patch of a noise-free common receiver gather
(Figure 2a). We then introduce severe blending
noise (Figure 2b). In addition to source separation
via the proposed iterative rank reduction approach,
we also test the iterative f‐x deconvolution method
and the iterative f‐k thresholding algorithm. In
other words, we replace the rank-reduction opera-
tor P in equation 14 by an f‐x deconvolution op-
erator (Peng and Liu, 2013) and by the f‐k hard-
thresholding operator (Abma et al., 2010; Chen
et al., 2014).

Figure 2. Comparisons of deblending results for numerically blended synthetic data
with linear events. (a) The original unblended synthetic data, (b) pseudo-deblended
gather, (c) deblending result with the proposed iterative rank reduction method, (d) de-
blending result using iterative f‐x deconvolution, (e) deblending results using iterative
f‐k domain thresholding, (f) difference section between panels (a and c), (g) difference
section between panels (a and d), and (h) difference section between panels (a and e).
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We adopt a rank K ¼ 3 for each iteration for the iterative rank
reduction deblending method. The f‐x deconvolution is implemented
with a 15-point filter. As to the f‐k domain thresholding method, we
adopt the exponential schedule proposed by Gao et al. (2010) to
slowly decrease the amplitude threshold. We also tune the step size
to make sure that the three methods follow similar convergence
curves. The qualities of pseudo-deblending QPD and deblending
QS are calculated in dB units via the following two expressions:

QPD ¼ 10 log
kdtruek22

kdtrue − dPDk22
; QS ¼ 10 log

kdtruek22
kdtrue − dSk22

;

(18)

Figure 3. Velocity model used to simulate blended data for our ex-
amples via finite-difference modeling. We synthesize a data set with a
4-ms time interval and a 20-Hz central-frequency Ricker wavelet. We
also overlaid the source (*) and receiver (▴) geometry in this plot.

Figure 4. Spatial and temporal distribution of firing times for con-
ventional seismic acquisition (blue) and 2D simultaneous source
acquisition (every fifth shot). The multivessel scenario is portrayed
in red. In each round, five sources fire with small random time de-
lays. The spatial distance between sources is fixed in each round.

Figure 5. Convergence of the iterative rank-reduction source-
separation algorithm. The blue line indicates the l2-norm of the
difference between blended observations and the synthesized
blended observation versus iteration. We also portray in red the
difference between the unblended data and the true data versus
iteration.

Figure 6. Results of the proposed iterative rank-reduction deblend-
ing method in the common-shot domain. (a) The original shot
gather from synthetic data, (b) pseudo-deblended shot gather after
numerical blending, (c) the deblended shot gather after 30 iterations
of the proposed algorithm. The quality of data has been improved to
15.1 dB with respect to 0.5 dB, and (d) difference section between
original and deblended data.

Table 1. Quality of source separation QS and performance I
for the iterative projected gradient method for different
projection operators: rank reduction (proposed method), f ‐x
deconvolution (Peng and Liu, 2013), and f ‐k thresholding
(Abma et al., 2010). These results correspond to the
comparison tests portrayed in Figure 2.

Projection QS (dB) I ¼ QS −QPD (dB)

Rank reduction 20.2 22.5

f‐x deconvolution 10.1 12.4

f‐k thresholding 12.0 14.3

Deblending via iterative rank reduction V61
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where dPD denotes the pseudo-deblended common receiver gather,
dtrue is the true synthetic data (a conventional common receiver
gather), and dS stands for the separated common receiver gather
via the iterative projected gradient algorithm. A large Q value cor-
responds to fewer interferences. The performance of the method is
given by I ¼ QS −QPD.
Figure 2f shows the deblended data obtained via the proposed

iterative rank-reduction method. Figure 2f shows the difference sec-
tion for the iterative rank-reduction method. Figure 2d and 2g por-
tray the deblended data, and the difference section for the projected
gradient algorithm with projection operator given by f‐x deconvo-
lution, respectively. Similarly, Figure 2e and 2h shows the de-
blended data, and the difference section for the projected gradient
algorithm with projection operator given by f‐k thresholding. For
completeness, we have added Table 1 to indicate QS and I for our
examples (QPD ¼ −2.3 dB). Our results indicate that for this particu-
lar example, rank reduction provides the highest attenuation of source
interference noise. This should not come as a surprise to us; three lin-
ear events can be optimally modeled via a Hankel matrix of rank 3.

Synthetic example for simultaneous source separation

We also test the proposed deblending algorithm with a 2D syn-
thetic example. In this example, we use an acoustic finite-difference
modeling code to simulate a prestack marine data set. The velocity
model as well as the source and receiver geometry are shown in
Figure 3. The sources and receivers are distributed every 20 m.
A total of 350 sources were simulated. Each source fires into a fixed
array of 375 receivers. The receivers are deployed at a 500-m depth
to simulate ocean-bottom nodes.
We use groups of five shots with fixed spacing (1400 m) that were

blended with time intervals generated from uniform distribution from
0 to 2 s. Then, all the five sources moved to the next position and are
blended again. A total of 70 blended shots were generated. Figure 4
shows the spatial and temporal distribution of sources for this par-
ticular acquisition. As a result, the total acquisition time was com-
pressed to 20% of the conventional acquisition time. Then, we
apply the proposed algorithm to recover the common receiver gathers

Figure 8. Results of the proposed iterative rank-
reduction deblending method for the near-offset
section. (a) The original near-offset section from
synthetic data, (b) pseudo-deblended near-offset
section after numerical blending, (c) the deblended
near-offset section after 30 iterations. The quality
of data has been improved to 15.1 dB with respect
to 0.5 dB, and (d) difference section between
original and deblended data.

Figure 7. Results of the proposed iterative rank-reduction deblend-
ing method in the common-receiver domain. (a) The original
common receiver gather from synthetic data, (b) pseudo-deblended
common receiver gather after numerical blending, (c) the deblended
common receiver gather after 30 iterations of the proposed method.
The quality of data has been improved to 15.1 dB with respect to
0.5 dB, and (d) difference section between original and deblended
data.
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and to form separated source gathers for the whole
volume. The operatorW extracts windows of size
100 samples in time and 40 traces. The overlap is
of 25 samples in time and 10 traces in space. A
cosine taper was applied in time and space.
Figure 5 shows the misfit between the solution

and the observed blended data for one receiver.
The curve also shows the difference between the
solution at a given iteration versus the true an-
swer. The algorithm is comparatively effective
as both curves reach convergence after approxi-
mately 15 iterations. The misfit did not reduce to
zero due to the strategy we adopt for selecting the
rank. It is important to mention that for each win-
dow, we let the rank of the SSA filter increase
with iterations. At early iterations, we can apply
harsh filtering to eliminate strong crosstalk and
then, gradually increase the rank to allow retriev-
ing details that depart from the linear event
model. This is analogous to setting the threshold

Figure 9. Spatial and temporal distribution of firing time for a conventional seismic
acquisition (blue) and 2D simultaneous source acquisition with 25 missing shots for
one-vessel scenario (red). (a) Source firing times and (b) firing time intervals between
adjacent sources.

Figure 10. Results of deblending and reconstruction for a common
shot gather. (a) The original shot gather from the Gulf of Mexico
data set, (b) pseudo-deblended shot gather after numerical blending
and sampling. The desired source is missing, (c) the deblended and
reconstructed shot gather after 30 iterations. The quality of data has
been improved to 10.8 dB from −1.5 dB, and (d) difference section
between the original and deblended and reconstructed data.

Figure 11. Results of deblending and reconstruction for a common
receiver gather. (a) The original common receiver gather from the
Gulf of Mexico data set, (b) pseudo-deblended common receiver
gather after numerical blending, (c) the deblended common receiver
gather after 30 iterations. The quality of data has been improved to
10.8 dB from −1.5 dB, and (d) difference section between original
and deblended data.
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schedule in projection-onto-convex sets interpolation and deblend-
ing methods (Abma et al., 2010).
We carried out a large number of simulations to determine rank

selection schedules. A strategy that works for us entails starting with
a small rank k ¼ 3 and then increasing the rank by one in every five
iterations. In short, the final rank for our example after 30 iterations is
k ¼ 9. Figures 6 and 7 show the results of the separation after 30
iterations for shot and receiver number 175. In this example, the pro-
posed algorithm improved the quality from 0.5 dB to a factor of
15.1 dB (I ¼ 14.6 dB). The unblended solution becomes compa-
rable with the true conventional data set. Figure 8 shows the near-
offset section for this data set. The interferences from simultaneously
fired shots are effectively suppressed. It is important to note that high-
amplitude direct waves can severely affect the performance of the
algorithm. In fact, the proposed rank-reduction algorithm is suited
for scenarios in which the direct waves are not extremely strong. This
is consistent with the results presented by Maraschini et al. (2012).

Joint simultaneous source separation and
reconstruction

We use a conventional data set collected from the Gulf of Mexico
to simulate a blended acquisition. To synthesize the blending
acquisition, we assume a self-simultaneous source scenario with one

vessel firing. The receivers are ocean-bottom nodes. Because the air-
gun sources are impulsive, the vessel keeps traveling without waiting
for the recordings. Under this scenario, random fire time delays usu-
ally lead to an irregular distribution of source positions. This problem
is tackled by moving the exact source position to the nearest grid point
(Li et al., 2013). In this example, the spatial and temporal sampling
intervals are set to be 26.6 m and 4 ms, respectively. As is shown in
Figure 9, the firing time intervals between adjacent sources follow a
uniform distribution. The overall acquisition time is reduced by 50%.
We consider the case in which 25 out of a total number of 80 sources
are missing in an irregular pattern. Figure 10 shows a common shot
gather recovered after 30 iterations. Note that we intentionally pick a
common shot gather with the desired source missing. The pseudo-de-
blended shot gather only contains interferences from nearby sources.
Figure 11 shows the deblended common receiver gather; the quality of
the reconstruction has been improved to QS ¼ 10.8 dB with respect
toQPD ¼ −1.5 dB (I ¼ 12.3 dB). We also display the whole volume
for this small data set in Figure 12. Unfortunately, the low fold of this
example precludes us displaying a realistic near-offset section.

CONCLUSION

This paper illustrates an iterative rank-reduction algorithm based
on SSA filtering for separating and reconstructing simultaneous

source data. The proposed algorithm can be clas-
sified among the family of deblending methods
via inversion. By implementing rank reduction
with a projection operator, the SSA filter, solu-
tions are constrained to be low rank in Hankel
matrices extracted from small spatial-temporal
windows in common receiver gathers. The latter
is important because the SSA method is a valid
denoising and reconstruction technique for a
superposition of plane waves. In a small window,
the data can be approximated via a limited num-
ber of dips plus incoherent interferences caused
by the blending process. Convergence of this al-
gorithm can be achieved if the pseudo-deblended
data are adopted as the initial solution. Through
tests with synthetic examples made by blending a
traditional marine acquisition, we show that the
interferences of the wavefields can be effectively
suppressed. At the same time, we can reconstruct
the missing seismic sources. The latter offers
more freedom from the perspective of acquisition
design for simultaneous source methods. One
can start to analyze source separation in conjunc-
tion with seismic data reconstruction as two
problems that can be simultaneously attacked to
optimize the ubiquitous quality-cost trade-off.
This algorithm could also see applications in
multidimensional cases by adopting high-order
SVD or tensor-based dimensionality reduction
methods.
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