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ABSTRACT

Singular spectrum analysis (SSA) or Cadzow reduced-rank
filtering is an efficient method for random noise attenuation.
SSA starts by embedding the seismic data into a Hankel matrix.
Rank reduction of this Hankel matrix followed by antidiagonal
averaging is utilized to estimate an enhanced seismic signal.
Rank reduction is often implemented via the singular value de-
composition (SVD). The SVD is a nonrobust matrix factoriza-
tion technique that leads to suboptimal results when the seismic
data are contaminated by erratic noise. The term erratic noise
designates non-Gaussian noise that consists of large isolated
events with known or unknown distribution. We adopted a ro-
bust low-rank factorization that permitted use of the SSA filter
in situations in which the data were contaminated by erratic
noise. In our robust SSA method, we replaced the quadratic er-
ror criterion function that yielded the truncated SVD solution by

a bisquare function. The Hankel matrix was then approximated
by the product of two lower dimensional factor matrices. The
iteratively reweighed least-squares method was used to approx-
imately solve for the optimal robust factorization. Our algorithm
was tested with synthetic and real data. In our synthetic exam-
ples, the data were contaminated with band-limited Gaussian
noise and erratic noise. Then, denoising was carried out by
means of f-x deconvolution, the classical SSA method, and
the proposed robust SSA method. The f-x deconvolution and
the classical SSA method failed to properly eliminate the noise
and to preserve the desired signal. On the other hand, the robust
SSA method was found to be immune to erratic noise and was
able to preserve the desired signal. We also tested the robust
SSA method with a data set from the Western Canadian Sedi-
mentary Basin. The results with this data set revealed improved
denoising performance in portions of data contaminated with
erratic noise.

INTRODUCTION

The improvement of the signal-to-noise ratio (S/N) of seismic
records is an important topic in seismic data processing. Incoherent
noise attenuation can be carried out via prediction error filters in the
f-x (Canales, 1984) and t-x (Abma and Claerbout, 1995) domains.
Incoherent noise attenuation can also be implemented via rank
reduction methods. Rank reduction methods can be grouped into
different categories. For instance, eigenimage filtering (Ulrych et al.,
1988), similar to filtering via the Karhunen-Loève transform (Jones
and Levy, 1987), can operate directly on the seismic data in the t-x
or f-x-y domain (Trickett, 2003). Recently, the singular spectrum
analysis (SSA) method (Sacchi, 2009; Oropeza and Sacchi, 2011),
also known as Cadzow filtering (Trickett, 2008; Trickett and Bur-
roughs, 2009), was introduced to attenuate incoherent noise and for
seismic data reconstruction (Oropeza and Sacchi, 2011; Gao et al.,
2013). It is also important to note that reduced-rank filtering based

on SSA has been also used to suppress coherent noise (Nagara-
jappa, 2012; Chiu, 2013).
SSA operates in the frequency-space domain (f-x) by embedding

spatial data at a given monochromatic temporal frequency into a
Hankel matrix. Then, the ideal Hankel matrix that one would have
formed in the absence of noise can be estimated from the low-rank
approximation of the Hankel matrix of the noisy observations (Or-
opeza and Sacchi, 2011). SSA reconstruction can also be applied to
multidimensional seismic data by forming multilevel Hankel matri-
ces. In this case, rank reduction of large multilevel Hankel matrices
is carried out via Lanczos bidiagonalization (Gao et al., 2013) or via
fast randomized singular value decomposition (SVD) (Oropeza and
Sacchi, 2011).
Our paper proposes a robust SSA method based on robust matrix

rank reduction for removing Gaussian and erratic noise (Chen and
Sacchi, 2013). The rank reduction in the newly proposed algorithm
is implemented via robust low-rank matrix factorization (Gabriel
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and Zamir, 1979; De la Torre and Black, 2003; Maronna and Yohai,
2008). The Hankel matrix of the data is decomposed into the prod-
uct of two low-dimensional factor matrices. The bisquare function
is used to obtain a robust metric to approximate the Hankel matrix
by one of lower rank. The iteratively reweighted least-squares
(IRLS) method (De la Torre and Black, 2003) is used to factorize
the original Hankel matrix in terms of the two low-rank matrices.
Finally, it is important to mention that our algorithm comple-

ments the work of Trickett et al. (2012) on robust matrix rank re-
duction for denoising. However, Trickett et al. (2012) adopt an
imputation algorithm to downweight erratic errors that adopts
the nonrobust SVD matrix factorization. Our method, on the other
hand, estimates a robust low-rank matrix factorization that replaces
the nonrobust SVD solution.

THEORY

Singular spectrum analysis

This section provides a short review of the basic idea of the SSA
method, also called Cadzow filtering. Details pertaining to the im-
plementation of SSA for seismic noise attenuation and seismic data
reconstruction can be found in Oropeza and Sacchi (2011). We dis-
cuss the 2D (t-x) implementation of SSA. However, we stress that
SSA for 3D and 5D volumes has been extensively discussed in Or-
opeza and Sacchi (2011) and Gao et al. (2013), respectively.
Seismic data in a small window can be represented in the fre-

quency-space domain via the superposition of plane waves

DjðωÞ ¼
XK
k¼1

AkðωÞe−iωPkðj−1ÞΔx; (1)

where i ¼ ffiffiffiffiffiffi
−1

p
, j ¼ 1; 2; : : : ; N is the trace index in the spatial

axis and ω represents temporal frequency. In this equation, we as-
sume that the data are composed of K linear events with distinct ray
parameters Pk. Here, AkðωÞ denotes the complex amplitude of
the kth plane wave and Δx indicates the spatial interval between
seismograms. The SSA method constructs a trajectory matrix by
embedding signal at one frequency DðωÞ ¼ ðD1ðωÞ; D2ðωÞ; · · · ;
DNðωÞÞT in the following Hankel matrix:

MðωÞ ¼ H½DðωÞ�

¼

0
BBB@

D1ðωÞ D2ðωÞ · · · DN−Lþ1ðωÞ
D2ðωÞ D3ðωÞ · · · DN−Lþ2ðωÞ

..

. ..
. . .

. ..
.

DLðωÞ DLþ1ðωÞ · · · DNðωÞ

1
CCCA; (2)

where H is used to indicate the Hankel operator. For convenience,
we choose L ¼ bN

2
c þ 1 to make the Hankel matrix approximately

square (Trickett, 2008; Oropeza and Sacchi, 2011), MðωÞ ∈
CL×ðN−Lþ1Þ. We will omit the symbol ω and understand that the
analysis is carried out for all frequencies. For a superposition of
K plane waves, one can show that rankðMÞ ¼ K (Hua, 1992; Yang
and Hua, 1996). Additive noise in D will increase the rank of matrix
M. One way of attenuating the additive noise is via rank reduction.
The SSA filter can be represented via the following expression:

D̂ ¼ A½RK½H½D���; (3)

where A is the antidiagonal averaging operator, RK ½M� is the rank
reduction operator that approximates M by a rank-K matrix, and H
is the Hankel operator. The operator A transforms back a Hankel
form into a vector by averaging across antidiagonals. It is important
to stress that a similar analysis is valid for multidimensional signals
in which one adopts block Hankel matrices and block antidiagonal
averaging operators (Gao et al., 2013). The rank reduction step
(RK) can be implemented via the truncated SVD (Sacchi, 2009),
the randomized SVD (Oropeza and Sacchi, 2011), or by a fast al-
gorithm that adopts the Lanczos bidiagonalization method and
highly efficient matrix-vector multiplications implemented via
the fast Fourier transform (Gao et al., 2013).

The l2 low-rank approximation

The rank K approximation of the matrixM can be found by solv-
ing the following problem

MK ¼ RK½M� ¼ argmin
M̂

kM − M̂k2F

subject to rankðM̂Þ ¼ K;
(4)

where k · kF is the Frobenius norm, kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m
i¼1

P
n
j¼1 jxijj2

q
of

the matrix X ∈ Cm×n. The problem in expression 4 has an unique
local minimum that is global (Srebro and Jaakkola, 2003). This sol-
ution has analytic expression and is given by truncated singular
value decomposition (TSVD)

MK ¼ RK½M� ¼ UKΣKVH
K ¼ UKUH

KM; (5)

whereUK ∈ Cm×K andVK ∈ Cn×K are matrices containing singular
vectors associated to the K-largest singular values σq; q ¼ 1 : : : K.
These singular values are also the diagonal elements of the matrix
ΣK ∈ RK×K . The latter is also known as the Eckart-Young theorem
(Eckart and Young, 1936). Even though the solution of problem 4 is
simple, the quadratic misfit functional makes the solution quite sen-
sitive to non-Gaussian noise (De la Torre and Black, 2003; Cabral
et al., 2013; Meng and De la Torre, 2013). This drawback could
limit the application of the SSA method in situations in which
the data contain outliers. In this article, we investigate a robust mea-
sure of distance between the matricesM and M̂ and an algorithm to
estimate a low-rank approximation under the new distance.

Robust low-rank approximation

We replace the l2 distance between two matrices by a norm k:kρ
(the Frobenius norm in the preceding section) and present a new
problem similar to expression 4 (De la Torre and Black, 2003).
In other words, we would like to find a matrix M̂ of rank K that
minimizes kM − M̂kρ, expressed as

MK ¼ RK½M� ¼ argmin
M̂

kM − M̂kρ

subject to rankðM̂Þ ¼ K;
(6)

where kM − M̂kρ ¼
P

m
i¼1

P
n
j¼1 ρ

�
mij−m̂ij

σ

�
. Here, mij indicates

one element of M and σ is a scale parameter for the function ρ.
We use the same scale parameter σ for all the elements in the
residual matrix because the noise in D is assumed to be independent
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and identically distributed. When ρ is a nonquadratic function, the
minimization of expression 6 is a nonconvex optimization problem.
There is no closed-form solution for this problem. It is only when
we adopt an l2 norm that the solution has a closed-form that is
given by the TSVD. We have used synthetic simulations to try dif-
ferent distances for robust estimation and concluded that our best
results were obtained with Tukey’s bisquare function (Beaton and
Tukey, 1974). Tukey’s bisquare function is given by the following
expression

ρðxÞ ¼
8<
:

1
6
α2
n
1 −

h
1 −

�
jxj
α

�
2
i
3
o

jxj ≤ α
1
6
α2 jxj > α

; (7)

where α is a tunable parameter. In Figure 1, we provide a compari-
son of Tukey’s bisquare functional ρ versus the l2 norm used by the
classical rank reduction method that yields the TSVD solution. For
the l2 norm (in our case, the Frobenious norm), ρ is given by
ρðxÞ ¼ 1

2
jxj2. In both cases, x is a normalized residual, x ¼ r∕σ,

where σ is the scale parameter.
The low-rank approximation problem (equation 6) can be solved

by representing the unknown matrix via a factorization M̂ ¼ UVH ,
where U ∈ Cm×K and V ∈ Cn×K (Gabriel and Zamir, 1979) and
solving

ðUK;VKÞ ¼ argmin
U;V

EðU;VÞ

¼ argmin
U;V

kM − UVHkρ: (8)

Equation 8 is a bilinear regression problem with two unknowns: U
and V. This approach of low-rank matrix decomposition is referred
to as bilinear factorization (Cabral et al., 2013). The basic idea
behind the selection of the bisquare norm ρ (or of any robust norm)
is that less weight is assigned to large gross errors, and therefore, the
final solution is not severely affected by gross errors (Huber, 1981;
Hampel et al., 1986; De la Torre and Black, 2003).

Minimization of E�U;V� via the iteratively reweighed
least-squares method

We now describe a method to solve equation 8. In other words,
one needs to minimize the cost function

EðU;VÞ ¼ kM − UVHkρ

¼
Xm
i¼1

Xn
j¼1

ρ

�
mij −

P
K
q¼1 uiqv

�
jq

σ

�

¼
Xm
i¼1

Xn
j¼1

ρ

�
rij
σ

�
; (9)

where rij are the residuals. By taking the derivative of scalar
function E in equation 9 with respect to U� and V�, respectively
(details are given in Appendix A), we obtain the following
equations

Xn
j¼1

w

�
raj
σ

�
rajvjb ¼ 0; a¼ 1; : : : ;m; b¼ 1; : : : ;K; (10)

Xm
i¼1

w
�ric
σ

�
r�icuid ¼ 0; c¼ 1; : : : ;n; d¼ 1; : : : ;K; (11)

where the weight function is given by wðxÞ ¼ ∂ρðxÞ
∂jxj

1
jxj (x ¼ r

σ). In
the particular case of the bisquare function (equation 7), the weight
function is given by

wðxÞ ¼
8<
:

h
1 −

�
jxj
α

�
2
i
2 jxj ≤ α

0 jxj > α
: (12)

The selection of α and σ is discussed in the “Parameter selection
and initialization” section.
Note that equations 10 and 11 are a set of nonlinear equations, the

weights w depend on the model parameters, and the model param-
eters conversely depend on the weights. This nonlinear problem can
be approximately solved by the IRLS approach (Holland and
Welsch, 1977) in which the weights and the model parameters
are alternately updated. In each IRLS iteration, for a given σ, the
weights w can be calculated from the residuals rij from the previous
IRLS iteration via equation 12. With this in mind, for an iteration of
IRLS, the cost function (equation 9) can be transformed into a
weighted least-squares form and expressed via the following ex-
pression

EWðU;VÞ ¼ kW1
2⊙ðM − UVHÞk2F

¼
Xm
i¼1

Xn
j¼1

wij

����mij −
XK
q¼1

uiqv�jq

����
2

; (13)

−6 −4 −2 0 2 4 6

0

2

4

6

8

10

12

14

16

18

− αα
x

ρ 
(x

)

Figure 1. The dashed line is the quadratic function 1
2
jxj2. The solid

line is Tukey’s bisquare robust metric (equation 7) adopted in this
article for robust matrix factorization.
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where the superscript 1
2
indicates an elementwise square root of the

matrix. The matrix W ∈ Rþm×n is the matrix of weights calculated
from the residuals of the previous IRLS iteration. The symbol ⊙
represents the Hadamard product (elementwise product). In each
IRLS iteration, the model parameters U and V can be updated with
fixed W. The weighted cost function EWðU;VÞ is a function of U
and V. It can be solved by the alternating minimization method
(Gabriel and Zamir, 1979; Roweis, 1998; Tipping and Bishop,
1999; Niesen et al., 2009). In the alternating minimization method,
when U is fixed, equation 13 is a linear regression problem in V.
Similarly, when V is fixed, equation 13 is a linear regression prob-
lem in U. The alternating minimization algorithm can be expressed
by alternately minimizing

EWðVÞ ¼ kW1
2⊙ðM − UVHÞk2F

¼
Xn
j¼1

ðmj − UvjÞHWjðmj − UvjÞ (14)

EWðUÞ ¼ kW1
2⊙ðM − UVHÞk2F

¼
Xm
i¼1

ðmi − VuiÞHWiðmi − VuiÞ; (15)

where

M ¼ ðm1 m2 · · · mn Þ ¼ ðm1 m2 · · · mm ÞH:
(16)

Note that all of the vectors are column vectors. For instance, mj is
the jth column ofM. Similarly,mi is the conjugate transpose of the
ith row of M. The latter leads to the following representation of
factors U and V

U ¼ ð u1 u2 · · · uK Þ ¼ ð u1 u2 · · · um ÞH (17)

V ¼ ð v1 v2 · · · vK Þ ¼ ð v1 v2 · · · vn ÞH: (18)

The weights are given by the diagonal matrix Wj ¼ diagfwjg ∈
Rþn×n that contains the jth column ofW. Similarly, the matrixWi ¼
diagfwig ∈ Rþm×m is the diagonal weight matrix containing the ith
rowofW. Equations 14 and 15 canbebrokenup into smallerweighted
least-squaresproblems that alternately update rowsofU and rowsofV.
The alternating minimization algorithm in each IRLS iteration can be
reexpressed as

for i ¼ 1; 2.::; m min
ui

ðmi − VuiÞHWiðmi − VuiÞ (19)

for j ¼ 1; 2; :::; n min
vj

ðmj − UvjÞHWjðmj − UvjÞ:
(20)

The QR factorization (Golub and Van Loan, 1996) is used to solve the
weighted least-squaresminimization problems in equations 19 and 20.
The order of operations of the robust low-rank factorization is given by
OðmnK2NaNirlsÞ,whereNa andNirls arethetotalnumberofiterations

of the alternatingminimization andof the IRLS, respectively. The non-
robust solution via the truncated SVD needs Oðmn2Þ operations.

Iterative algorithm for robust low-rank matrix
factorization

The robust low-rank approximation algorithm can be summa-
rized as follows:

1) Start with initial factors U and V.
2) Select parameter α and fix it for the rest of the iterations.
3) Calculate the residual matrix R ¼ M − UVH.
4) Update the scale parameter σ.
5) Calculate the weight matrix W using equation 12.
6) Update the factor matrix U by solving problem 19 via the QR

factorization.
7) Update the factor matrix V by solving problem 20 via the QR

factorization.
8) Iterate steps (6)–(7) until convergence or a maximum iteration

number is reached (alternating minimization).
9) Iterate steps (3)–(8) until convergence or a maximum iteration

number is reached (IRLS).

Last, we point out that our algorithm requires two stopping cri-
teria. One for the number of IRLS iterations and one for the number
of updates of the alternating minimization scheme that is needed to
estimate the factor matrices U and V. In each case, we monitor the
reduction of the cost function between consecutive iterations and
stop either when the reduction has become smaller than a tolerance
value or a maximum number of iterations is reached. In general, we
have found that a practical strategy entails setting large tolerance
values and a small number of maximum iterations for the IRLS
and the alternating minimization steps. The latter gives us control
on the expected computational cost of the whole denoising process.
Our tests with synthetic data indicate that about 10 IRLS iterations
and five updates of the factors U and V (alternating minimization)
are sufficient to consistently achieve acceptable results. We use
these parameters for all our synthetic and real data tests.

Parameter selection and initialization

We adopt the normalized median absolute deviation (MAD) as
the robust scale parameter for the bisquare function (Holland
and Welsch, 1977)

σ ¼ 1.4826 MAD ¼ 1.4826 medianjr −medianjrjj; (21)

where r is the residual vector obtained by reshaping the residual
matrix R from the previous IRLS iteration. Holland and Welsch
(1977) recommend to fix the robust scale σ during the iterations
until the IRLS converges. In our paper, σ is updated in each iteration
using equation 21. This scheme is stable according to our simula-
tion tests. We also follow Holland and Welsch (1977) and Maronna
et al. (2006) to choose the tuning parameter α. The value α in Tu-
key’s bisquare function controls the so-called asymptotic efficiency
of the M-estimate (in our case, the bisquare estimate). The asymp-
totic efficiency of an M-estimate is the ratio of the asymptotic vari-
ance of the maximum likelihood estimate and the asymptotic
variance of the M-estimate. It reflects how efficient the M-estimate
is for Gaussian data (Maronna et al., 2006). The value of the product
ασ actually acts as the threshold to distinguish outliers and inliers.
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Smaller values of ασ will add penalization to the outliers resulting in
a more robust estimation.
One can adopt the least-squares solution obtained via the TSVD

of the data as initial solution for the factor matrices. This will work
if a small number of low-amplitude outliers are presented in the
data. In general, starting with the least-squares solution can lead
to solutions that are skewed by large outliers. The factor matrices
U and V were initialized with the TSVD solution of an m × n ran-
dom matrix to circumvent the aforementioned problem (Chen et al.,
2008; Unkel and Trendafilov, 2010). This initialization strategy is
used throughout this paper.

EXAMPLES

We present synthetic examples and one field data example to il-
lustrate the proposed algorithm. We compare the performance of the
robust SSA, the classical SSA method (Oropeza and Sacchi, 2011),
and f-x deconvolution (Canales, 1984) for data that contain erratic
and Gaussian noise.

Synthetic example

Figure 2b shows a 2D synthetic t-x data set. The data are com-
posed of 40 traces with a total time of 1.2 s and a sampling interval
of 0.004 s. The data are contaminated with band-limited (in time)
Gaussian noise with a S/N equal to three and isolated noisy traces
(erratic noise). The S/N is defined as the ratio between the maxi-
mum amplitude of the clean data and the standard deviation of the
band-limited Gaussian noise. The amplitude of the two erratic traces

are two and three times of the maximum amplitude of the uncor-
rupted data. The wiggles have been clipped to allow for the visu-
alization of the data in the presence of the large amplitude erratic
noisy signals. The processing frequency band ranges from 1 to
40 Hz. We select the size of the subspace of the reconstructed data
in SSA and for the proposed robust SSA methods to K ¼ 3. We
choose the number of external iterations (for updating weights)
equal to 10 and the number of internal iterations (for alternating
minimization) equal to five. The tuning constant α for the bisquare
function is set to 4.685. The f-x deconvolution method was run
with a prediction filter of length 10 traces and a trade-off parameter
of 0.001. The results of f-x deconvolution, SSA, and robust SSA
are compared. Figure 2a is the noise-free data, Figure 2b is the data
contaminated with noise, and Figure 2c is the noise term. Figure 3a
shows the result of f-x deconvolution. Large-amplitude noise leaks
over several traces in the output section. A shorter prediction filter
can remove more noise, but it will also increase the distortion of the
filtered signal. We tested f-x deconvolution with a variety of param-
eters, and we have never managed to produce fully satisfying results
when the data are contaminated by high-amplitude erratic noise.
Figure 3b shows the result of the classical nonrobust SSA imple-
mented via the TSVD. Again, we observe that the erratic noise has
not been properly removed and noticeable artifacts are present in the
output gather. The output of the robust SSA method is shown in
Figure 3c. In this case, the Gaussian and erratic noise were success-
fully suppressed. By examining the difference sections (differences
between original input data and filtered results) of the three methods
(Figure 4), one observes an important amount of energy leaking in
the difference section Figure 4a. However, the proposed robust SSA
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method can preserve the amplitudes of the noise-free original signal
(Figure 4c). We also compared the result of the robust SSA method
on data corrupted with erratic noise and Gaussian noise (Figure 3c)
with the result of classical SSA on data corrupted by only Gaussian

noise (Figure 5b). Note that the Gaussian noise in Figure 5a is the
same noise used in Figure 2b. The two results are quite similar to
each other. We also evaluate the denoising performance by evalu-
ating the factor Q ¼ 10 log

kd0k2F
kd0−d̂k2F

, where d0 is the noise-free data,
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and d̂ is the reconstructed data. A larger value of Q means better
denoising performance. The Q-value of the f-x deconvolution is
Qfx ¼ 7.7, the Q-value for SSA is Qssa ¼ −2.8, and the Q-value
of robust SSA isQrssa ¼ 12:8. TheQ-value of the classical SSA on
data with only Gaussian noise (Figure 5) isQssaG ¼ 13:1. These val-
ues indicate that the robust SSA method offers a good alternative to
SSA and f-x deconvolution when the data are contaminated by
erratic noise.

Field data example

Figure 6a is a poststack data section from a survey in the Western
Canadian Sedimentary Basin. It has 800 traces and 1500 time sam-

ples per trace with a time sampling interval of 2 ms. Figure 6b and
6c is magnified portions of data in the left and right rectangular
windows highlighted in Figure 6a, respectively. We observe
high-amplitude noise in this data set. The whole data are divided
into overlapping windows with suitable size. Then, all windows
are filtered and added back to recover the clean data. In the spatial
direction, each window has 50 traces, and the overlap between two
adjacent windows is 25 traces. In the temporal direction, each win-
dow has 300 samples (0.6 s), and the overlap between two adjacent
windows is 100 samples (0.2 s). The three filtering methods are
applied for frequencies in the band of 1–80 Hz. The size of the re-
constructed subspace in the SSA and the robust SSA method is
K ¼ 2. In the robust SSA case, the external iterations (for updating
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the weights) is set to 10 and the number of internal iterations (for the
alternating minimization) is set to five. The tuning constant α for the
bisquare function is set to 3.3. For the f-x filter, we set the length of
the operator equal to six traces and the trade-off parameter to 0.001.
We use the same parameters for the whole data set. Again, we com-
pare the performance of f-x deconvolution, SSA, and robust SSA
on these data. To provide a fair comparison, the results for the three
methods (Figures 6a, 7, and 8) have been clipped to the same value.
The wiggle plots corresponding to the left rectangular window (Fig-
ures 6b and 9) have been clipped to the same value. The difference

sections (Figure 10) have been clipped to the same value as well to
better compare the estimated noise by the three methods. The results
of the three methods applied on the whole data set are shown in
Figure 7. The proposed robust SSA method suppresses much more
high-amplitude erratic noise than the f-x deconvolution method and
the classical SSA algorithm. The comparison of difference sections
(Figure 8) shows that the f-x deconvolution leaks more signal en-
ergy into the noise section than the robust SSA. We show the
zoomed results for the window on the left of Figure 6a in Figure 9.
The results for the window to the right of Figure 6a are shown in
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Figure 11. Similarly, difference sections are provided by Figure 12.
Again, we note that the robust SSA method is more effective than
f-x deconvolution and the classical SSA algorithm.

DISCUSSION

The rank K should be equal to the number of dips in the window
of analysis (Oropeza and Sacchi, 2011). However, real data are not
composed of a superposition of a limited number of perfect linear
events. One can say that parameter K depends on the complexity of

the data. For real data scenarios, parameter K can be determined via
trial and error by examining the complexity of the input data and by
visualizing the resulting enhanced section and the estimated noise
section. The choice of the rank controls the balance between denois-
ing performance and acceptable preservation of amplitudes in the
denoised data. A small rank is used if data are structurally simple.
A relatively large rank should be adopted if the data contain a large
number of space-variant dips. In our algorithm, the user must specify
the rank K. An alternative is to adopt a strategy that adopts nuclear
norm optimization (Recht et al., 2010). The latter has been recently
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after robust SSA filtering.
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explored for matrix and tensor completion in applied mathematics
(Candès et al., 2011; Gandy et al., 2011; Tao and Yuan, 2011)
and in seismic data processing (Kreimer et al., 2013). However, a
formulation of our problem in terms of nuclear norm optimization
will require a new scalar trade-off parameter that controls noise re-
jection versus amplitude preservation in the denoised signal. In other
words, we will be replacing rank (K) by a scalar and, again, the com-
plexity of the data will dictate the selection of the scalar parameter.

CONCLUSIONS

We have proposed a robust version of singular spectrum analysis
that can remove Gaussian and non-Gaussian noise simultaneously.
The robust low-rank approximation was adopted instead of the trun-
cated SVD. The robust low-rank approximation used a robust mea-
sure of misfit (bisquare function) and the bilinear factorization
model to approximate the Hankel matrix of the data by one of lower
rank. The IRLS method is used to solve the optimization problem.
Synthetic and real data examples show that the proposed algorithm
can cope with erratic noise. One possible concern is the computa-
tional cost of the proposed robust algorithm. In general, the robust
SSA method can be more expensive to run than the classical SSA
method based on the truncated SVD depending on the size of the
data, the number of iterations of the alternating minimization and
IRLS. This could be problematic for industrial processes. However,
there could be situations in which having access to robust denoising
methods might offer benefits that surpass computational consider-
ations. The latter is a facet that is always present in seismic data
processing.
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APPENDIX A

DERIVATIVE OF SCALAR FUNCTION WITH
RESPECT TO COMPLEX-VALUED

MATRIX VARIABLE

We describe how to use complex differentiation theory to com-
pute the weight function from the cost function 9

EðU;VÞ ¼
Xm
i¼1

Xn
j¼1

ρ

�
mij −

P
K
q¼1 uiqv

�
jq

σ

�

¼
Xm
i¼1

Xn
j¼1

ρ

�
rij
σ

�
: (A-1)

If complex-valued matrix variable V is fixed, scalar E is a function
of U. Similarly, if U is fixed, E is a function of V. We will first
analyze the derivative of E with respect to Uwith V fixed. By using
Wirtinger calculus (Brandwood, 1983), we should regard U and U�

as independent variables (EðU;U�Þ). Either setting the gradient ∂E
∂U

or ∂E
∂U� to zero leads to stationary points of function E. Usually, ∂E

∂U� is
preferred because it gives the direction in which the cost function E

has the maximum rate of change with respect to U (Brandwood,
1983). The partial derivative of E with respect to one element of
U� is given by
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where wðxÞ ¼ ∂ρðx;x�Þ
∂x�

2
x (x ¼ raj

σ ) is the weight function, a ¼
1; : : : ; m, and b ¼ 1; : : : ; K. Function ρ is a function of complex
variable raj, but it is not analytic in raj. So, ρ is assumed to be a
function of two independent variables raj and r�aj. Among them, r�aj
depends on u�ab. So, the chain rule is used in the above derivation.
Due to the relationship ∂jxj

∂x� ¼ 1
2

x
jxj, we have that wðxÞ ¼ ∂ρðx;x�Þ

∂x�
2
x ¼∂ρðx;x�Þ
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2
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∂jxj
1
jxj.

Similarly, the partial derivative of E with respect to one element
of V� is
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where wðxÞ ¼ ∂ρðx;x�Þ
∂x

2
x� ¼ ∂ρðx;x�Þ

∂x�
2
x ¼ ∂ρðxÞ

∂jxj
1
jxj (x ¼ ric

σ ), c ¼ 1; : : : ; n,
and d ¼ 1; : : : ; K.
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