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S U M M A R Y
Time-domain elastic least-squares reverse time migration (LSRTM) can provide higher spatial
resolution images with fewer artefacts and a superior balance of amplitudes than elastic reverse
time migration (RTM). More important, it can mitigate the crosstalk between P- and S-wave
images. In previously proposed elastic LSRTM algorithms, density is either assumed to be con-
stant or known. In other words, the density perturbation is not part of the least-squares inversion
formulation. Neglecting density in elastic LSRTM may lead to crosstalk artefacts in the P-
and S-wave images. In this paper, we propose a time-domain three-parameter elastic LSRTM
algorithm to simultaneously invert for density, P- and S-wave velocity perturbation images. We
derive the elastic Born approximation and elastic RTM operators using the continuous adjoint-
state method. We carefully discretize the two operators to assure that they pass the dot-product
test. This allows us to use the conjugate gradient least-squares method to solve the least-
squares migration problem. We evaluate the proposed algorithm on two synthetic examples.
We show that our proposed three-parameter elastic LSRTM can suppress the multiparame-
ter crosstalk among density, P- and S-wave velocity perturbation images. Moreover, including
density image in the elastic LSRTM inversion can improve the convergence of the least-squares
inversion.

Key words: Inverse theory; Waveform inversion; Computational seismology; Seismic to-
mography; Wave propagation.

I N T RO D U C T I O N

Seismic imaging techniques aim at portraying subsurface struc-
ture using seismic data. Reverse time migration (RTM; Baysal et al.
1983; McMechan 1983; Whitmore 1983; Etgen 1986; Zhang & Sun
2009; Li & Chauris 2017) is one of the most important seismic imag-
ing methods. RTM utilizes the two-way acoustic wave equation for
extrapolating wavefields into the interior of the Earth. For this rea-
son, RTM can handle steep and complex geological structures such
as sedimentary areas with salt inclusions (Etgen et al. 2009). Due to
the rapid development of computing power, RTM has become one
of the most popular methods for industry applications of imaging
techniques for resource exploration and exploitation. Acoustic RTM
methods approximate the elastic solid Earth by a fluid. However, an
elastic formulation provides a better approximation to realistic me-
dia at exploration scales. Different elastic RTM methods have been
developed by applying the excitation-time imaging condition (Sun
& McMechan 1986; Chang & McMechan 1987; Sun & McMechan

2001), the cross-correlation imaging condition (Yan & Sava 2008;
Du et al. 2012) or utilizing elastic full-waveform inversion gradi-
ents (Tarantola 1986; Tromp et al. 2005; Fichtner et al. 2006a,b;
Fichtner 2010).

The migrated images may suffer from relative low spatial res-
olution, unbalanced amplitudes due to geometric spreading and
acquisition footprint. Those issues can be mitigated by the least-
squares migration (LSM). Different LSM techniques have been
proposed in seismic imaging: least-squares Kirchhoff migration
(Tarantola 1984; Lambare et al. 1992; Nemeth et al. 1999; Trad
2015, 2017), least-squares one-way wave equation migration (Kuehl
& Sacchi 2003; Rickett 2003; Wang et al. 2005; Tang 2009; Kaplan
et al. 2010; Kazemi & Sacchi 2015; Cheng et al. 2016) and least-
squares reverse time migration (LSRTM; Bourgeois et al. 1989;
Ostmo et al. 2002; Dai et al. 2012; Dong et al. 2012; Zhang
et al. 2015; Hou & Symes 2016; Xue et al. 2016; Yang et al.
2016; Yao & Jakubowicz 2016; Chen et al. 2017; Xu & Sacchi
2018). For inverting multicomponent data, elastic LSM methods
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62 K. Chen and M.D. Sacchi

Figure 1. Elastic inclusion model. (a) P-wave velocity model. (b) Smoothed P-wave velocity model. (c) S-wave velocity model. (d) Smoothed S-wave velocity
model. (e) Density model. (f) Smoothed density model.

have also been developed. For example, elastic least-squares Kirch-
hoff migration (Beydoun & Mendes 1989; Jin et al. 1992), elastic
least-squares one-way wave equation migration (Stanton & Sacchi
2015, 2017), and elastic LSRTM (Anikiev et al. 2013; Xu et al.
2016; Chen & Sacchi 2017; Duan et al. 2017; Feng & Schus-
ter 2017; Gu et al. 2017; Ren et al. 2017; Guo & McMechan
2018).

Conventional elastic LSRTM algorithms do not include density
image in the inversion. It inverts for P- and S-wave images. We
call this type of elastic LSRTM a two-parameter elastic LSRTM.

The density is either assumed to be constant or already known.
However, this assumption is not valid in realistic Earth media. Ne-
glecting the density image in elastic LSRTM may result in crosstalk
artefacts in the P- and S-wave images. Chen & Sacchi (2017) derive
an elastic LSRTM algorithm including the density image compo-
nent. However, they did not include density image inversion in their
numerical examples. Sun et al. (2017) study a frequency-domain
elastic LSRTM with density variation. Qu et al. (2018) present
an elastic LSRTM with density variation based on P- and S-wave
decoupled elastic velocity-stress wave equation. In this paper, we
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Three-parameter elastic LSRTM 63

Figure 2. Multicomponent data of the elastic inclusion model. (a) Horizontal particle velocity data. (b) Vertical particle velocity data.

propose a time-domain three-parameter elastic LSRTM algorithm
to simultaneously invert for density perturbation, P- and S-wave ve-
locity perturbation. The latter complements our previous work on
elastic LSRTM (Chen & Sacchi 2017). Our three-parameter elastic
LSRTM algorithm directly adopts the elastic wave equation with-
out splitting the equation to P- and S-wave components as in Qu
et al. (2018). We derive the elastic Born approximation and elastic
RTM operators using the continuous adjoint-state method (Lions
1971; Tarantola 1988; Tromp et al. 2005; Fichtner et al. 2006a,b;
Plessix 2006; Fichtner 2010; Chen & Lee 2015). We carefully dis-

cretize the two operators to ensure that they pass the dot-product
test. The latter allows us to use the conjugate gradient least-squares
(CGLS) method to solve the LSM optimization problem. We show
that the proposed three-parameter elastic LSRTM algorithm is able
to mitigate the crosstalk among density, P- and S-wave velocity
perturbations. Moreover, it improves the convergence and data fit-
ting over the conventional two-parameter elastic LSRTM. Because
of computational resource limit, we present numerical examples in
2-D case. However, the proposed method can be extended to 3-D
naturally.
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64 K. Chen and M.D. Sacchi

Figure 3. (a) True P-wave velocity perturbation. (b) P-wave velocity perturbation image estimated via elastic RTM. (c) True S-wave velocity perturbation.
(d) S-wave velocity perturbation image estimated via elastic RTM. (e) True density perturbation. (f) Density perturbation image estimated via elastic
RTM.

We have organized this paper as follows. First, we describe the
wave equation that we have adopted to simulate elastic wavefields.
Then, we introduce the three-parameter elastic Born approxima-
tion and the elastic RTM operators. Subsequently, we present the
proposed three-parameter elastic LSRTM algorithm. In the last sec-
tion, we evaluate the performance of the proposed algorithm with
numerical examples.

T H E O RY

Elastic wave equation

The propagation of seismic wave in a heterogeneous, isotropic
elastic Earth media is described by the elastic wave equation
(Virieux 1986)
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Figure 4. P-wave velocity perturbation image estimated via three-parameter elastic LSRTM (a) and two-parameter elastic LSRTM (b). S-wave velocity
perturbation image estimated via three-parameter elastic LSRTM (c) and two-parameter elastic LSRTM (d). Density perturbation image estimated via
three-parameter elastic LSRTM (e).
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Figure 5. Comparison of the convergence curves of three-parameter elastic
LSRTM (red) and two-parameter elastic LSRTM (blue) for elastic inclusion
model.
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where vx and vz are the horizontal and vertical particle velocity
fields, σ xx, σ xz and σ zz are the stress fields, ρ is the density, λ and
μ are the Lamé parameters, and fxx and fzz are the explosive source
terms. In the wave equation, we dropped the dependence on spatial
and temporal coordinates x and t of our variables to make the
notations concise but we understand that vx = vx(x, t), λ = λ(x),
etc. The elastic wave equation can be written in abstract functional
form as follows:

S(m̄)u = f, (2)

where m̄ = (ρ, λ, μ)T denotes the model parameter vector, S is the
wave equation operator, u = (vx, vz, σ xx, σ zz, σ xz)T is the wavefield
vector and f = (0, 0, fxx, fzz, 0)T is the source vector. The seismic
data are observed by receivers

d = Ru, (3)

where d = (dvx , dvz , 0, 0, 0)T is the seismic data vector and R is
the sampling operator.

Elastic Born approximation

Seismic migration techniques in oil and gas exploration rely on
the concept of the Born approximation. A perturbation around the

known background model parameters

ρ → ρ + δρ, (4a)

λ → λ + δλ, (4b)

μ → μ + δμ, (4c)

leads to a perturbation of the wavefields

vx → vx + δvx , (4d)

vz → vz + δvz, (4e)

σxx → σxx + δσxx , (4f)

σzz → σzz + δσzz, (4g)

σxz → σxz + δσxz . (4h)

Inserting eq. (4) into eq. (1), subtracting eq. (1) and dropping
second- and higher-order terms leads to the Born approximation for
the first-order velocity stress elastic wave equation system (Chen &
Sacchi 2017)
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where u = (vx, vz, σ xx, σ zz, σ xz)T is the incident wavefield or called
source-side wavefield in the background model m̄ = (ρ, λ, μ)T ,
δu = (δvx, δvz, δσ xx, δσ zz, δσ xz)T is the scattered wavefield due
to model perturbation δm̄ = (δρ, δλ, δμ)T and over-dot means
the time derivative. We parametrize our three-parameter elastic
LSRTM in terms of density, P- and S-wave velocity perturbations.
The different model parameter perturbations obey the following
expressions:⎛
⎝ δρ

δλ

δμ

⎞
⎠ =

⎛
⎝ 1 0 0

V 2
p − 2V 2

s 2ρVp −4ρVs

V 2
s 0 2ρVs

⎞
⎠

⎛
⎝ δ�

δVp

δVs

⎞
⎠ , (6)

where Vp = √
(λ + 2μ)/ρ and Vs = √

μ/ρ are background P- and
S-wave velocities, δVp and δVs are P- and S-wave velocity pertur-
bations.
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Three-parameter elastic LSRTM 67

Figure 6. Elastic Marmousi2 model. (a) P-wave velocity model. (b) Smoothed P-wave velocity model. (c) S-wave velocity model. (d) Smoothed S-wave
velocity model. (e) Density model. (f) Smoothed density model.

We can also express the above expressions in abstract functional
form. The model perturbation m̄ → m̄ + δm̄ leads to a perturbation
in wave equation (2)

(S + δS)(u + δu) = f, (7)

where δS is the wave equation operator perturbation, δu is the wave-
field perturbation, S is the wave equation operator in background
model and u is the wavefield in background model. Using wave
equation Su = f and neglecting second-order term, eq. (7) can be
simplified as

Sδu = −δSu. (8)

The perturbed seismic data can be expressed as

δd = Rδu = −RS−1δSu = −RS−1 ∂S

∂m̄
uδm̄, (9)

where R is the sampling operator, S−1 is the inverse of wave equa-
tion operator and the linear operator ∂S/∂m̄ denotes the diffraction
pattern of density and Lamé parameters (Operto et al. 2013; Pageot
et al. 2013). The vector δm̄ = (δρ, δλ, δμ)T denotes density and

Lamé parameters perturbations. The parameter perturbations are
connected via

δm̄ = Tδm, (10)

where T denotes the transformation matrix in eq. (6), and δm =
(δ�, δVp, δVs)T. The elastic Born approximation can be expressed
in abstract form as

δd = Lδm = −RS−1 ∂S

∂m̄
uTδm, (11)

where operator L indicates the elastic Born approximation operator.

Elastic reverse time migration

Seismic migration estimates subsurface structural image using the
seismic data recorded on the surface of the Earth. Migration can be
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Figure 7. Multicomponent data of the elastic Marmousi2 model. (a) Horizontal particle velocity data. (b) Vertical particle velocity data.

regarded as the adjoint of the Born approximation operator

δm∗ = L†δd = −T†
(

∂S

∂m̄
u

)† (
S−1

)†
R†δd

= −T†
(

∂S

∂m̄
u

)† (
S†)−1

R†δd, (12)

where † indicates the adjoint of an operator, L† is the elastic
RTM operator and δm∗ is the migrated elastic images (δm∗ =
(δ�∗, δV ∗

p , δV ∗
s )T ). We introduce the adjoint-state variable p =

(S†)−1R†δd. The latter satisfies the adjoint-state equation corre-
sponding to the state equation (2)

S†p = R†δd, (13)
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Figure 8. (a) True P-wave velocity perturbation. (b) P-wave velocity perturbation image estimated via elastic RTM. (c) True S-wave velocity perturbation.
(d) S-wave velocity perturbation image estimated via elastic RTM. (e) True density perturbation. (f) Density perturbation image estimated via elastic
RTM.

where S† is the adjoint wave equation operator and R†δd is the
adjoint source. The migrated elastic images can be simplified as

δm∗ = −T†
(

∂S

∂m̄
u

)†
p = −T†δm̄∗, (14)

where T† is the adjoint of the transformation matrix in eq. (6) and
δm̄∗ = (δρ∗, δλ∗, δμ∗)T . The image expression in eq. (14) is very
similar to Claerbout’s cross-correlation imaging condition (Claer-
bout 1985) but has an additional operator applied on the wavefield.

The adjoint-state equation corresponding to the first-order velocity-
stress elastic wave equation (1) can be derived
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Figure 9. P-wave velocity perturbation image estimated via three-parameter elastic LSRTM (a) and two-parameter elastic LSRTM (b). S-wave velocity
perturbation image estimated via three-parameter elastic LSRTM (c) and two-parameter elastic LSRTM (d). Density perturbation image estimated via
three-parameter elastic LSRTM (e).

where p = (υx, υz, τ xx, τ zz, τ xz)T is the adjoint-state wavefield and
δd = (δdvx , δdvz , 0, 0, 0)T is the data residual. The migrated density
and Lamé parameter images can be written as

δρ∗ = −
∫

(v̇xυx + v̇zυz)dt,

δλ∗ =
∫

(σ̇xx + σ̇zz)(τxx + τzz)

4(λ + μ)2
dt,

δμ∗ =
∫ [

σ̇xzτxz

μ2
+ (σ̇xx + σ̇zz)(τxx + τzz)

4(λ + μ)2

+ (σ̇xx − σ̇zz)(τxx − τzz)

4μ2

]
dt. (16)

The density and Lamé parameter perturbations can be transformed
to density and wave velocity perturbations
⎛
⎝ δ�∗

δV ∗
p

δV ∗
s

⎞
⎠ =

⎛
⎝ 1 V 2

p − 2V 2
s V 2

s

0 2ρVp 0
0 −4ρVs 2ρVs

⎞
⎠

⎛
⎝ δρ∗

δλ∗

δμ∗

⎞
⎠ . (17)

Three-parameter elastic least-squares reverse time
migration

To improve the spatial resolution of images and reduce the crosstalk
and artefacts in the images, we formulate the three-parameter elastic
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Figure 10. Comparison of images in the range 750 m < x < 1125 m and 125 m < z < 875 m. P-wave velocity perturbation: (a) true model, (b)
elastic RTM, (c) three-parameter elastic LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model, (f) elastic RTM, (g)
three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM. Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic
LSRTM.
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Figure 11. Comparison of images in the range 1500 m < x < 1875 m and 125 m < z < 875 m. P-wave velocity perturbation: (a) true model, (b)
elastic RTM, (c) three-parameter elastic LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model, (f) elastic RTM, (g)
three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM. Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic
LSRTM.
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Figure 12. Comparison of images in the range 0 m < x < 375 m and 125 m < z < 750 m. P-wave velocity perturbation: (a) true model, (b) elas-
tic RTM, (c) three-parameter elastic LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model, (f) elastic RTM, (g)
three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM. Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic
LSRTM.
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Figure 13. Comparison of the convergence curves of three-parameter elas-
tic LSRTM (red) and two-parameter elastic LSRTM (blue) for elastic Mar-
mousi2 model.

LSRTM as a least-squares inversion problem

J = 1

2

Ns∑
i=1

‖Liδm − δdi‖2
2, (18)

where Li is the elastic Born approximation operator for the ith shot,
δdi is the ith shot gather, δm = (δ�, δVp, δVs)T denotes elastic
images, Ns indicates the number of shots and ‖ · ‖2 indicates the

2 norm of vector. It is important to mention that we carefully
discretize the elastic Born and RTM operators (Li and L†

i ) to assure
they pass the dot-product test (Claerbout 1992; Chen & Sacchi
2017). We adopt the CGLS algorithm (Hestenes & Stiefel 1952;
Paige & Saunders 1982; Bjorck 1996) to solve eq. (18). The latter
only requires two operators Li and L†

i that are applied ‘on the fly’
to vectors.

N U M E R I C A L E X A M P L E S

Our code was written in C language and parallelized with Mes-
sage Passing Interface over shots. The communication between
different threads happens when the gradients are collected or dis-
tributed in each elastic LSRTM iteration. Our forward-modelling
engine adopts a time-domain staggered-grid finite-difference (FD)
scheme (Virieux 1986) to discretize the elastic wave equation and
the unsplit convolutional perfectly matched layer boundary (Ko-
matitsch & Martin 2007) to absorb the artificial reflections from
computational boundaries. In our code, the spatial FD order is
selectable. The code automatically computes the FD coefficients
from the user-specified FD order (Liu & Sen 2009). In our elas-
tic RTM code (L†), we use the source-wavefield reconstruction
method (Gauthier et al. 1986; Dussaud et al. 2008) to avoid sav-
ing the entire forward source-side wavefield. Our elastic Born (L)

and RTM (L†) codes pass the dot-product test (Claerbout 1992).
We present two numerical examples to test the proposed algorithm.
We compare the results of the proposed three-parameter elastic
LSRTM and the results of two-parameter elastic LSRTM (Chen
& Sacchi 2017). The two-parameter elastic LSRTM takes the het-
erogeneous background density, P- and S-wave velocity models as
input models. We emphasize that our synthetic multicomponent
data are the solution of the time-domain elastic wave equation (1).
We do NOT use the linearized Born modelling to generate data. The
data contain multiples that are not honoured by the linearized Born
modelling.

Elastic inclusion model

Figs 1(a), (c) and (e) show the true P- and S-wave velocity and
density models. This model may not be realistic. However, it is
useful to demonstrate the multiparameter crosstalk in the elastic
imaging. The model has 501 × 301 grid points with grid interval
of 5 m. There are 101 shots located along the surface of the model
with an interval of 25 m. There are 501 receivers located along
the surface of the model with an interval of 5 m. We use a Ricker
wavelet with central frequency 20 Hz as the source wavelet. The
observed data (Fig. 2) are simulated using our time-domain elastic
FD code. The data contain full-wave modes except for direct waves.
Figs 1(b), (d) and (f) are the migration P- and S-wave velocity and
density models. The migration models are obtained by convolving
the true models with a 2-D Gaussian filter of 50 m width. Figs 3(a),
(c) and (e) show the true P- and S-wave velocity and density
perturbations.

The elastic RTM generates images with strong multiparameter
crosstalk (Figs 3b, d and f). The elastic RTM images are obtained
by kernels in eq. (16). Results, in this case, cannot be interpreted
properly. Moreover, there are high-amplitude low-frequency RTM
artefacts in the images even after applying a Laplacian filtering.
We adopted a number of 80 iterations for the two-parameter elastic
LSRTM. The relative data misfit reduces to 10 per cent. Our results
show that the method reduced the crosstalk between the P- and
S-wave velocity perturbation images (Figs 4b and d). However, the
density perturbation manifests as crosstalk in the estimated P- and
S-wave velocity perturbation images. It is clear that the results will
impede the proper interpretation of the P- and S-wave images. The
proposed three-parameter elastic LSRTM can suppress the crosstalk
(Figs 4a, c and e). Moreover, typical RTM artefacts have decreased
and the spatial resolution of the images have improved. The number
of iterations of the three-parameter elastic LSRTM is 35, and the
relative data misfit also reduces to 10 per cent. We also compare the
convergence curves of the three-parameter elastic LSRTM and the
two-parameter elastic LSRTM (Fig. 5). Including density perturba-
tion in the inversion leads to an improvement in the convergence of
the iterative inversion.

Elastic Marmousi2 model

In this section, we evaluate the proposed algorithm on a more com-
plex model: the elastic Marmousi2 model (Martin et al. 2006). We
reduce the size of the original model to 1001 × 426 grids with grid
interval 2.5 m. We also replace the water layer by a low-velocity
layer in the original model. Figs 6(a), (c) and (e) show the true P-
and S-wave velocity and density models. There are uncorrelated
structures in the three models (indicated by the white triangles)
representing potential hydrocarbon reservoirs. There are 101 shots
located along the surface of the model with interval of 25 m. There
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Figure 14. The 50th shot gather with different SNRs. (a) Noise-free horizontal component data. (b) Horizontal component data with SNR 1 dB. (c) Horizontal
component data with SNR 0 dB. (d) Noise-free vertical component data. (e) Vertical component data with SNR 1 dB. (f) Vertical component data with SNR
0 dB.

are 1001 receivers located along the surface of the model with
interval of 2.5 m. The source wavelet is a Ricker wavelet with
central frequency 35 Hz. The observed data are simulated using
our time-domain elastic FD code (Fig. 7). The data contain full-
wave modes except for direct waves. Figs 6(b), (d) and (f) are the
smoothed background P- and S-wave velocity and density mod-
els. Background model smoothing is obtained by convolving the
true models with a 2-D Gaussian filter of 35 m width. Figs 8(a),

(c) and (e) show the true P- and S-wave velocity and density
perturbations.

The images generated by elastic RTM contain strong low-
frequency RTM artefacts (Figs 8b, d and f). Moreover, the am-
plitudes for the shallow and deep parts of the images are unbal-
anced. A particular issue is that the elastic RTM generates crosstalk
among the three elastic images in areas where the models are
uncorrelated. The two-parameter elastic LSRTM (Chen & Sac-
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Figure 15. Three-parameter elastic LSRTM images using data with different SNRs. Estimated density images from noise-free data (a), data with SNR 1 dB
(b) and data with SNR 0 dB (c). Estimated P-wave velocity images from noise-free data (d), data with SNR 1 dB (e) and data with SNR 0 dB (f). Estimated
S-wave velocity images from noise-free data (g), data with SNR 1 dB (h) and data with SNR 0 dB (i).

chi 2017) can largely resolve those problems (Figs 9b and d).
However, it does not provide an estimation of the density per-
turbation image. These results were obtained after 100 iterations
of the two-parameter elastic LSRTM. And the relative data mis-
fit reduces to about 40 per cent. The proposed three-parameter
elastic LSRTM is able to estimate the P- and S-wave velocity
and density perturbation images (Figs 9a, c and e). The images
have more balanced amplitudes, fewer low-frequency RTM arte-
facts and reduced multiparameter crosstalk. These results were ob-
tained after 100 iterations of the three-parameter elastic LSRTM.
And the relative data misfit reduces to about 23 per cent. To
appreciate details more clearly, we compare the elastic images
in the three windows around the three white triangles in the
model (Figs 6a, c and e) as Figs 10, 11 and 12. The three-
parameter elastic LSRTM generated images with highest spatial
resolution and fewest artefacts and crosstalk. We compare the
convergence curves of the three-parameter elastic LSRTM and
two-parameter elastic LSRTM in Fig. 13. The three-parameter
elastic LSRTM converges faster than the two-parameter elastic
LSRTM.

The effect of noise

In this section, we investigate the effect of noise on results of the
elastic LSRTM. We generate the noise as follows. For each shot
gather, a random noise gather is generated following a standard
normal distribution. Then, the noise gather is filtered at the max-
imum frequency band of the data (Blom et al. 2017). Finally, the
filtered noise gather is scaled to a predefined signal-to-noise ratio
(SNR). The SNR in decibels (dB) for a shot gather is defined as

SNR = 10 log10

(
As

An

)2

, (19)

where As and An are the root-mean-square amplitudes of signal and
noise in the shot gather, respectively. Fig. 14 shows the 50th shot
gather with different SNRs for the elastic inclusion model example.
Fig. 15 shows the estimated density, P- and S-wave velocity im-
ages by three-parameter elastic LSRTM (after 35 iterations) using
data with different SNRs. Fig. 16 shows the 50th shot gather with
different SNRs for the elastic Marmousi2 model example. Fig. 17
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Figure 16. The 50th shot gather with different SNRs. (a) Noise-free horizontal component data. (b) Horizontal component data with SNR 1 dB. (c) Horizontal
component data with SNR 0 dB. (d) Noise-free vertical component data. (e) Vertical component data with SNR 1 dB. (f) Vertical component data with SNR
0 dB.

shows the corresponding recovered images by three-parameter elas-
tic LSRTM (after 100 iterations). The results from noisy data and
noise-free data are roughly similar. The presence of data noise de-
teriorates the estimated images. The data noise leads to noise arte-
facts in the recovered images. As mentioned in previous sections,
the Laplacian filter has been applied on the migration/inverted im-
ages to remove the high-amplitude low-frequency RTM artefacts. It

will also reduce the amount of noise artefacts generated from data
noise.

D I S C U S S I O N

In this paper, the resolution of images is referred to as the spatial
resolution. It is the minimum distance between two point scatters
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Figure 17. Three-parameter elastic LSRTM images using data with different SNRs. Estimated density images from noise-free data (a), data with SNR 1 dB
(b) and data with SNR 0 dB (c). Estimated P-wave velocity images from noise-free data (d), data with SNR 1 dB (e) and data with SNR 0 dB (f). Estimated
S-wave velocity images from noise-free data (g), data with SNR 1 dB (h) and data with SNR 0 dB (i).

that can be resolved in the migrated/inverted section (Safar 1985;
Schuster et al. 2017). The spatial resolution can be specified in
terms of vertical and lateral resolution (Berkhout & Van Wulfften
Palthe 1979). The spatial resolution limit of migration algorithms
depends on the seismic experiment configuration (acquisition aper-
ture and source bandwidth), migration/inversion algorithm used and
the initial background model (Beylkin et al. 1985; Levin 1998).

The resolution of model parameters in an inverse problem can
also be quantified. Quantitative resolution analysis of LSM algo-
rithms can be performed based on resolution matrix (Berryman
1994a,b; Zhang & McMechan 1995; Minkoff 1996; Yao et al. 1999;
Fomel et al. 2002; Zhang & Thurber 2007; Song et al. 2011), point
spreading function (Humphreys & Clayton 1988; Alumbaugh &
Newman 2000; Oldenborger & Routh 2009) and Hessian (Fichtner
& Trampert 2011; Fichtner & Leeuwen 2015).

When the background migration model is good enough, the den-
sity image estimated by elastic LSRTM can be linked to rock prop-
erties and help quantitive interpretation. It is worth to mention that
the density–velocity trade-off has been investigated in the field of
waveform inversion (Cara et al. 1984; Tanimoto 1991; Kohn et al.
2012; Płonka et al. 2016; Blom et al. 2017; Koelemeijer et al. 2017;
Pan et al. 2018).

C O N C LU S I O N S

The conventional two-parameter elastic LSRTM algorithm does not
consider density image in the inversion. Neglecting density image

in the inversion may generate crosstalk artefacts in P- and S-wave
images. We propose a time-domain three-parameter elastic LSRTM
method. It simultaneously invert for density, P- and S-wave ve-
locity perturbation images. We derive the elastic Born approxima-
tion and elastic RTM operators using the time-domain continuous
adjoint-state method. We carefully discretize the two operators to
assure that they pass the dot-product test. The latter allows us to
use the CGLS method to solve the LSM quadratic optimization
problem on the fly. We observe that the proposed three-parameter
elastic LSRTM can decouple the three isotropic elastic parameters
and suppress the crosstalk. Moreover, it provides faster conver-
gence and an improved data fitting than the two-parameter elastic
LSRTM.
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