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ABSTRACT

Stolt migration is a Fourier domain imaging operator that assumes a constant velocity
media. In this article, we adopt a multi-velocity version of the Stolt migration and
demigration operators to derive a transform that can decompose seismic data into a
sparse collection of coefficients in image space. This Stolt-based transform is similar
to the Apex Shifted Hyperbolic Radon Transform (ASHRT). However, the Stolt-based
transform is considerably faster than the classical ASHRT because it uses two fast op-
erators (forward and inverse Fast Fourier Transforms) to estimate the data coefficients
in image space.
We use this Stolt-based transform as a tool for simultaneous seismic source separation
by removing erratic interference noise in common receiver gathers. Estimating the co-
efficients of interference-free seismic data using the Stolt-based transform is posed as
an inverse problem. The solution of this inverse problem is found by minimizing a cost
function which includes a sparsity promoting regularization term. Additionally, the
cost function incorporates a robust misfit function that is not sensitive to erratic inter-
ferences. Our tests on synthetic and field data examples show that this new transform
can efficiently remove interference noise and achieve fast simultaneous seismic source
separation.

INTRODUCTION

Hydrocarbon exploration requires accurate subsurface imaging which usually uses seismic
reflection data. Seismic reflection data are collected by firing artificial seismic sources at
or near the surface. Seismic source waves are reflected at the boundaries between different
geological formations and are recorded by an array of seismic sensors (receivers) at the
surface (Yilmaz, 2001). This seismic experiment is repeated by moving the location of the
source and/or receivers to explore more of the subsurface. Classical seismic exploration
requires a long time interval between sources firing times to avoid source interferences.
This long time interval between sources firing times increases the total acquisition time
and thereby increases the acquisition cost. This also restrict the spatial density of the
source distribution and thereby limits subsurface illumination. Limited seismic illumination
is especially problematic for imaging deep subsalt structures (Michell et al., 2006). The
aim of simultaneous seismic source acquisition is to decrease the total acquisition time by
shortening the time interval between sources (Garotta, 1983; Beasley, 2008; Berkhout, 2008;
Ikelle, 2010). This introduces source interferences and processing techniques are needed to
separate sources prior to applying conventional data processing flows that rely on a single
source assumption.
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Separation methods assume that simultaneous seismic source data can be modelled
from individual seismic sources data (Berkhout, 2008). For instance, if we let D represent
the data of all seismic sources arranged into a cube and b represents the two dimensional
simultaneous seismic source data, then

b = Γ D, (1)

where Γ represents the blending operator that contains the source firing times (Berkhout,
2008). Therefore, simultaneous seismic source data b can be simply separated by compen-
sating for the source firing time delay followed by the subdivision of the data into individual
source segments. This is equivalent to applying the adjoint of the blending operator Γ to
the simultaneous seismic source data b . This operation is often called pseudo-deblending
(Berkhout, 2008)

D̃ = ΓTb, (2)

where D̃ represents the pseudo-deblended data cube. However, pseudo-deblending does not
remove source interference as shown in Figure 1. Therefore, a more advanced processing
technique is needed for simultaneous seismic source separation.
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Figure 1: The process of pseudo-deblending. (a) Simultaneous seismic sources data that
contains three seismic sources labeled S1, S2 and S3. (b) Three pseudo-deblended common
source gathers.

Current simultaneous seismic source separation (or commonly known as deblending)
methods can be classified into two broad categories. In the first category, deblending is
posed as an inversion problem where the non-overlapping data are estimated by minimizing
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a cost function. These methods estimate the non-overlapping data by estimating the data
coefficients in a transform domain. If a suitable transform is chosen, the non-overlapping
data can be represented by a sparse collection of coefficients in the transform domain.
Therefore, sparse inversion strategies can be used to estimate the coefficients that represent
the unknown deblended data. Simultaneous seismic source separation methods that belong
to this category include sparse Radon inversion (Moore et al., 2008; Akerberg et al., 2008),
iterative ω−k filtering (Mahdad et al., 2011; Doulgeris et al., 2012), iterative rank reduction
(Cheng and Sacchi, 2013), curvelet inversion (Lin and Herrmann, 2009; Wason et al., 2011)
and projected gradient optimization algorithms (Abma et al., 2010).

The second category of simultaneous seismic source separation methods contain al-
gorithms that use denoising techniques to remove source interferences from the pseudo-
deblended data (Kim et al., 2009; Huo et al., 2012; Trad et al., 2012; Ibrahim and Sacchi,
2014c,b,a; Sacchi, 2014). These denoising methods utilize the incoherency of sources in
common receiver gathers. This incoherency results from random time delays (also known
as dithering) in the firing times of the sources (Moore et al., 2008). For example, the front
of the data cube in Figure ?? shows a group of seismic traces that belong to one source
location which is called common source gather. The source interferences have coherent
structure in common source gathers and it is difficult to distinguish source interferences
from seismic reflections. However, the cube side in Figure ?? shows seismic traces that
belong to one receiver location (common receiver gather) where the source interferences
are incoherent events while reflections are coherent events. Therefore, source interferences
can be removed by denoising common receiver gathers of simultaneous seismic source data.
Sparsity of the seismic data in a transform domain such as Radon (Sacchi and Ulrych,
1995a), Fourier (Sacchi et al., 1998) or Curvelet (Herrmann and Hennenfent, 2008) can
be used for estimating common receiver gathers that are free from interference noise. Un-
like the inversion approach, the denoising approach avoids the repetitive computation of
the blending/pseudo-deblending operators associated with the minimization of a cost func-
tion. Therefore, the denoising methods can separate the simultaneous seismic source data
faster than the inversion methods. Recently, Ibrahim and Sacchi (2014c) introduced a si-
multaneous seismic source separation method that uses a robust Apex Shifted Hyperbolic
Radon Transform (ASHRT) denoising. The ASHRT transform was used because its basis
functions closely resemble the seismic reflections in common receiver gathers. However,
the ASHRT transform has a high computational cost since it models the data by summa-
tion over three parameters (zero offset time, apex location and velocity). To speed up the
ASHRT computation for seismic data interpolation, Trad (2003) proposed using the Stolt
migration operator. Stolt (1978) introduced this operator to compute the subsurface image
of a constant velocity media by mapping the data in Fourier domain and using Fast Fourier
Transforms (FFT). In this work, we use the Stolt-based transform to focus the seismic re-
flection data into a sparse collection of coefficients in the transform domain. Therefore, this
fast Stolt-based transform can be used to remove seismic source interference and achieve
faster simultaneous seismic source separation.
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THEORY

Robust Radon Transform

Denoising common receiver gathers requires a transform that focuses reflections while at-
tenuating the incoherent source interferences. Since seismic reflections are approximated by
hyperbolas, a transform that uses hyperbolic basis functions should be suitable for denois-
ing seismic data. Transforms that use hyperbolic basis are variants of the classical Radon
transform (Radon, 1917; Beylkin, 1987). The most common of these transforms is the
hyperbolic Radon transform used for processing common midpoint gathers where all the
apexes of seismic reflection hyperbolas are usually located at zero offset. However, seismic
reflection hyperbolas in common receiver gathers are not centred at zero offset for dipping
subsurface layers (Trad, 2003; Ibrahim and Sacchi, 2014c).

Denoising using ASHRT assumes that a seismic reflection data can be modelled using
a superposition of apex shifted hyperbolas as follows

d(t, h) =

amax∑
amin

vmax∑
vmin

m(τ =

√
t2 − (h− a)2

v2
, v, a) (3)

where d(t, h) is the modelled seismic data, m(τ, v, a) is the ASHRT model, t is time, h is
receiver offset and v is velocity. The parameters τ and a represent the reflection hyperbola
apex time (zero offset time) and apex location, respectively. The ASHRT model can be
estimated using the adjoint operation as follows

m̃(τ, v, a) =

hmax∑
hmin

d(t =

√
τ2 +

(h− a)2

v2
, h) (4)

where m̃(τ, v, a) is the estimated ASHRT model. These transforms can be rewritten in the
operator format as

d = Lm, (5)

m̃ = LTd, (6)

where d, m and m̃ represent the data, model and estimated model in vector form, respec-
tively. The forward and adjoint ASHRT operators are represented by L and LT , respec-
tively. The estimated model m̃ and the original model m are not the same because Radon
transforms are not orthogonal transformations (LLT 6= 1). Furthermore, seismic reflection
data usually have significant noise, missing traces and limited spatial range for recorded
traces. All these factors contribute to lowering the resolution of the model estimated by the
adjoint Radon operator. Therefore, Thorson and Claerbout (1985) suggested casting the
problem of Radon model estimation as an inversion problem. This requires a regularization
(penalty) term in the cost function that is used to estimate the Radon model. The general
form of the cost function that one minimizes to obtain the Radon coefficients is given by
(Trad et al., 2003)

J =‖d− Lm‖pp + µ‖m‖qq (7)

=‖r‖pp + µ‖m‖qq
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where µ is the tradeoff parameter that controls the relative weight between the model
regularization term ‖m‖qq and the misfit between the observed and modelled data term
‖r‖pp. The parameters p and q in the cost function represent the norms used to measure the
misfit term and the model regularization term, respectively. For the model regularization
term, the `2 norm (q = 2) is the conventional option. The advantage of using the `2 norm
is that the cost function can be easily minimized by solving a linear system of equations.
However, an `2 regularization results in smooth (low resolution) Radon models (Sacchi
and Ulrych, 1995a,b). Since we choose Radon basis functions that closely match reflection
hyperbolas, the ideal solution of Radon coefficients should be sparse. In regards to the misfit
term in equation 7, the `2 norm (p = 2) is the conventional option. The `2 norm misfit
is suitable when the misfit between the observed and modelled data follows a Gaussian
distribution (Huber, 2011). However, simultaneous seismic source data usually have high
amplitude reflections of one seismic source overlapping with low amplitude reflections of
another seismic source.

(a) (b)

2

3

4

T
im

e 
(s

)

2000 2500 3000

Sources location (ft)

2

3

4

T
im

e 
(s

)
2000 2500 3000

Sources location (ft)

Figure 2: A close up of seismic common receiver gather of Gulf of Mexico seismic data
showing the strong interference noise. (a) Conventional acquisition. (b) Simultaneous
seismic sources acquisition.

Figure 2 shows a close up of a common receiver gather from Gulf of Mexico field data
where such high amplitude interferences almost obscure the low amplitude reflections. The
large outliers due to this strong interferences will degrade the accuracy of the models es-
timated using an `2 norm misfit. In order to minimize the influence of outliers, Claerbout
and Muir (1973) suggested replacing the conventional `2 norm misfit with an `1 norm misfit
to make the inversion robust with respect to erratic noise (robust inversion) (Guitton and
Symes, 2003; Ji, 2006, 2012). Ibrahim and Sacchi (2014c,b,a) proposed using this robust
inversion technique for the simultaneous seismic source separation problem.

Equation (7) is minimized using the Iteratively Re-weighted Least Squares (IRLS) al-
gorithm (Daubechies et al., 2010) for non-quadratic norms (p and/or q 6= 2) where

‖x‖pp =
∑
i

|xi||xi|p−2|xi| = ‖Wx x‖22 (8)

where x is the vector to measure its norm (such as r and m) and Wx is the weighting
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matrix defined as
[Wx]ii = |xi|(p−2)/2 0 < p ≤ 2 (9)

Since this weighting matrix cannot be computed for xi = 0, we redefine the weighting
matrix for the model term m as follows

[Wm]ii =


1√
|mi|2−p

if mi > εm,

1√
ε2−pm

if mi ≤ εm .
(10)

Similarly, we redefine the weighting matrix for the misfit term as follows

[Wr]ii =


1√
|ri|2−q

if ri > εr,

1√
ε2−qr

if ri ≤ εr .
(11)

Both εr and εm represent small numbers to avoid the singularity at r = 0 and m = 0.
Holland and Welsch (1977) estimated the optimal value of εr as

εr = br
MAD(r)

0.6745
, (12)

where MAD indicates the median absolute deviation of the residuals r. The parameter br
is a tuning parameter with recommended value br = 1.345. The parameter εm is computed
via the following expression

εm = bm
max(|m|)

100

where bm is a tuning parameter that is related to the level of model sparsity (Guitton and
Symes, 2003; Ji, 2006, 2012). We have converted the non-quadratic cost function into a
sequence of quadratic minimization problems for fixed weighting matrices Wr and Wm.
Equation 7 can be rewritten in its standard form (Hansen, 1998) by a simple change of
variable u = Wmm

J = ‖Wr [L(Wm)−1u− d]‖22 + µ‖u‖22. (13)

This new cost function is minimized by the method of conjugate gradients (Scales, 1987)
followed by the updating of the weighting matrices Wr and Wm. We follow the method
described by Trad et al. (2003) where the regularization term in equation (13) is omitted
by setting µ = 0. In this case, the number of conjugate gradient iterations plays the role of
a trade-off parameter (Hansen, 1998). In our implementation, the IRLS internal conjugate
gradient iterations are stopped when the misfit change between iterations is less than 0.01%
(Ibrahim and Sacchi, 2014c).

Stolt-based Transform

The Stolt migration method is considered to be the fastest migration algorithm (Margrave,
2001). This operator performs migration by mapping data in the ω − k domain to vertical
wavenumber kz for a constant subsurface velocity. Despite of not being widely used any
more in seismic imaging due to its constant velocity limitation, the low computational cost
of the Stolt operator made it a useful tool in other fields such as medical imaging (Cafforio
et al., 1991; Bamler, 1992; Garcia et al., 2013) and synthetic aperture radar imaging (Li
et al., 2014; Wu et al., 2014).
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Using the exploding reflector principle (Claerbout, 1985) and a constant velocity as-
sumption, the Stolt operator can be used to estimate the subsurface model from zero offset
data. This estimated model m̃(τ, v, x) is related to the data recorded at the surface d(t, x)
by the following relationship (Yilmaz, 2001)

m̃(τ, v, x) =

∫ ∫
d(ω, kx) exp[−ikxx− iωτ (v)τ ] dω dkx (14)

where x represents the horizontal axis and ωτ is the Fourier dual of the apex time τ which
is a function of the velocity through the modified dispersion relationship (Yilmaz, 2001)

ωτ =
√
ω2 − (vkx)2 (15)

Equation 14 can be rewritten by changing the integration variable from ω to ωτ

m̃(τ, v, x) =

∫ ∫
C d(ω =

√
ω2
τ + (vkx)2, kx)

× exp [−ikxx− iωτ (v)τ ] dωτ dkx (16)

where C = ωτ/ω is a scaling factor resulting from the change of variables. Figure 3 shows
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Figure 3: The steps of computing Stolt model. (a) Input data. (b) Data in ω − kx domain
after FFT. (c) Data after mapping to ωτ − kx domain. (d) Stolt model in time domain.

the steps required to image with the Stolt operator. Similarly, the forward Stolt modeling
operator can be written as

d(t, x) =

∫ ∫ ∫
m(ωτ =

√
ω2 − (vkx)2, v, kx)

× exp[ikxx+ iωt] dω dkx dv (17)

The forward and adjoint transforms in equations (16) and (17) can be written in operator
form as follows

LT = FFT−1ωτ ,kx MT
ω,v,kx FFTt,x ST , (18)
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L = S FFT−1ω,kx Mωτ ,v,kx FFTτ,x, (19)

where, FFT is the Fast Fourier Transform, Mωτ ,v,kx is the Stolt mapping operator and S is
a summation operator and its adjoint is a spraying operator (Claerbout, 1985). Although
the Stolt operator is derived with a constant velocity assumption, it can be used to construct
an equivalent of the ASHRT model with multiple velocities. Since each image represents one
plane inside the ASHRT model cube at constant velocity, the ASHRT model is collection of
all these images. Therefore, the adjoint Stolt operator in equation 18 includes a spreading
operator ST that computes several images with different velocities from the same data while
the forward Stolt operator in equation 19 uses a summation operator to model the data.

The classical ASHRT operator has a computational cost of O(na×nτ ×nv×nx), where
na, nτ , nv and nx are the number of apex locations, zero offset times, velocities and offsets,
respectively. Assuming that we scan for all possible apex locations and times, then na = nx
and nτ = nt. Therefore, the ASHRT operator cost is O(n2x×nt×nv). On the other hand, the
Stolt based ASHRT (without FFT zero padding) operator has a cost that is of the 2D FFT
of the data with size nt × nx followed by ω − k mapping and inverse 2D FFT of the model
with size nt × nv × nx. Therefore, the total computational cost of an ASHRT implemented
via the Stlot operator is O([nt log2(nt)+nx log2(nx)][nv+1]+nv×nkx×nω), where nkx and
nω are the number of horizontal wavenumbers and temporal frequencies, respectively. In the
previous analysis, we have assumed that both the data and the model are regularly sampled
in space and apex, respectively. The latter permits us to adopt the computationally efficient
FFT operators. However, if the data and/or the model are not regularly sampled, the FFT
operator will be replaced by the less efficient discrete Fourier transform (DFT). The cost
of the ω − k mapping is proportional to nv × nkx × nω and we stress that the latter is an
upper limit, since in practice we only scan for a limited group of positive frequencies and
use the Fourier domain symmetries to compute the negative frequencies. Figure 4a shows
the computational times of the conventional ASHRT and the Stolt-based ASHRT with and
without zero padding. Zero padding is required to reduce artifacts associated with ω − k
interpolation and improve Stolt mapping precision. Figure 4b shows the improvement in
the computational time by using the Stolt-based ASHRT operator with and without zero
padding compared to the conventional ASHRT. It is clear that using the Stolt operator can
lead to significant savings in computational cost. Therefore, this operator can be useful in
early stages of processing for quality control and velocity analysis. This is very important
for processing large data sets that contain large number of common receiver gathers.

EXAMPLES

Synthetic Example

We initially tested simultaneous seismic source separation using numerically blended simple
synthetic data example. The synthetic data was modeled using the Stolt-based forward
ASHRT operator. It represents twelve reflections with velocities range from 4000 to 5000
ft/s and different apex shifts. We used the forward operator to model the synthetic data in
order to test the ideal situation where the data are composed of apex shifted hyperbolas.
The data are numerically blended with a 50% reduction in total acquisition time compared
to conventional acquisition. The firing times of both the conventional and blended sources
are shown in Figure 5. The blending scheme simulates a single source moving in the same
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Figure 5: Source firing times for numerically blended synthetic data example.

direction while firing with small random perturbations to the time interval between shots.
The receivers are assumed to be at a fixed location similar to the case of ocean bottom
nodes (OBN) or ocean bottom cables (OBC) acquisition. A pseudo-deblended common
receiver gather is shown in Figure 6a, the data recovered by forward modeling the estimated
ASHRT model are shown in Figure 6b and the error in the recovered data is shown in Figure
6c. Four velocity panels of the estimated ASHRT model are shown in Figure 7. Each of
these panels represents a constant velocity cross-section of the ASHRT model cube. These
panels shows that hyperbolic reflections with different apex locations can be focused using
the ASHRT transform. After eliminating interferences from all common receiver gathers,
the deblended data cube is recovered as shown in Figure 8. The quality of deblending is
measured in dB using the following formula

Q = 10 log10

(
‖doriginal‖22

‖doriginal − drecovered‖22

)
. (20)

where is doriginal is the original unblended data and drecovered is the deblended data recov-
ered from the ASHRT models estimated by inversion. If Q = 10 dB, the `2 norm of the
original data is 10 times larger than the error of the deblended data. Generally, values of
Q above 10 dB are considered acceptable deblending results. The Q value for the synthetic
example is 22.01 dB.

Field Data Example

We tested simultaneous source separation with a numerically blended marine data example
from the Gulf of Mexico. Similar to the synthetic example, the data are numerically blended
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Figure 6: Synthetic data common receiver gather. (a) Pseudo-deblended gather. (b) Data
recovered by forward modeling the ASHRT model inverted with parameters p = 1, q = 1.
(c) Error in recovered data.
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Figure 8: Synthetic data cube. (a) Pseudo-deblended data. (b) Deblended data cube. (c)
Difference between the deblended and the original data cubes.

with a 50% reduction in the total acquisition time. The source firing times versus source
location for the first thirty sources are displayed in Figure 9. A pseudo-deblended common
receiver gather is shown in Figure 10a, the data recovered by forward modeling the estimated
ASHRT model is shown in Figure 10b and the error in the recovered data is shown in Figure
10c. The Q value for the recovered common receiver gather is 12.63 dB. Four velocity
panels of the estimated model are shown in Figure 11. After eliminating interferences from
all common receiver gathers, the deblended data cube is retrieved and is shown in Figure
12. For the field data example, imposing a strict sparsity constraint is not a simple task.
The reflection hyperbola generated by the Stolt operator do not exactly match the reflection
hyperbolas in the data. This mismatch results from the approximated and coarse velocities
that are used in the transform and by the presence of amplitude versus offset (AVO) changes
which are not included in the ASHRT operator. Therefore, the ASHRT transform does not
focus reflections to sharp points and the estimated ASHRT model is not as sparse as the one
obtained when using simple synthetic examples (Ibrahim and Sacchi, 2014c). Additionally,
field data could suffer from missing near offset, irregular sampling and feathering which will
reduce the operator ability to focus seismic reflections.

CONCLUSION

We have implemented a fast Stolt-based transform that is similar to the Apex shifted
Hyperbolic Radon Transform (ASHRT) to remove source interferences in common receiver
gathers of simultaneous seismic sources data. We showed that the Stolt-based transform
can remove source interferences in common receiver gathers at a computational cost that
is substantially below the computational cost of the classical ASHRT and with quality
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Figure 9: Source firing times for numerically blended field data (only the first thirty sources
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Figure 12: Field data cube. (a) Pseudo-deblended. (b) Deblended data cube. (c) Difference
between the deblended and the original data cubes.
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comparable to the classical ASHRT. Since the Stolt operator is implemented in the ω − k
domain, it can be used in combination with the non-uniform Fourier transform to interpolate
missing traces. Future work entails generalizing the transform to the 3D shot distribution.
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