The importance of including density in elastic least-squares reverse time migration: multiparameter crosstalk and convergence

Ke Chen and Mauricio D. Sacchi
Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada. E-mail: ke7@ualberta.ca

SUMMARY
Time-domain elastic least-squares reverse time migration (LSRTM) can provide higher spatial resolution images with fewer artefacts and a superior balance of amplitudes than elastic reverse time migration (RTM). More important, it can mitigate the crosstalk between P- and S-wave images. In previously proposed elastic LSRTM algorithms, density is either assumed to be constant or known. In other words, the density perturbation is not part of the least-squares inversion formulation. Neglecting density in elastic LSRTM may lead to crosstalk artefacts in the P- and S-wave images. In this paper, we propose a time-domain three-parameter elastic LSRTM algorithm to simultaneously invert for density, P- and S-wave velocity perturbation images. We derive the elastic Born approximation and elastic RTM operators using the continuous adjoint-state method. We carefully discretize the two operators to assure that they pass the dot-product test. This allows us to use the conjugate gradient least-squares method to solve the least-squares migration problem. We evaluate the proposed algorithm on two synthetic examples. We show that our proposed three-parameter elastic LSRTM can suppress the multiparameter crosstalk among density, P- and S-wave velocity perturbation images. Moreover, including density image in the elastic LSRTM inversion can improve the convergence of the least-squares inversion.

Key words: Inverse theory; Waveform inversion; Computational seismology; Seismic tomography; Wave propagation.
have also been developed. For example, elastic least-squares Kirchhoff migration (Beydoun & Mendes 1989; Jin et al. 1992), elastic least-squares one-way wave equation migration (Stanton & Sacchi 2015, 2017), and elastic LSRTM (Anikiev et al. 2013; Xu et al. 2016; Chen & Sacchi 2017; Duan et al. 2017; Feng & Schuster 2017; Gu et al. 2017; Ren et al. 2017; Guo & McMechan 2018).

Conventional elastic LSRTM algorithms do not include density image in the inversion. It inverts for P- and S-wave images. We call this type of elastic LSRTM a two-parameter elastic LSRTM. The density is either assumed to be constant or already known. However, this assumption is not valid in realistic Earth media. Neglecting the density image in elastic LSRTM may result in crosstalk artefacts in the P- and S-wave images. Chen & Sacchi (2017) derive an elastic LSRTM algorithm including the density image component. However, they did not include density image inversion in their numerical examples. Sun et al. (2017) study a frequency-domain elastic LSRTM with density variation. Qu et al. (2018) present an elastic LSRTM with density variation based on P- and S-wave decoupled elastic velocity-stress wave equation. In this paper, we

Figure 1. Elastic inclusion model. (a) P-wave velocity model. (b) Smoothed P-wave velocity model. (c) S-wave velocity model. (d) Smoothed S-wave velocity model. (e) Density model. (f) Smoothed density model.
propose a time-domain three-parameter elastic LSRTM algorithm to simultaneously invert for density perturbation, P- and S-wave velocity perturbation. The latter complements our previous work on elastic LSRTM (Chen & Sacchi 2017). Our three-parameter elastic LSRTM algorithm directly adopts the elastic wave equation without splitting the equation to P- and S-wave components as in Qu et al. (2018). We derive the elastic Born approximation and elastic RTM operators using the continuous adjoint-state method (Lions 1971; Tarantola 1988; Tromp et al. 2005; Fichtner et al. 2006a,b; Plessix 2006; Fichtner 2010; Chen & Lee 2015). We carefully discretize the two operators to ensure that they pass the dot-product test. The latter allows us to use the conjugate gradient least-squares (CGLS) method to solve the LSM optimization problem. We show that the proposed three-parameter elastic LSRTM algorithm is able to mitigate the crosstalk among density, P- and S-wave velocity perturbations. Moreover, it improves the convergence and data fitting over the conventional two-parameter elastic LSRTM. Because of computational resource limit, we present numerical examples in 2-D case. However, the proposed method can be extended to 3-D naturally.

Figure 2. Multicomponent data of the elastic inclusion model. (a) Horizontal particle velocity data. (b) Vertical particle velocity data.
We have organized this paper as follows. First, we describe the wave equation that we have adopted to simulate elastic wavefields. Then, we introduce the three-parameter elastic Born approximation and the elastic RTM operators. Subsequently, we present the proposed three-parameter elastic LSRTM algorithm. In the last section, we evaluate the performance of the proposed algorithm with numerical examples.

THEORY

Elastic wave equation

The propagation of seismic wave in a heterogeneous, isotropic elastic Earth media is described by the elastic wave equation (Virieux 1986)

Figure 3. (a) True P-wave velocity perturbation. (b) P-wave velocity perturbation image estimated via elastic RTM. (c) True S-wave velocity perturbation. (d) S-wave velocity perturbation image estimated via elastic RTM. (e) True density perturbation. (f) Density perturbation image estimated via elastic RTM.
Figure 4. \(P\)-wave velocity perturbation image estimated via three-parameter elastic LSRTM (a) and two-parameter elastic LSRTM (b). \(S\)-wave velocity perturbation image estimated via three-parameter elastic LSRTM (c) and two-parameter elastic LSRTM (d). Density perturbation image estimated via three-parameter elastic LSRTM (e).
The elastic wave equation can be written in abstract functional notations concise but we understand that \(x \) and temporal coordinates \(t \) and the dependence on spatial terms. In the wave equation, we dropped the dependence on spatial and temporal coordinates \(x \) and \(t \) of our variables to make the notations concise but we understand that \(v_i = v_i(x, t) \), \(\lambda = \lambda(x) \), etc. The elastic wave equation can be written in abstract functional form as follows:

\[
S(\mathbf{m})u = f, \tag{2}
\]

where \(\mathbf{m} = (\rho, \lambda, \mu)^T \) denotes the model parameter vector, \(S \) is the wave equation operator, \(u = (v_i, \sigma_{xx}, \sigma_{xz})^T \) is the wavefield vector and \(f = (0, 0, f_{xx}, f_{xz}, 0)^T \) is the source vector. The seismic data are observed by receivers

\[
d = Ru, \tag{3}
\]

where \(d = (d_{xx}, d_{xz}, 0, 0, 0)^T \) is the seismic data vector and \(R \) is the sampling operator.

Elastic Born approximation

Seismic migration techniques in oil and gas exploration rely on the concept of the Born approximation. A perturbation around the known background model parameters

\[
\rho \rightarrow \rho + \delta \rho, \tag{4a}
\]

\[
\lambda \rightarrow \lambda + \delta \lambda, \tag{4b}
\]

\[
\mu \rightarrow \mu + \delta \mu, \tag{4c}
\]

leads to a perturbation of the wavefields

\[
v_i \rightarrow v_i + \delta v_i, \tag{4d}
\]

\[
v_x \rightarrow v_x + \delta v_x, \tag{4e}
\]

\[
\sigma_{xx} \rightarrow \sigma_{xx} + \delta \sigma_{xx}, \tag{4f}
\]

\[
\sigma_{xz} \rightarrow \sigma_{xz} + \delta \sigma_{xz}, \tag{4g}
\]

\[
\sigma_{zz} \rightarrow \sigma_{zz} + \delta \sigma_{zz}, \tag{4h}
\]

Inserting eq. (4) into eq. (1), subtracting eq. (1) and dropping second- and higher-order terms leads to the Born approximation for the first-order velocity stress elastic wave equation system (Chen & Sacchi 2017)

\[
\rho \frac{\partial \delta v_i}{\partial t} - \left(\frac{\partial \delta \sigma_{xx}}{\partial x} + \frac{\partial \delta \sigma_{xz}}{\partial z} \right) = -\delta \rho \dot{v}_i, \tag{5a}
\]

\[
\rho \frac{\partial \delta v_x}{\partial t} - \left(\frac{\partial \delta \sigma_{xx}}{\partial x} + \frac{\partial \delta \sigma_{xz}}{\partial z} \right) = -\delta \rho \dot{v}_x, \tag{5b}
\]

\[
\rho \frac{\partial \delta \sigma_{xx}}{\partial t} - (\lambda + 2 \mu) \frac{\partial \delta v_x}{\partial x} - \lambda \frac{\partial \delta v_z}{\partial z} = (\delta \lambda + \delta \mu) \frac{\delta \sigma_{xx}}{2(\lambda + \mu)} + \delta \mu \frac{\delta \sigma_{xz}}{2\mu}, \tag{5c}
\]

\[
\rho \frac{\partial \delta \sigma_{xz}}{\partial t} - (\lambda + 2 \mu) \frac{\partial \delta v_x}{\partial z} - \lambda \frac{\partial \delta v_z}{\partial x} = (\delta \lambda + \delta \mu) \frac{\delta \sigma_{xz}}{2(\lambda + \mu)} - \delta \mu \frac{\delta \sigma_{xx}}{2\mu}, \tag{5d}
\]

\[
\rho \frac{\partial \delta \sigma_{zz}}{\partial t} - \mu \left(\frac{\partial \delta v_x}{\partial x} + \frac{\partial \delta v_z}{\partial z} \right) = \delta \mu \frac{\delta \sigma_{zz}}{\mu}, \tag{5e}
\]

where \(u = (v_i, v_x, \sigma_{xx}, \sigma_{xz}, \sigma_{zz})^T \) is the incident wavefield or called source-side wavefield in the background model \(\mathbf{m} = (\rho, \lambda, \mu)^T \), \(\delta \mathbf{u} = (\delta v_i, \delta v_x, \delta \sigma_{xx}, \delta \sigma_{xz}, \delta \sigma_{zz})^T \) is the scattered wavefield due to model perturbation \(\delta \mathbf{m} = (\delta \rho, \delta \lambda, \delta \mu)^T \) and over-dot means the time derivative. We parametrize our three-parameter elastic LSRTM in terms of density, \(P- \) and \(S \)-wave velocity perturbations. The different model parameter perturbations obey the following expressions:

\[
\begin{bmatrix}
\delta \rho \\
\delta \lambda \\
\delta \mu
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
V_p^2 - 2V_s^2 & 2\rho V_p - 4\rho V_s & -4\rho V_s \\
V_s^2 & 0 & 2\rho V_s
\end{bmatrix}
\begin{bmatrix}
\delta \rho \\
\delta \lambda \\
\delta \mu
\end{bmatrix}, \tag{6}
\]

where \(V_p = (\lambda + 2\mu)/\rho \) and \(V_s = \sqrt{\mu/\rho} \) are background \(P \)- and \(S \)-wave velocities, \(\delta V_p \) and \(\delta V_s \) are \(P \)- and \(S \)-wave velocity perturbations.
Three-parameter elastic LSRTM

Figure 6. Elastic Marmousi2 model. (a) P-wave velocity model. (b) Smoothed P-wave velocity model. (c) S-wave velocity model. (d) Smoothed S-wave velocity model. (e) Density model. (f) Smoothed density model.

We can also express the above expressions in abstract functional form. The model perturbation $\bar{m} \rightarrow \bar{m} + \delta \bar{m}$ leads to a perturbation in wave equation (2)

$$(S + \delta S)(u + \delta u) = f,$$

where δS is the wave equation operator perturbation, δu is the wavefield perturbation, S is the wave equation operator in background model and u is the wavefield in background model. Using wave equation $Su = f$ and neglecting second-order term, eq. (7) can be simplified as

$$S \delta u = -\delta Su. \tag{8}$$

The perturbed seismic data can be expressed as

$$\delta d = R \delta u = -RS^{-1} \delta Su = -RS^{-1} \frac{\partial S}{\partial \bar{m}} u \delta \bar{m}, \tag{9}$$

where R is the sampling operator, S^{-1} is the inverse of wave equation operator and the linear operator $\partial S / \partial \bar{m}$ denotes the diffraction pattern of density and Lamé parameters perturbations. The parameter perturbations are connected via

$$\delta \bar{m} = T \delta m, \tag{10}$$

where T denotes the transformation matrix in eq. (6), and $\delta m = (\delta \rho, \delta V_p, \delta V_s)^T$. The elastic Born approximation can be expressed in abstract form as

$$\delta d = L \delta m = -RS^{-1} \frac{\partial S}{\partial \bar{m}} u T \delta m, \tag{11}$$

where operator L indicates the elastic Born approximation operator.

Elastic reverse time migration

Seismic migration estimates subsurface structural image using the seismic data recorded on the surface of the Earth. Migration can be
where \dagger indicates the adjoint of an operator, L^\dagger is the elastic RTM operator and δm^* is the migrated elastic images ($\delta m^* = (\delta \rho, \delta V_p^*, \delta V_s^*)^T$). We introduce the adjoint-state variable $p = (S^\dagger)^{-1} R^\dagger \delta d$. The latter satisfies the adjoint-state equation corresponding to the state equation (2)

$$S^\dagger p = R^\dagger \delta d,$$

regarded as the adjoint of the Born approximation operator

$$\delta m^* = L^\dagger \delta d = -T^\dagger \left(\frac{\partial S}{\partial \delta m} \right)^\dagger (S^\dagger)^{-1} R^\dagger \delta d$$

$$= -T^\dagger \left(\frac{\partial S}{\partial \delta m} \right)^\dagger (S^\dagger)^{-1} R^\dagger \delta d, \quad (12) \quad S^\dagger p = R^\dagger \delta d, \quad (13)$$
Three-parameter elastic LSRTM

69

Figure 8. (a) True P-wave velocity perturbation. (b) P-wave velocity perturbation image estimated via elastic RTM. (c) True S-wave velocity perturbation. (d) S-wave velocity perturbation image estimated via elastic RTM. (e) True density perturbation. (f) Density perturbation image estimated via elastic RTM.

where S^\dagger is the adjoint wave equation operator and $R^\dagger \delta d$ is the adjoint source. The migrated elastic images can be simplified as

$$\delta \mathbf{m}^* = -T^\dagger \left(\frac{\partial S}{\partial \mathbf{m}} \mathbf{u} \right)^\dagger \mathbf{p} = -T^\dagger \delta \mathbf{m}^*.$$

(14)

where T^\dagger is the adjoint of the transformation matrix in eq. (6) and $\delta \mathbf{m}^* = (\delta \rho^*, \delta \lambda^*, \delta \mu^*)^T$. The image expression in eq. (14) is very similar to Claerbout’s cross-correlation imaging condition (Claerbout 1985) but has an additional operator applied on the wavefield.

The adjoint-state equation corresponding to the first-order velocity-stress elastic wave equation (1) can be derived

$$-\rho \frac{\partial \mathbf{u}_x}{\partial t} + \left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xz}}{\partial z} \right) = \delta d_v,$$

$$-\rho \frac{\partial \mathbf{u}_z}{\partial t} + \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{zz}}{\partial z} \right) = \delta d_v,$$

$$-\frac{\partial \tau_{xx}}{\partial t} + (\lambda + 2\mu) \frac{\partial \mathbf{u}_x}{\partial x} + \lambda \frac{\partial \mathbf{u}_z}{\partial z} = 0,$$

$$-\frac{\partial \tau_{zz}}{\partial t} + (\lambda + 2\mu) \frac{\partial \mathbf{u}_z}{\partial z} + \lambda \frac{\partial \mathbf{u}_x}{\partial x} = 0,$$

$$-\frac{\partial \tau_{xz}}{\partial t} + \mu \left(\frac{\partial \mathbf{u}_x}{\partial z} + \frac{\partial \mathbf{u}_z}{\partial x} \right) = 0.$$

(15)
where $p = (\nu_x, \nu_z, \tau_{xx}, \tau_{zz}, \tau_{xz})^T$ is the adjoint-state wavefield and $\delta d = (\delta d_x, \delta d_z, 0, 0, 0)^T$ is the data residual. The migrated density and Lamé parameter images can be written as

$$
\delta \rho^* = - \int (\dot{\nu}_x \nu_x + \dot{\nu}_z \nu_z) dt,
$$

$$
\delta \lambda^* = \int \frac{(\dot{\sigma}_{xx} + \dot{\sigma}_{zz})(\tau_{xx} + \tau_{zz})}{4(\lambda + \mu)^2} dt,
$$

$$
\delta \mu^* = \int \left(\frac{\dot{\sigma}_{xx}}{\mu^2} + \frac{(\dot{\sigma}_{xx} + \dot{\sigma}_{zz})(\tau_{xx} + \tau_{zz})}{4(\lambda + \mu)^2} + \frac{(\dot{\sigma}_{xx} - \dot{\sigma}_{zz})(\tau_{xx} - \tau_{zz})}{4\mu^2} \right) dt. \tag{16}
$$

The density and Lamé parameter perturbations can be transformed to density and wave velocity perturbations

$$
\begin{pmatrix}
\delta \rho^* \\
\delta V_p^* \\
\delta V_s^*
\end{pmatrix} =
\begin{pmatrix}
1 & V_p^2 - 2V_s^2 & V_s^2 \\
0 & 2\rho V_p & \rho V_s \\
0 & -4\rho V_s & 2\rho V_s
\end{pmatrix}
\begin{pmatrix}
\delta \rho^* \\
\delta \lambda^* \\
\delta \mu^*
\end{pmatrix}. \tag{17}
$$

Three-parameter elastic least-squares reverse time migration

To improve the spatial resolution of images and reduce the crosstalk and artefacts in the images, we formulate the three-parameter elastic

\begin{figure}[h]
\begin{center}
\includegraphics[width=\textwidth]{example.png}
\end{center}
\caption{P-wave velocity perturbation image estimated via three-parameter elastic LSRTM (a) and two-parameter elastic LSRTM (b). S-wave velocity perturbation image estimated via three-parameter elastic LSRTM (c) and two-parameter elastic LSRTM (d). Density perturbation image estimated via three-parameter elastic LSRTM (e).}
\end{figure}
Figure 10. Comparison of images in the range $750 \, \text{m} < x < 1125 \, \text{m}$ and $125 \, \text{m} < z < 875 \, \text{m}$. P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-parameter elastic LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model, (f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM. Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic LSRTM.
Figure 11. Comparison of images in the range 1500 m < x < 1875 m and 125 m < z < 875 m. P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-parameter elastic LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model, (f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM. Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic LSRTM.
Figure 12. Comparison of images in the range $0 \, m < x < 375 \, m$ and $125 \, m < z < 750 \, m$. P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-parameter elastic LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model, (f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM. Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic LSRTM.
LSRTM as a least-squares inversion problem

\[J = \frac{1}{2} \sum_{i=1}^{N_s} \| \mathbf{L}_i \delta \mathbf{m} - \delta \mathbf{d}_i \|_2^2, \]

(18)

where \(\mathbf{L}_i \) is the elastic Born approximation operator for the \(i \)th shot, \(\delta \mathbf{d}_i \) is the \(i \)th shot gather, \(\delta \mathbf{m} = (\delta \varrho, \delta V_p, \delta V_s)^T \) denotes elastic images, \(N_s \) indicates the number of shots and \(\| \cdot \|_2 \) indicates the \(\ell_2 \) norm of vector. It is important to mention that we carefully discretize the elastic Born and RTM operators (\(\mathbf{L}_i \) and \(\mathbf{L}^i \)) to assure they pass the dot-product test (Claerbout 1992; Chen & Sacchi 2017). We adopt the CGLS algorithm (Hestenes & Stiefel 1952; Paige & Saunders 1982; Bjorck 1996) to solve eq. (18). The latter only requires two operators \(\mathbf{L}_i \) and \(\mathbf{L}^i \) that are applied ‘on the fly’ to vectors.

Numerical Examples

Our code was written in C language and parallelized with Message Passing Interface over shots. The communication between different threads happens when the gradients are collected or distributed in each elastic LSRTM iteration. Our forward-modelling engine adopts a time-domain staggered-grid finite-difference (FD) scheme (Virieux 1986) to discretize the elastic wave equation and the unsplit convolutional perfectly matched layer boundary (Komatitsch & Martin 2007) to absorb the artificial reflections from computational boundaries. In our code, the spatial FD order is selectable. The code automatically computes the FD coefficients from the user-specified FD order (Liu & Sen 2009). In our elastic RTM code (\(\mathbf{L}^i \)), we use the source-wavefield reconstruction method (Gauthier et al. 1986; Dussaud et al. 2008) to avoid saving the entire forward source-side wavefield. Our elastic Born (\(\mathbf{L} \)) and RTM (\(\mathbf{L}^i \)) codes pass the dot-product test (Claerbout 1992). We present two numerical examples to test the proposed algorithm. We compare the results of the proposed three-parameter elastic LSRTM and the results of two-parameter elastic LSRTM (Chen & Sacchi 2017). The two-parameter elastic LSRTM takes the heterogeneous background density, \(P \)- and \(S \)-wave velocity models as input models. We emphasize that our synthetic multicomponent data are the solution of the time-domain elastic wave equation (1). We do NOT use the linearized Born modelling to generate data. The data contain multiples that are not honoured by the linearized Born modelling.

Elastic inclusion model

Figs 1(a), (c) and (e) show the true \(P \)- and \(S \)-wave velocity and density models. This model may not be realistic. However, it is useful to demonstrate the multiparameter crosstalk in the elastic imaging. The model has 501 \(\times \) 301 grid points with grid interval of 5 m. There are 101 shots located along the surface of the model with an interval of 25 m. There are 501 receivers located along the surface of the model with an interval of 5 m. We use a Ricker wavelet with central frequency 20 Hz as the source wavelet. The observed data (Fig. 2) are simulated using our time-domain elastic FD code. The data contain full-wave modes except for direct waves. Figs 1(b), (d) and (f) are the migration \(P \)- and \(S \)-wave velocity and density models. The migration models are obtained by convolving the true models with a 2-D Gaussian filter of 50 m width. Figs 3(a), (c) and (e) show the true \(P \)- and \(S \)-wave velocity and density perturbations.

The elastic RTM generates images with strong multiparameter crosstalk (Figs 3b, d and f). The elastic RTM images are obtained by kernels in eq. (16). Results, in this case, cannot be interpreted properly. Moreover, there are high-amplitude low-frequency RTM artefacts in the images even after applying a Laplacian filtering. We adopted a number of 80 iterations for the two-parameter elastic LSRTM. The relative data misfit reduces to 10 per cent. Our results show that the method reduced the crosstalk between the \(P \)- and \(S \)-wave velocity perturbation images (Figs 4b and d). However, the density perturbation manifests as crosstalk in the estimated \(P \)- and \(S \)-wave velocity perturbation images. It is clear that the results will impede the proper interpretation of the \(P \)- and \(S \)-wave images. The proposed three-parameter elastic LSRTM can suppress the crosstalk (Figs 4a, c and e). Moreover, typical RTM artefacts have decreased and the spatial resolution of the images have improved. The number of iterations of the three-parameter elastic LSRTM is 35, and the relative data misfit also reduces to 10 per cent. We also compare the convergence curves of the three-parameter elastic LSRTM and the two-parameter elastic LSRTM (Fig. 5). Including density perturbation in the inversion leads to an improvement in the convergence of the iterative inversion.

Elastic Marmousi2 model

In this section, we evaluate the proposed algorithm on a more complex model: the elastic Marmousi2 model (Martin et al. 2006). We reduce the size of the original model to 1001 \(\times \) 426 grids with grid interval 2.5 m. We also replace the water layer by a low-velocity layer in the original model. Figs 6(a), (c) and (e) show the true \(P \)- and \(S \)-wave velocity and density models. There are uncorrelated structures in the three models (indicated by the white triangles) representing potential hydrocarbon reservoirs. There are 101 shots located along the surface of the model with interval of 25 m. There

![Convergence curve](image-url)
are 1001 receivers located along the surface of the model with interval of 2.5 m. The source wavelet is a Ricker wavelet with central frequency 35 Hz. The observed data are simulated using our time-domain elastic FD code (Fig. 7). The data contain full-wave modes except for direct waves. Figs 6(b), (d) and (f) are the smoothed background P- and S-wave velocity and density models. Background model smoothing is obtained by convolving the true models with a 2-D Gaussian filter of 35 m width. Figs 8(a), (c) and (e) show the true P- and S-wave velocity and density perturbations.

The images generated by elastic RTM contain strong low-frequency RTM artefacts (Figs 8b, d and f). Moreover, the amplitudes for the shallow and deep parts of the images are unbalanced. A particular issue is that the elastic RTM generates crosstalk among the three elastic images in areas where the models are uncorrelated. The two-parameter elastic LSRTM (Chen & Sac-
K. Chen and M. D. Sacchi

Figure 15. Three-parameter elastic LSRTM images using data with different SNRs. Estimated density images from noise-free data (a), data with SNR 1 dB (b) and data with SNR 0 dB (c). Estimated P-wave velocity images from noise-free data (d), data with SNR 1 dB (e) and data with SNR 0 dB (f). Estimated S-wave velocity images from noise-free data (g), data with SNR 1 dB (h) and data with SNR 0 dB (i).

chi 2017) can largely resolve those problems (Figs 9b and d). However, it does not provide an estimation of the density perturbation image. These results were obtained after 100 iterations of the two-parameter elastic LSRTM. And the relative data misfit reduces to about 40 percent. The proposed three-parameter elastic LSRTM is able to estimate the P- and S-wave velocity and density perturbation images (Figs 9a, c and e). The images have more balanced amplitudes, fewer low-frequency RTM artefacts and reduced multiparameter crosstalk. These results were obtained after 100 iterations of the three-parameter elastic LSRTM. And the relative data misfit reduces to about 23 percent. To appreciate details more clearly, we compare the elastic images in the three windows around the three white triangles in the model (Figs 6a, c and e) as Figs 10, 11 and 12. The three-parameter elastic LSRTM generated images with highest spatial resolution and fewest artefacts and crosstalk. We compare the convergence curves of the three-parameter elastic LSRTM and two-parameter elastic LSRTM in Fig. 13. The three-parameter elastic LSRTM converges faster than the two-parameter elastic LSRTM.

The effect of noise

In this section, we investigate the effect of noise on results of the elastic LSRTM. We generate the noise as follows. For each shot gather, a random noise gather is generated following a standard normal distribution. Then, the noise gather is filtered at the maximum frequency band of the data (Blom et al. 2017). Finally, the filtered noise gather is scaled to a predefined signal-to-noise ratio (SNR). The SNR in decibels (dB) for a shot gather is defined as

$$\text{SNR} = 10 \log_{10} \left(\frac{A_s}{A_n} \right)^2,$$

where A_s and A_n are the root-mean-square amplitudes of signal and noise in the shot gather, respectively. Fig. 14 shows the 50th shot gather with different SNRs for the elastic inclusion model example. Fig. 15 shows the estimated density, P- and S-wave velocity images by three-parameter elastic LSRTM (after 35 iterations) using data with different SNRs. Fig. 16 shows the 50th shot gather with different SNRs for the elastic Marmousi2 model example. Fig. 17
Figure 16. The 50th shot gather with different SNRs. (a) Noise-free horizontal component data. (b) Horizontal component data with SNR 1 dB. (c) Horizontal component data with SNR 0 dB. (d) Noise-free vertical component data. (e) Vertical component data with SNR 1 dB. (f) Vertical component data with SNR 0 dB.

shows the corresponding recovered images by three-parameter elastic LSRTM (after 100 iterations). The results from noisy data and noise-free data are roughly similar. The presence of data noise deteriorates the estimated images. The data noise leads to noise artefacts in the recovered images. As mentioned in previous sections, the Laplacian filter has been applied on the migration/inverted images to remove the high-amplitude low-frequency RTM artefacts. It will also reduce the amount of noise artefacts generated from data noise.

DISCUSSION

In this paper, the resolution of images is referred to as the spatial resolution. It is the minimum distance between two point scatters...
K. Chen and M.D. Sacchi

Figure 17. Three-parameter elastic LSRTM images using data with different SNRs. Estimated density images from noise-free data (a), data with SNR 1 dB (b) and data with SNR 0 dB (c). Estimated P-wave velocity images from noise-free data (d), data with SNR 1 dB (e) and data with SNR 0 dB (f). Estimated S-wave velocity images from noise-free data (g), data with SNR 1 dB (h) and data with SNR 0 dB (i).

that can be resolved in the migrated/inverted section (Safar 1985; Schuster et al. 2017). The spatial resolution can be specified in terms of vertical and lateral resolution (Berkhout & Van Wulfen Palthe 1979). The spatial resolution limit of migration algorithms depends on the seismic experiment configuration (acquisition aperture and source bandwidth), migration/inversion algorithm used and the initial background model (Beylkin et al. 1985; Levin 1998).

The resolution of model parameters in an inverse problem can also be quantified. Quantitative resolution analysis of LSM algorithms can be performed based on resolution matrix (Berryman 1994a,b; Zhang & McMechan 1995; Minkoff 1996; Yao et al. 1999; Fomel et al. 2002; Zhang & Thurber 2007; Song et al. 2011), point spreading function (Humphreys & Clayton 1988; Alumbaugh & Newman 2000; Oldenborger & Routh 2009) and Hessian (Fichtner & Trampert 2011; Fichtner & Leeuwen 2015).

When the background migration model is good enough, the density image estimated by elastic LSRTM can be linked to rock properties and help quantitative interpretation. It is worth to mention that the density–velocity trade-off has been investigated in the field of waveform inversion (Cara et al. 1984; Tanimoto 1991; Kohn et al. 2012; Plonka et al. 2016; Blom et al. 2017; Koelemeijer et al. 2017; Pan et al. 2018).

CONCLUSIONS

The conventional two-parameter elastic LSRTM algorithm does not consider density image in the inversion. Neglecting density image in the inversion may generate crosstalk artefacts in P- and S-wave images. We propose a time-domain three-parameter elastic LSRTM method. It simultaneously invert for density, P- and S-wave velocity perturbation images. We derive the elastic Born approximation and elastic RTM operators using the time-domain continuous adjoint-state method. We carefully discretize the two operators to assure that they pass the dot-product test. The latter allows us to use the CGLS method to solve the LSM quadratic optimization problem on the fly. We observe that the proposed three-parameter elastic LSRTM can decouple the three isotropic elastic parameters and suppress the crosstalk. Moreover, it provides faster convergence and an improved data fitting than the two-parameter elastic LSRTM.

ACKNOWLEDGEMENTS

We thank the editor Herve Chauris, reviewer Andreas Fichtner and reviewer Daniel Trad for their valuable suggestions and comments that improved the manuscript. We thank the sponsors of the Signal Analysis and Imaging Group (SAIG) at the University of Alberta for financial support. This research was also supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) via a Discovery Grant to MDS. Compute Canada provided high-performance clustered computing resources. Figures in this paper were plotted using the Madagascar open-source software package.

