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S U M M A R Y
We present a time-domain matrix-free elastic Gauss–Newton full-waveform inversion (FWI)
algorithm. Our algorithm consists of a Gauss–Newton update with a search direction calculated
via elastic least-squares reverse time migration (LSRTM). The conjugate gradient least-squares
(CGLS) method solves the LSRTM problem with forward and adjoint operators derived via
the elastic Born approximation. The Hessian of the Gauss–Newton method is never explicitly
formed or saved in memory. In other words, the CGLS algorithm solves for the Gauss–
Newton direction via the application of implicit-form forward and adjoint operators which
are equivalent to elastic Born modelling and elastic reverse time migration, respectively. We
provide numerical examples to test the proposed algorithm where we invert for P- and S-wave
velocities simultaneously. The proposed algorithm performs positively on mid-size problems
where we report solutions of slight improvement than those computed using the conventional
non-linear conjugate gradient method. In spite of the aforementioned limited gain, the theory
developed in this paper contributes to a better understanding of time-domain elastic Gauss–
Newton FWI.

Key words: Inverse theory; Waveform inversion; Computational seismology; Seismic to-
mography; Wave propagation.

1 I N T RO D U C T I O N

Full-waveform inversion (FWI) consists of quantitatively estimating subsurface parameters using observed seismic waveform data. FWI
requires solving an optimization problem where a non-linear objective function is minimized. The cost function measures the difference
between observed and numerically modelled seismic data. The development of FWI starts in the early 1980s with the original work of
Bamberger et al. (1979 and 1982) where the adjoint-state method of optimal control theory (Lions 1971) is applied to invert for the
coefficients of the 1-D acoustic wave equation. On a similar vein, Tarantola (1984) formulates time-domain acoustic FWI as a non-linear
least-squares inverse problem which is solved using a gradient-based iterative algorithm (Tarantola & Valette 1982). Numerical examples for
2-D time-domain acoustic FWI are provided by Gauthier et al. (1986). To better approximate the realistic earth, elasticity is further incorporated
in FWI by several authors (Tarantola 1986; Mora 1987a, 1988; Sears et al. 2008). Moreover, the development of high-performance computing
in recent years has enabled 3-D time-domain elastic FWI at exploration scale (Guasch et al. 2012; Vigh et al. 2014; Borisov & Singh 2015;
Borisov et al. 2018; Oh et al. 2018; Trinh et al. 2018) and global scale (Fichtner et al. 2009; Tape et al. 2009, 2010). In the last decade,
geophysical prospection of oil and gas has adopted FWI for estimating velocity models (Xu et al. 2012; Brossier et al. 2015; Luo et al.
2016; Mao et al. 2016; Wang et al. 2016; Brandsberg-Dahl et al. 2017), high-resolution imaging (Plessix & Perkins 2010; Sirgue et al. 2010;
Baumstein 2014; Lu 2016; Shen et al. 2018) and time-lapse reservoir monitoring (Routh et al. 2012; Raknes & Arntsen 2014; Alemie & Sacchi
2016; Yang et al. 2016; Kamei & Lumley 2017). Conventional time-domain FWI algorithms are generally implemented via gradient-based
methods, such as the method of steepest descent, the non-linear conjugate gradient method or quasi-Newton methods. The Gauss–Newton
method and the Newton’s method normally converge faster than gradient-based techniques, a characteristic reported in numerous studies
(Pratt et al. 1998; Santosa & Symes 1988; Gratton et al. 2007; Burstedde & Ghattas 2009).

Gauss–Newton and Newton’s methods have been around for a long time for solving non-linear least-squares inverse problems. For
instance, Santosa & Symes (1988) develop a truncated Newton method for the 1-D time-domain acoustic FWI problem. In each Newton’s
iteration, the Hessian can be implicitly inverted using the conjugate gradient method. The Gauss–Newton method is a simplified case of
Newton’s method where the second derivative is discarded (Santosa & Symes 1988). Akcelik et al. (2002) implement a 3-D time-domain
acoustic Gauss–Newton-Krylov FWI. The Gauss–Newton Hessian is implicitly inverted using the symmetric conjugate gradient algorithm.
Epanomeritakis et al. (2008) extend the Gauss–Newton-Krylov FWI to the 3-D time-domain elastic case, but only a single parameter
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Figure 1. Elastic inclusion model. (a) True P-wave velocity model. (b) True S-wave velocity model.

(shear modulus) is inverted in their numerical examples. Burstedde & Ghattas (2009) investigate a 1-D time-domain acoustic FWI using
the truncated Newton method proposed in Santosa & Symes (1988) and recommend early termination of the conjugate gradient to avoid
directions of negative curvature. Recently, Yang et al. (2018) present a 2-D time-domain truncated Newton FWI for visco-acoustic media. In
the frequency-space domain, Metivier et al. (2013, 2014, 2017) and Anagaw & Sacchi (2018a) apply the truncated Newton method to the
2-D acoustic FWI problem. Li et al. (2016) also investigate an �1 norm regularized Gauss–Newton FWI method in frequency-space domain.
More recently, Witte et al. (2018) review different optimization methods for FWI in frequency-space domain.

It is worth to mention a more straightforward way to implement Gauss–Newton and Newton’s methods by explicitly computing, storing
and inverting the Hessian matrix (Pratt et al. 1998; Sheen et al. 2006; Chen et al. 2007; Pan et al. 2016). However, this approach is too
computationally expensive and unfeasible for application to large-scale problems.

The direct solver for the wave equation in the frequency domain requires large computer memory. This becomes the principal bottleneck
for applying frequency-domain FWI methods in 3-D large scale problems (Vigh & Starr 2008b). Also, the frequency-domain methods do not
allow flexible time axis related operations. Hence, the time-domain techniques are becoming more and more popular in the field on FWI. The
material present in our paper is in time-space domain.

In this paper, we present a time-domain matrix-free elastic Gauss–Newton FWI algorithm (Chen & Sacchi 2018). Compared to Newton’s
method, the Gauss–Newton method for solving the non-linear least-squares inverse problem does not require the computation of the second
derivatives of the misfit function. One of the advantages of the Gauss–Newton method over Newton’s method is that its Hessian is always
positive definite which is necessary for local convergence (Gratton et al. 2007). Our matrix-free Gauss–Newton algorithm is a nested process:
the outer loop is the Gauss–Newton update (Nocedal & Wright 2006) and the inner loop is the conjugate gradient least-squares (CGLS)
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Time-domain elastic Gauss–Newton FWI 1009

Figure 2. (a) Starting P-wave velocity model. (b) Starting S-wave velocity model.

Table 1. Parameters used in the elastic inclusion model inversion example.

Frequency group Stopping criterion for FWI loop ε Stopping criterion for CGLS loop ξ

3–5 Hz 0.01 0.5
3–10 Hz 0.05 0.5
3–15 Hz 0.2 0.5
3–30 Hz 0.2 0.5

method (Hestenes & Stiefel 1952; Paige & Saunders 1982) that estimates the Gauss–Newton search direction. We recognize that the inner
loop is equivalent to applying an elastic least-squares reverse time migration (LSRTM) to data residuals (Chen & Sacchi 2017; Feng &
Schuster 2017; Duan et al. 2017; Ren et al. 2017). The Fréchet derivative operator acts as the elastic Born modelling operator and the adjoint
of Fréchet derivative operator acts as the elastic RTM operator. In the CGLS algorithm, the step size is analytically calculated without of the
need for a line search. The CGLS method is also preconditioned using an elastic pseudo-Hessian operator (Shin et al. 2001). The presented
algorithm is matrix-free; it only requires the forward Fréchet derivative, and the adjoint Fréchet derivative operators applied in implicit forms
to vectors. The operators are applied on vectors efficiently via the adjoint-state method (Lions 1971; Tromp et al. 2005; Fichtner et al. 2006;
Plessix 2006). Once we obtain the Gauss–Newton search direction, the algorithm uses a line search based on parabolic fitting (Vigh et al.
2009) to estimate the step length. The proposed algorithm is adopted to invert for P- and S-wave velocities simultaneously. We develop the
whole theory in 3-D, but we present numerical examples in 2-D which conform to our current computational resources.
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Figure 3. (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave velocity model by elastic Gauss–Newton FWI.

Our research complements previous work on the application of the Gauss–Newton method to FWI problem. It also provides numerical
analysis tests for a better understanding of the algorithm. We stress the following differences between our work and the work mentioned above
and summarize our contributions in the next paragraph. First, our research is focused on elastic parameters inversion using the truncated
Gauss–Newton method. For instance, Gauss–Newton optimization is also adopted by Yang et al. (2018) and Metivier et al. (2013). However,
we stress that Yang et al. (2018)’s analysis pertains to waveform inversion in visco-acoustic media and Metivier et al. (2013) investigate single
parameter inversion in acoustic media via frequency-domain FWI. Closer to our work, Epanomeritakis et al. (2008) present a Newton-CG
method for elastic FWI. However, Epanomeritakis et al. (2008) only invert for one parameter in their numerical examples, the shear modulus.
Moreover, their inversion is for a lithospheric scale problem. To the best of our knowledge, our paper is the first presentation of the numerical
results of simultaneous inversion of P- and S-wave velocities using the matrix-free truncated Gauss–Newton method in the time domain.
Other contributions worth mentioning include the following. We estimate the Gauss–Newton direction using the CGLS method (Paige &
Saunders 1982) and explicitly point out the connection between elastic LSRTM and the elastic Gauss–Newton FWI. This framework offers
considerable freedom to design and apply Gauss–Newton FWI algorithms from existing LSRTM codes that nowadays are becoming popular
in the exploration seismology community (Anikiev et al. 2013; Xu et al. 2016; Chen & Sacchi 2017; Duan et al. 2017; Feng & Schuster
2017; Gu et al. 2017; Ren et al. 2017; Sun et al. 2018). We also point out that we adopt the optimize-then-discretize approach (Borzi &
Schulz 2012) for designing of the proposed algorithm. The derivation of the adjoint-state equation, the Fréchet derivative and its adjoint are
in continuous functional space form and the resulted formulations are discretized later to develop a numerical code.

Our work has lead to several interesting observations. The proposed elastic Gauss–Newton FWI generates slightly better-inverted models
than the elastic non-linear conjugate gradient FWI for inverting localized velocity anomalies. The computational cost of the proposed method
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Figure 4. (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave velocity model by elastic Gauss–Newton FWI.

is tolerable for mid-scale problems. We recognize that the proposed technique does not provide significant improvement when compared
to the non-linear conjugate gradient method for simultaneously inverting for P- and S-wave velocities. The latter is particularly true when
comparing smooth background model parameters estimated by our Gauss–Newton algorithm and the non-linear conjugate gradient method.
For large-scale computational problems, we believe that the proposed Gauss–Newton solver might not be the best alternative for time-
domain elastic FWI because similar results could be obtained via a less expensive solver such as non-linear conjugate gradient. However, we
understand that last comment is debatable and ongoing research with more exhaustive tests is needed to fully address the advantage of adopting
Gauss–Newton solvers for time-domain elastic FWI. For example, the elastic FWI could begin with non-linear conjugate gradient algorithm
and switch over to Gauss–Newton method in the process considering the trade-off between convergence property gain and computational
cost of the Gauss–Newton algorithm (Burstedde & Ghattas 2009). Moreover, the crosstalk between density and velocities is more severe than
the crosstalk between P- and S-velocities in the elastic FWI. The Gauss–Newton algorithm has the potential to reduce the crosstalk between
the density and velocities in elastic FWI which provides a future research direction. From a more general perspective, our study nevertheless
formalizes connections to current work in the field of elastic migration via LSRTM.

This paper is organized as follows: First, we describe the system of equations that we have adopted to forward model elastic wavefields.
We then discuss the general time-domain elastic Gauss–Newton FWI algorithm. Subsequently, we formulate the Gauss–Newton search
direction as the solution of an elastic LSRTM problem. Then, we solve the Gauss–Newton search direction using CGLS with preconditioning
and summarize the time-domain matrix-free elastic Gauss–Newton FWI algorithm. In the last section, we provide numerical examples to
evaluate the proposed algorithm.
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(a) (b)

Figure 5. Profiles of inverted P-wave velocity models at (a) x = 650 m and (b) x = 1450 m. Blue: true model; Red: starting model; Purple: inverted model by
elastic NLCG FWI; Green: inverted model by elastic Gauss–Newton FWI.

(a) (b)

Figure 6. Profiles of inverted S-wave velocity models at (a) x = 650 m and (b) x = 1450 m. Blue: true model; Red: starting model; Purple: inverted model by
elastic NLCG FWI; Green: inverted model by elastic Gauss–Newton FWI.
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2 T H E O RY

2.1 The forward problem in the time-space domain

The propagation of seismic waves in heterogeneous, isotropic, elastic earth media can be expressed by the elastodynamic equations (Virieux
1986; Graves 1996)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(1)

where (vx , vy, vz) are the horizontal and vertical particle velocity fields, (σ xx, σ yy, σ zz, σ yz, σ xz, σ xy) are the stress fields, ( fσxx , fσyy , fσzz , fσyz ,

fσxz , fσxy ) are the source terms, ρ is density, λ and μ are the Lamé parameters. These coefficients describe the spatially variable property of
the earth. The latter is related to the seismic P- and S-wave velocities via λ + 2μ = ρV 2

p and μ = ρV 2
s . To make the notation concise, we

drop the dependency on spatial and temporal coordinates x and t of our variables [i.e. ρ = ρ(x) and vx = vx (x, t)]. The elastic wave equation
complies the zero initial condition, the free surface boundary condition on the surface of the modelled earth (z = 0), and absorbing boundary
conditions on the sides and bottom of the model. To make our analysis more clear, the elastic wave equation given by eq. (1) can be organized
as (Vigh et al. 2014)

⎧⎪⎨
⎪⎩

ρ
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(3)

where v denotes the particle velocity field, σ is the stress field, C is the isotropic elastic tensor in Voigt notation, D is a collection of spatial
differential operators, and fσ is the source term. The partial differential eqs (2) can be expressed as

(
ρI 0
0 I

)
∂

∂t
u −

(
0 D

CDT 0

)
u = f, (4)
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1014 K. Chen and M. D. Sacchi

Figure 7. The model update direction in the first non-linear FWI iteration in the first frequency band (3–5 Hz). (a) Direction of Vp update in elastic NLCG
FWI (negative of gradient direction). (b) Direction of Vs update in elastic NLCG FWI. (c) Direction of Vp update in elastic Gauss–Newton FWI (solved by
CGLS). (b) Direction of Vs update in elastic Gauss–Newton FWI. Figures are plotted with original scale.

where u =
(

v
σ

)
is the wavefield, f =

(
0
fσ

)
is the source and I is identity matrix. Note that, the wavefield u in eq. (4) depends on the spatial

and temporal coordinates x and t, that is u = u(x, t).
A more general representation of the wave equation can be written as

Su = f, (5)

where u is the wavefield vector in space U, f is the source vector in space F, S is the wave equation operator mapping U to F. The wave
equation operator is a function of media parameters. Hence, we denote S = S(m), where m represents model parameters. The model vector
m belongs to the model space M. The solution of the wave equation can be abstractly expressed as

u = S−1f = Gf, (6)

where G = S−1 is the inverse of the wave equation operator S and is called the Green’s operator (Tarantola 1988). The wavefield u is a
non-linear implicit function of the vector of model parameters m

u = u(m). (7)

Seismic data d are time series recorded by receivers deployed on the surface of the earth and the recording process entails extracting
seismograms from u. This operator can be represented via the following expression

d = Ru, (8)

where R is the sampling operator also called the restriction operator.
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Figure 8. Data and residuals for elastic NLCG FWI. (a) Observed horizontal component data of shot at x = 1000 m. (b) Horizontal component data modelled
by elastic NLCG FWI inverted models. (c) Horizontal component data residual. (d) Observed vertical component data of shot at x = 1000 m. (e) Vertical
component data modelled by elastic NLCG FWI inverted models. (f) Vertical component data residual.

2.2 General formulation of time-domain elastic Gauss–Newton FWI

Elastic FWI estimates the distribution of subsurface elastic parameters from the observed seismic data. It is usually formulated as a non-linear
least-squares inverse problem that minimizes the functional (Tarantola 1984, 1986)

J (m) = 1

2

Ns∑
i=1

‖di (m) − dobs
i ‖2

2, (9)

where di(m) represents the forward modelled seismic data for the ith seismic source. The vector dobs
i denotes the observed seismic data for

the ith source, and ‖ · ‖2 denotes the �2 norm of a vector. The non-linear inverse problem belongs to a class often called the partial differential
equations constrained optimization problem (Lions 1971; Borzi & Schulz 2012). Given the large size of the model space, global optimization
methods are too expensive for solving FWI problems. Hence, FWI is usually solved via iterative local optimization algorithms.

Introducing a model perturbation m → m + δm and a second-order Taylor series expansion, the objective function in the vicinity of m
is given by the following expression (Virieux & Operto 2009)

J (m + δm) = J (m) + δmT ∂ J (m)

∂m
+ 1

2
δmT ∂2 J (m)

∂m2
δm + O(‖δm‖3), (10)
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Figure 9. Data and residuals for elastic Gauss–Newton FWI. (a) Observed horizontal component data of shot at x = 1000 m. (b) Horizontal component data
modelled by elastic Gauss–Newton FWI inverted models. (c) Horizontal component data residual. (d) Observed vertical component data of shot at x = 1000 m.
(e) Vertical component data modelled by elastic Gauss–Newton FWI inverted models. (f) Vertical component data residual.

where [∂J(m)]/[∂m] is the gradient and [∂2J(m)]/[∂m2] is the Hessian of the objective function. In the vicinity of m, the objective function
is linearized and an optimal model update δm should satisfy ∂J(m + δm)/∂δmT = 0. This leads to the following Newton step

δm = −
[

∂2 J (m)

∂m2

]−1
∂ J (m)

∂m

= −H−1g,

(11)

where H = [∂2J(m)]/[∂m2] denotes the Hessian operator and g = [∂J(m)]/[∂m] denotes the gradient vector. Eq. (11) indicates that the
gradient is preconditioned by the inverse of the Hessian. The inverse of Hessian acts as a refocusing, scaling and de-multiple operator (Pratt
et al. 1998).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/2/1007/5874260 by Veterinary M

edicine Library E user on 21 D
ecem

ber 2020



Time-domain elastic Gauss–Newton FWI 1017

Figure 10. Data residuals comparison for shot at x = 1000 m. The data are plotted with heavy clipping (one fifth of the scale used in Figs 8 and 9). (a)
Horizontal component data residual of elastic NLCG FWI. (b) Vertical component data residual of elastic NLCG FWI. (c) Horizontal component data residual
of elastic Gauss–Newton FWI. (d) Vertical component data residual of elastic Gauss–Newton FWI.
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(a) (b)

(c) (d)

Figure 11. Normalized data misfit versus number of non-linear FWI iterations for elastic NLCG FWI and elastic Gauss–Newton FWI in frequency band (a)
3–5 Hz, (b) 3–10 Hz, (c) 3–15 Hz, (d) 3–30 Hz. Blue: data misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss–Newton FWI.

The gradient is the derivative of the objective function with respect to model parameters

g = ∂ J (m)

∂m
=

Ns∑
i=1

(
∂di

∂m

)† (
di − dobs

i

)
, (12)

where ∂di/∂m is the Fréchet derivative operator and the symbol † denotes the adjoint of an operator. Eq. (12) indicates that the gradient of
FWI is generated by applying the adjoint Fréchet derivative operator to data residuals. It is equivalent to a pre-stack elastic RTM algorithm
applied to data residuals (Tarantola 1986).
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(a) (b)

(c) (d)

Figure 12. Normalized data misfit versus number of forward simulations for elastic NLCG FWI and elastic Gauss–Newton FWI in frequency band (a) 3–5 Hz,
(b) 3– 10 Hz, (c) 3–15 Hz, (d) 3–30 Hz. Blue: data misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss–Newton FWI.

In a similar way, the Hessian is obtained by differentiating the gradient with respect to model parameters

H = ∂2 J (m)

∂m2

=
Ns∑

i=1

[(
∂di

∂m

)† (
∂di

∂m

)
+

(
∂2di

∂m2

)† (
di − dobs

i

)]
. (13)
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Figure 13. Elastic Marmousi2 model. (a) True P-wave velocity model. (b) True S-wave velocity model.

eq. (13) is the full Hessian of the FWI problem. The second-order partial derivative is related to second-order scattering effects. The second-
order effect is small when the objective function is close to a minimum (Tarantola 2005). Dropping the second-order term in the full Hessian
leads to the Gauss–Newton Hessian (Pratt et al. 1998; Fichtner & Trampert 2011)

HG N =
Ns∑

i=1

(
∂di

∂m

)† (
∂di

∂m

)
. (14)

The Gauss–Newton Hessian is the cascade of forward and adjoint Fréchet derivative operators. The Gauss–Newton step can be expressed as

δm = −HG N
−1g. (15)

The inverse of Gauss–Newton Hessian focuses the gradient and compensates the uneven illumination of the subsurface (Pratt et al. 1998).
The Gauss–Newton method for elastic FWI minimizes the non-linear least-squares objective function by iteratively updating the model. The
updated model at (k + 1)th iteration can be written as

m(k+1) = m(k) + η(k)δm(k) = m(k) − η(k)(H(k)
G N )

−1
g(k), (16)

where m(k) is the current model, η(k) is a step-size scalar, and δm(k) is the Gauss–Newton search direction, H(k)
G N is the Gauss–Newton Hessian

and g(k) is the gradient. In our work, the step size η(k) is estimated by a parabolic interpolation through three points [η, J(m(k) + ηδm(k))] (Vigh
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Time-domain elastic Gauss–Newton FWI 1021

Figure 14. (a) Starting P-wave velocity model. (b) Starting S-wave velocity model.

et al. 2009; Virieux & Operto 2009). The general formulation of the time-domain elastic Gauss–Newton FWI algorithm is summarized by
Algorithm 1

Algorithm 1 Time-domain elastic Gauss-Newton FWI

Initialize: m(0)

for k = 0, 1, · · · while it does not converge do
1. Forward modelling: d(k)

i = di (m(k)), i = 1, · · · , Ns

2. Compute data residuals: δd(k)
i = dobs

i − d(k)
i , i = 1, · · · , Ns

3. Compute Gauss-Newton search direction: δm(k) = −(H(k)
G N )

−1
g(k)

4. Compute step size η(k) via parabolic fitting line search.
5. m(k+1) = m(k) + η(k)δm(k)

end
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1022 K. Chen and M. D. Sacchi

Table 2. Parameters used in the elastic Marmousi2 model inversion example.

Frequency group Stopping criterion for FWI loop ε Stopping criterion for CGLS loop ξ

2–3 Hz 0.01 0.5
2–5 Hz 0.1 0.5
2–10 Hz 0.1 0.5
2–30 Hz 0.1 0.5

Figure 15. (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave velocity model by elastic Gauss–Newton FWI.

2.3 Solving for the Gauss–Newton step via the CGLS algorithm combined with the adjoint-state method

2.3.1 Formulation of the Gauss–Newton step as an elastic LSRTM problem

In this section, we will drop the FWI iteration index k from our mathematical expression to make the notation more concise but we understand
that the quantities depend on the FWI iteration index. In the definition of the general Gauss–Newton iteration algorithm (eq. 16), the Gauss–
Newton Hessian HGN needs to be inverted. However, explicitly computing, storing and inverting the Hessian are prohibitively expensive
operations for realistic scale problem. Instead, we solve for the Gauss–Newton step update via a matrix-free conjugate gradient least-squares
algorithm in conjunction with the adjoint-state method. The Gauss–Newton step 15 can be computed via solving the linear system of equations
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Time-domain elastic Gauss–Newton FWI 1023

Figure 16. (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave velocity model by elastic Gauss–Newton FWI.

given by

HG N δm = −g. (17)

If we use Li to denote the Fréchet derivative operator (∂di/∂m) and δdi to denote the data residual (dobs
i − di ) for the ith source, the linear

system (17) becomes

Ns∑
i=1

L†
i Liδm =

Ns∑
i=1

L†
i δdi . (18)

Solving the above system entails the solution of a least-squares inversion problem where we minimize the following cost function

JG N (δm) = 1

2

Ns∑
i=1

‖Liδm − δdi‖2
2. (19)

We recognize that this is actually the elastic LSRTM formulation (Chen & Sacchi 2017, 2019). If we adopt the exploration imaging jargon,
the Fréchet derivative operator Li is indeed the elastic Born modelling operator, and the adjoint of Fréchet derivative operator L†

i is the
elastic RTM operator. We choose to solve the optimization problem (19) using the conjugate gradient least-squares algorithm that entails the
implicit-form application of the elastic Born modelling operator and the elastic RTM operator. In the appendix, we present the derivations
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1024 K. Chen and M. D. Sacchi

(a) (b)

Figure 17. Profiles of inverted P-wave velocity models at (a) x = 1500 m and (b) x = 2300 m. Blue: true model; Red: starting model; Purple: inverted model
by elastic NLCG FWI; Green: inverted model by elastic Gauss–Newton FWI.

(a) (b)

Figure 18. Profiles of inverted S-wave velocity models at (a) x = 1500 m and (b) x = 2300 m. Blue: true model; Red: starting model; Purple: inverted model
by elastic NLCG FWI; Green: inverted model by elastic Gauss–Newton FWI.
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Time-domain elastic Gauss–Newton FWI 1025

of the operators Li and L†
i for the 3-D isotropic elastic case which are the expressions for the elastic Born approximation modelling and the

elastic RTM kernel.

2.3.2 Solving for the Gauss–Newton step using preconditioned CGLS algorithm

It is important to precondition the linear system of equations (eq. 18) to accelerate the convergence of the CGLS algorithm. For this purpose,
we adopt the elastic pseudo-Hessian to derive a pre-conditioning operator (Shin et al. 2001; Chen & Sacchi 2017). The preconditioned version
of the Gauss–Newton step minimizes

JG N (δm̃) = 1

2

Ns∑
i=1

‖Li Pδm̃ − δdi‖2
2, (20)

where P represents the pseudo-Hessian preconditioning operator. The preconditioned conjugate gradient least squares (PCGLS) algorithm
(Bjorck 1996) is summarized in Algorithm 2.

Algorithm 2 Preconditioned CGLS algorithm
Initialize
δm(0) = 0
r(0)

i = δdi , i = 1, · · · , Ns

s(0) = P†
(∑Ns

i=1 L†
i r(0)

i

)
//compute the preconditioned gradient

c(0) = s(0)

γ (0) = ‖s(0)‖2
2

for l = 0, 1, · · · while not converge do
t(l) = Pc(l),
q(l)

i = Li t(l), i = 1, · · · , Ns //Born forward modelling

δ(l) = ∑Ns
i=1 ‖q(l)

i ‖2
2

α(l) = γ (l)/δ(l) //calculate the step size

δm(l+1) = δm(l) + α(l)t(l) //update the model

r(l+1)
i = r(l)

i − α(l)q(l)
i , i = 1, · · · , Ns //compute data residuals

s(l+1) = P†
(∑Ns

i=1 L†
i r(l+1)

i

)
//compute the preconditioned gradient

γ (l+1) = ‖s(l+1)‖2
2

β (l) = γ (l+1)/γ (l)

c(l+1) = s(l+1) + β (l)c(l) //compute the conjugate direction

end

The output of Algorithm 2 is the inverted multiparameter model perturbation δm = Pδm̃. The estimated model perturbation is also the
Gauss–Newton search direction.

2.4 Time-domain matrix-free elastic Gauss–Newton FWI

As discussed in the previous section, we propose a time-domain elastic Gauss–Newton FWI using CGLS algorithm to solve the internal
Gauss–Newton linear system of equations. We stress that one does not need to formulate or invert the Hessian matrix explicitly. Instead,
the solution is iteratively retrieved by the CGLS method. The CGLS only requires two operators L (Fréchet derivative) and L† (the adjoint
Fréchet derivative) that are applied in implicit-form to vectors. The operators L and L† are efficiently applied to vectors via the adjoint-state
method. We name this algorithm, the time-domain matrix-free elastic Gauss–Newton FWI. The algorithm is compiled in Algorithm 3. In step
3 of Algorithm 3, Algorithm 2 is adopted to solve for the Gauss–Newton search direction.

3 N U M E R I C A L E X A M P L E S

3.1 Source code main features

Our computer code is developed using the C language and parallelized via the Message Passing Interface (MPI). Our forward modelling code
adopts a time-domain staggered-grid finite-difference scheme (Virieux 1986) to discretize the elastic wave equation. The algorithm uses the
unsplit convolutional perfectly matched layer (C-PML) boundary condition (Komatitsch & Martin 2007) to absorb the artificial reflections
arising from the computational boundaries. In our algorithm, the order of finite-difference in space is selectable. The code automatically
computes the finite-difference coefficients from the user-specified finite-difference order (Liu & Sen 2009). When computing the action of
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1026 K. Chen and M. D. Sacchi

Algorithm 3 Time-domain matrix-free elastic Gauss-Newton FWI

Initialize: m(0)

for k = 0, 1, · · · while it does not converge do
1. Forward modelling: d(k)

i = di (m(k)), i = 1, · · · , Ns

2. Compute data residual: δd(k)
i = dobs

i − d(k)
i , i = 1, · · · , Ns

3. Compute Gauss-Newton search direction δm(k) by solving

min
δm̃(k)

1

2

Ns∑
i=1

‖L(k)
i P(k)δm̃(k) − δd(k)

i ‖2
2

Apply the preconditioned CGLS algorithm 2.
4. Compute step size η(k) via parabolic fitting line search.
5. m(k+1) = m(k) + η(k)δm(k)

end

the adjoint Fréchet derivative operator on a vector (eq. A21), we do not save the entire source-side wavefield. Instead, we adopt the source-
wavefield reconstruction method (Gauthier et al. 1986; Dussaud et al. 2008) that allows us to only save wavefields on boundaries within the
depth of half of the spatial finite-difference operator length and the final time frame during the forward simulation of state equation. Then, the
state variable u (source-side wavefield) is recomputed from the saved wavefield by backward propagation while simultaneously computing
the adjoint variable p (receiver-side wavefield). This method is valid because the elastic wave equation is self-adjoint and reversible (Tarantola
1988). Our code for the Fréchet derivative operator (L, elastic Born operator) and adjoint Fréchet operator (L†, elastic RTM operator) pass
the dot-product test (Mora 1987b; Claerbout 1992) which guarantees that these operators act as matrix-vector and transpose matrix-vector
multiplications to ensure the convergence of the conjugate gradient least-squares method. The inversion follows Algorithm 3 and Algorithm
2. Also note that, our elastic Gauss–Newton FWI utilizes a multiscale strategy (Kolb et al. 1986; Bunks et al. 1995). The time-domain data
are filtered to form sets of data with different frequency bands. Our FWI code inverts the low-frequency band data first and then inverts
high-frequency data. The inverted models from an early scale are used as the initial model for inversion of higher scales. That is to say, there
is another loop over frequency bands outside the iterations in Algorithm 3. There are in total three iterative loops: the outermost loop for
iterating over different frequency bands, the loop for the Gauss–Newton FWI model update, and the innermost iteration of the CGLS method
to estimate the Gauss–Newton direction.

3.2 Stopping criterion

As mentioned above, our time-domain inversion adopts the multiscale method. The inversion starts from filtered low-frequency data and
gradually expands the frequency band (i.e. f1–f2 Hz, f1–f3 Hz, f1–f4 Hz, ···). The data misfit for a particular frequency band is defined as

J (m(k)) =
Ns∑

i=1

‖di (m
(k)) − dobs

i ‖2
2, (21)

where k is the number of FWI iterations. The stopping criterion for the outer FWI loop for a frequency band is based on the normalized data
misfit in that particular frequency band

J (m(k))

J (m(0))
< ε. (22)

The stopping criterion ε is chosen differently for different frequency band because the inversion converges faster for initial frequency bands.
The stopping criterion for the inner loop in the kth outer FWI iteration is given by

‖H(k)
G N δm(k) + g(k)‖2

‖g(k)‖2
< ξ. (23)

The inner minimization loop is stopped when the relative change in the gradient falls below a tolerance (Gratton et al. 2007). In other
words, the inner loop of the Gauss–Newton method is truncated and solved inexactly. More sophisticated stopping schemes such as the
Eisenstat–Walker forcing-term method can also be adopted (Eisenstat & Walker 1996; Epanomeritakis et al. 2008; Metivier et al. 2013).

The time-domain matrix-free elastic FWI method is tested on an elastic inclusion model and the elastic Marmousi2 model (Martin
et al. 2006). The time-domain elastic staggered-grid finite-difference approach is adopted to synthesize observations with a C-PML boundary
condition applied to the four boundaries of the model. In other words, we do not investigate the inversion of surface waves. The observed data
are two-component particle velocity fields. In this study, we simultaneously invert for P- and S-wave velocities and assume that the density
is known. Last, we also point out that the finite-difference operator adopted to synthesize the data and the operators utilized for the inversion
shared the same grid. They also describe the same propagation phenomena, which is the frequently accepted manner to test FWI algorithms.
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Time-domain elastic Gauss–Newton FWI 1027

Figure 19. The model update direction in the first non-linear FWI iteration in the first frequency band (2–3 Hz). (a) Direction of Vp update in elastic NLCG
FWI (negative of gradient direction). (b) Direction of Vs update in elastic NLCG FWI. (c) Direction of Vp update in elastic Gauss–Newton FWI (solved by
CGLS). (b) Direction of Vs update in elastic Gauss–Newton FWI. Figures are plotted with original scale.

3.3 Elastic inclusion model

We adopt an elastic inclusion model to analyse the resolution of the proposed elastic Gauss–Newton FWI. Fig. 1 shows true P- and S-wave
velocity models. Square shape velocity anomalies are embedded in a two-layer model at different locations. The subsurface density is fixed
at 2000 kg m–3. The model has a dimension of 2.0 km in the horizontal axis and 1.5 km depth with 201 × 151 gridpoints. There are in
total 51 shots and 201 receivers deployed along the surface that simulates a fixed-spread survey geometry. The shot interval is 40 m, and
receiver interval is 10 m. A 10 Hz central frequency Ricker wavelet is used to simulate an explosive source. The observed multicomponent
data are simulated using our time-domain elastic staggered-grid finite-difference code. In this example, the forward modelling scheme adopts
second-order finite differences in time and eighth-order finite differences in space (O(�t2,�x8)). The 0–3 Hz frequency content is removed
from the data using a minimum phase Butterworth filter to create a realistic inversion of data with poor content of low frequencies. We
also mute near-offset traces in the data to mimic a more realistic scenario. We compare the results of conventional elastic FWI based on the
non-linear conjugate gradient method (hereafter, we call it elastic NLCG FWI for short) and the proposed elastic Gauss–Newton FWI. In the
elastic NLCG FWI, we used the elastic pseudo-Hessian operator to precondition the gradient. The line search is also based on parabolic fitting.
The critical difference between the elastic NLCG FWI and elastic Gauss–Newton FWI can be summarized as follows. The model update in
the elastic NLCG FWI is obtained by directly computing from the adjoint operator while the model update in the elastic Gauss–Newton FWI
is obtained by solving a least-squares inverse problem (eq. 19). Both the elastic NLCG FWI and the elastic Gauss–Newton FWI utilize the
multiscale method (Bunks et al. 1995). The four frequency bands for the multiscale inversion are 3–5 Hz, 3–10 Hz, 3–15 Hz and 3–30 Hz.
Fig. 2 shows the starting P- and S-wave velocity models for elastic NLCG FWI and elastic Gauss–Newton FWI. The initial models contain
two layers without the velocity anomalies.

For both the elastic NLCG FWI and the elastic Gauss–Newton FWI methods, we set the stopping criterion of the FWI loop to ε = 0.01,
0.05, 0.2, 0.2 for the adopted four frequency bands, respectively. In other words, the elastic NLCG FWI and the elastic Gauss–Newton FWI
converge to the same level of data misfit. This allows a fair comparison of the computational cost of the two methods. The stopping criterion
for the inner loop of the Gauss–Newton method is set to be ξ = 0.5. The maximum number of CGLS iteration for the inner loop is set as 50.
The parameters used in the inversion are summarized in Table 1. The inner minimization loop is not solved exactly to save computational
cost. This strategy is often referred to as the truncated Gauss–Newton method (Gratton et al. 2007). The results of elastic NLCG FWI are
shown in Figs 3(a) and 4(a). The results of elastic Gauss–Newton FWI are shown in Figs 3(b) and 4(b). Both elastic NLCG FWI and the
proposed elastic Gauss–Newton obtain satisfactory results. The elastic Gauss–Newton FWI provides slightly better results than the elastic
NLCG FWI. The elastic Gauss–Newton FWI results contain fewer artefacts and crosstalk contamination. To look at the details more closely,
we display the profiles of the inverted P-wave velocity models in Fig. 5 and the profiles of the inverted S-wave velocity models in Fig. 6.
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1028 K. Chen and M. D. Sacchi

Figure 20. Data and residuals for elastic NLCG FWI. (a) Observed horizontal component data of shot at x = 1500 m. (b) Horizontal component data modelled
by elastic NLCG FWI inverted models. (c) Horizontal component data residual. (d) Observed vertical component data of shot at x = 1500 m. (e) Vertical
component data modelled by elastic NLCG FWI inverted models. (f) Vertical component data residual.

The reconstructed models by the elastic Gauss–Newton FWI are closer to the actual models than the ones reconstructed by the elastic NLCG
FWI. In Fig. 7, we plot the model update direction of the two methods corresponding to first non-linear FWI iteration of the first frequency
band (3–5 Hz). The Gauss–Newton method generates less crosstalk and artefacts in the Vp and Vs model update directions than the NLCG
method.

We also evaluate data fitting for the models recovered by the two elastic FWI algorithms in Figs 8 and 9. Note that all the figures in
Figs 8 and 9 are plotted using the same colour scale. The models obtained by both methods predict the data well. To have a closer look, we
plot the data residuals with heavy clipping in Fig. 10 (one fifth of the scale used in Figs 8 and 9). From this figure, we can observe that the
elastic Gauss–Newton FWI predicts the data slightly better than the elastic NLCG FWI.

Fig. 11 compares the convergence curves of normalized data misfit versus the number of non-linear iterations of the two methods for four
different frequency bands. In terms of the number of non-linear FWI iterations, the elastic Gauss–Newton converges faster than the elastic
NLCG FWI. One explanation is that the model search direction in the Gauss–Newton algorithm is more properly scaled than the one in the
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Time-domain elastic Gauss–Newton FWI 1029

Figure 21. Data and residuals for elastic Gauss–Newton FWI. (a) Observed horizontal component data of shot at x = 1500 m. (b) Horizontal component data
modelled by elastic Gauss–Newton FWI inverted models. (c) Horizontal component data residual. (d) Observed vertical component data of shot at x = 1500 m.
(e) Vertical component data modelled by elastic Gauss–Newton FWI inverted models. (f) Vertical component data residual.

NLCG algorithm. The Gauss–Newton method has an additional iterative loop than the NLCG method. Thus, it is clear that the Gauss–Newton
method requires substantially more computational effort per FWI iteration than NLCG FWI. We compare the computational cost of the two
methods by plotting curves of the normalized data misfit versus the number of forward simulations performed of the two methods for four
different frequency bands (Fig. 12). In this example, the total number of forward simulations performed by elastic NLCG FWI and elastic
Gauss–Newton FWI is 1876 and 1412, respectively. In this elastic inclusion model inversion and under the above configuration, the elastic
Gauss–Newton FWI is computationally more economical than the elastic NLCG FWI to converge to the same misfit level.

3.4 Elastic Marmousi2 model

Fig. 13 shows true P- and S-wave velocities of the elastic Marmousi2 model. The P- and S-wave velocity models are uncorrelated in the
hydrocarbon reservoir areas that were indicated by the white triangles. Those areas are identified by low P-wave velocities, whereas their
signature is much weaker in the S-wave velocity model. Density is assumed to be constant (2000 kg m–3). The model has a dimension of

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/2/1007/5874260 by Veterinary M

edicine Library E user on 21 D
ecem

ber 2020



1030 K. Chen and M. D. Sacchi

Figure 22. Data residuals comparison for shot at x = 1500 m. The data are plotted with heavy clipping (one fifth of the scale used in Figs 20 and 21). (a)
Horizontal component data residual of elastic NLCG FWI. (b) Vertical component data residual of elastic NLCG FWI. (c) Horizontal component data residual
of elastic Gauss–Newton FWI. (d) Vertical component data residual of elastic Gauss–Newton FWI.
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Time-domain elastic Gauss–Newton FWI 1031

(a) (b)

(c) (d)

Figure 23. Normalized data misfit versus number of non-linear FWI iterations for elastic NLCG FWI and elastic Gauss–Newton FWI in frequency band (a)
2–3 Hz, (b) 2–5 Hz, (c) 2–10 Hz, (d) 2–30 Hz. Blue: data misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss–Newton FWI.

3.0 km in the horizontal axis and 1.3 km depth with 301 × 131 gridpoints. There are 61 shots and 301 receivers deployed along the surface
that simulates a fixed-spread survey geometry. The shot interval is 50 m, and receiver interval is 10.0 m. A 10 Hz central frequency Ricker
wavelet is used to simulate an explosive source. The forward modelling is second-order accurate in time and 12th-order accurate in space
(O(�t2, �x12)). The 0–2 Hz frequency content is removed from the data using a minimum phase Butterworth filter. We mute near-offset traces
to avoid large amplitudes at receiver positions close to a source. The four frequency bands for the multiscale inversion are 2–3 Hz, 2–5 Hz,
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1032 K. Chen and M. D. Sacchi

(a) (b)

(c) (d)

Figure 24. Normalized data misfit versus number of forward simulations for elastic NLCG FWI and elastic Gauss–Newton FWI in frequency band (a) 2–3 Hz,
(b) 2– 5 Hz, (c) 2–10 Hz, (d) 2–30 Hz. Blue: data misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss–Newton FWI.

2–10 Hz and 2–30 Hz. Fig. 14 shows the starting P- and S-wave velocity models for the elastic NLCG FWI and the elastic Gauss–Newton
FWI. The initial models are 1-D with linearly increasing P- and S-wave velocities.

For both optimization methods, we set the stopping criterion of the non-linear FWI iterative loop to ε = 0.01, 0.1, 0.1, 0.1 for the four
different frequency bands, respectively. The stopping criterion for the inner loop of the Gauss–Newton method is set to ξ = 0.5, and the
maximum number of iterations allowed for the inner loop is 50. The parameters used in the inversion are summarized in Table 2.

The results of elastic NLCG FWI are shown in Figs 15(a) and 16(a). The results of elastic Gauss–Newton FWI are displayed in Figs 15(b)
and 16(b). The results of the two optimization methods are similar. We compare the profiles of the inverted P-wave velocity models in Fig. 17,
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Time-domain elastic Gauss–Newton FWI 1033

and compare the profiles of the inverted S-wave velocity models in Fig. 18. The models inverted by the Gauss–Newton method appear to
approximate the actual models more closely than the NLCG method. However, we recognize that these differences are minimal. In Fig. 19,
we plot the model update direction of the two methods in the first non-linear FWI iteration in the first frequency band (2–3 Hz). The model
update direction in the Gauss–Newton method has higher uniformity in its amplitude response than the NLCG method.

Next, we compare how well the inverted models by the two methods fit the observed data. Fig. 20 presents the data fitting of the elastic
NLCG FWI. Fig. 21 presents the data fitting of the elastic Gauss–Newton FWI. The data prediction of both methods is generally good. To
reveal more information, we plot the data residuals with heavy clipping in Fig. 22 (one fifth of the scale used in Figs 20 and 21). The elastic
Gauss–Newton FWI provides a slightly better data prediction than the elastic NLCG FWI.

The convergence curves are plotted in terms of the normalized data misfit versus the number of the non-linear iterations. Fig. 23 compares
the convergence curves of the two methods for four different frequency bands. The Gauss–Newton method has a faster convergence rate than
the NLCG method. We compare the computational cost of the two methods by plotting curves of the normalized data misfit versus the number
of forward simulations that were performed by each method. Fig. 24 compares the computational cost of the two methods for four different
frequency bands. The total number of forward simulations performed by elastic NLCG FWI and our elastic Gauss–Newton FWI is 1190 and
2025, respectively. Under this configuration, the computational cost of elastic Gauss–Newton FWI is about 1.7 times of the cost of elastic
NLCG FWI. For 2-D problems of the size explored by our paper, the differential cost is not high, and one can say that the Gauss–Newton
inversion stands as a valid alternative for NLCG FWI

4 D I S C U S S I O N

The Gauss–Newton method developed by us and presented in the paper is not supplying significant improvement in recovering the P- and
S-wave velocities to the classical non-linear conjugate gradient method. Theoretically, different optimization methods should converge to the
same point if a sufficiently large number of iterations is allowed, and we initially thought that convergence differences would compensate for
the extra workload of the Gauss–Newton solver. The latter does not preclude the present research and numerical examples from being part of
a body of research that expands our understanding of algorithms for FWI. A vast and rich literature is available describing Gauss–Newton
and Netwon’s optimization methods for FWI problems (Epanomeritakis et al. 2008; Heinkenschloss 2008; Metivier et al. 2013, 2014, 2017;
Yang et al. 2018). To the best of our knowledge, however, our paper is the first presenting simultaneous inversion of P- and S-wave velocities
using a matrix-free Gauss–Newton method in the time domain. In our opinion, the Gauss–Newton algorithm might not be required for
recovering the background models when computational resources are limited. One can resort to less expensive optimization techniques such
as NLCG. For recovering localized model anomalies, the matrix-free elastic Gauss–Newton FWI generates slightly better results than elastic
NLCG FWI. The elastic Gauss–Newton FWI algorithm is more expensive than the elastic NLCG FWI. This is because the elastic Gauss–
Newton FWI algorithm has an additional inner loop (CGLS) loop to estimate the search direction. There are several strategies to reduce the
computational cost of elastic Gauss–Newton FWI. One can adopt data contraction strategies such as source encoding, plane-wave synthesis
or stochastic source subsampling to reduce the computational cost (Vigh & Starr 2008a; Krebs et al. 2009; Schuster et al. 2011; van Leeuwen
& Herrmann 2013; Matharu & Sacchi 2018). Alternatively, one could explore adopting immediate termination of the CGLS algorithm and
explore if cost-benefit tradeoffs are more palatable for real large-scale applications. Or the elastic FWI could begin with non-linear conjugate
gradient algorithm and switch over to Gauss–Newton method in the process based on the trade-off between convergence property gain and
computational cost of the Gauss–Newton algorithm (Burstedde & Ghattas 2009). We also point out that in this paper, we do not address
regularization strategies for FWI. We are aware that different regularization techniques may generate improvements under specific conditions
(Asnaashari et al. 2013; Xue et al. 2017; Anagaw & Sacchi 2018b). The crosstalk between P- and S-wave velocities is not as severe as the
crosstalk between density and velocities in the elastic full-waveform inversion. The conventional elastic NLCG FWI can achieve acceptable
results in reconstructing the P- and S-wave velocities. The Gauss–Newton algorithm has the potential to reduce the crosstalk between the
density and velocities in elastic FWI which provides a future research direction.

5 C O N C LU S I O N S

We present a time-domain matrix-free elastic Gauss–Newton FWI algorithm. We formulate the elastic Gauss–Newton FWI as an iterative
elastic LSRTM problem. The proposed algorithm consists of two iterative loops: the outer Gauss–Newton iterations to update the model and
the inner CGLS iterations to estimate the Gauss–Newton direction. The external iteration uses a parabolic fitting line search to determine the
step size. The Gauss–Newton search direction is computed using the matrix-free CGLS algorithm. We point out that this step is equivalent to
apply an elastic LSRTM to data residuals with the Fréchet derivative operator as an elastic Born forward modelling operator and the adjoint
of Fréchet derivative operator as the elastic RTM operator. The CGLS method is preconditioned via the elastic pseudo-Hessian operator. Our
algorithm is matrix-free as it only requires the forward Fréchet derivative and adjoint Fréchet derivative operators applied in implicit-form to
vectors. The operators are applied on vectors efficiently via the adjoint-state method without having to store matrices in explicit form. The
proposed algorithm is adopted to invert for P- and S-wave velocities simultaneously. Our research has lead to the following observations.
The proposed elastic Gauss–Newton FWI generates slightly better-inverted models than the elastic NLCG FWI method, which was used as
a representative solver for mid and large size FWI problem. Despite the observed marginal improvements concluded from our simulations,
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the time-domain Gauss–Newton FWI method described in this paper provides a strong formal connection to current research on seismic
migration via LSRTM. Moreover, the framework described in the paper gives significant freedom to design Gauss–Newton FWI algorithms
from existing elastic LSRTM codes that are emerging in the field of exploration seismology.
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A1.1 Derivation of the Fréchet derivative operator L

In this section, we drop the source index i in the Fréchet derivative operator to make the expressions more concise. The Fréchet derivative
of the objective function of the FWI problem is the Born approximation modelling operator. The latter maps model perturbation to data
perturbation

δd = Lδm = ∂d

∂m
δm = R

∂u

∂m
δm. (A1)

The partial derivative ∂u/∂m is prohibitively expensive to compute explicitly. It can be replaced using the implicit function theorem.
Differentiating the wave eq. (5) with respect to the vector of model parameters m yields

∂S

∂m
u + S

∂u

∂m
= 0. (A2)

The right side of the equation becomes zero because the source does not depend on m. Inserting the expression of the partial derivative ∂u/∂m
into eq. (A1) leads to the Born approximation of a general wave eq. (5)

δd = Lδm = −RS−1

(
∂S

∂m
u

)
δm = −RS−1

[
∂S

∂m

(
S−1f

)]
δm, (A3)

where u represents the incident wavefield. Moreover, the solution of the wave equation u = S−1f was applied.
We now show the Born approximation for the isotropic elastic wave equation system (4). Let us consider the source-side wavefield u

defined by the elastic wave equation

(
ρI 0
0 I

)
∂

∂t
u −

(
0 D

CDT 0

)
u = f. (A4)

A perturbation of the model parameters

ρ → ρ + δρ,

C → C + δC,
(A5)

leads to a perturbation of the wavefield

u → u + δu. (A6)

We substitute the perturbed model parameters and wavefields into eq. (A4). After canceling second order terms involving small perturbations,
one ends up with the following partial differential equations

(
ρI 0
0 I

)
∂

∂t
δu −

(
0 D

CDT 0

)
δu =

⎛
⎝−δρ

∂

∂t
v

δCDT v

⎞
⎠ , (A7)
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where

δu =
(

δv
δσ

)
, δv =

⎛
⎜⎝δvx

δvy

δvz

⎞
⎟⎠ , δσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δσxx

δσyy

δσzz

δσyz

δσxz

δσxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

δC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δλ + 2δμ δλ δλ 0 0 0
δλ δλ + 2δμ δλ 0 0 0
δλ δλ δλ + 2δμ 0 0 0
0 0 0 δμ 0 0
0 0 0 0 δμ 0
0 0 0 0 0 δμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A8)

the vector δu is the scattered wavefield caused by model perturbations (δρ, δC), and v is the incident particle velocity field in the unperturbed
model (ρ, C). eq. (A7) represents the first-order Born approximation in a heterogeneous, isotropic elastic media. The Born approximation
equation can be solved using the same numerical solver that is used for solving the wave equation (eq. 4). The scattered data are obtained by
sampling the scattered wavefield at the receiver positions

δd = Rδu. (A9)

For the elastic FWI problem, the parameterization in compressional and shear wave speeds is better than a parameterization in Lamé parameters
(Tarantola 1986; Kohn et al. 2012) and this is the reason for selecting P- and S-wave velocities to invert for. By adopting the chain rule in the
Fréchet derivative, one can transform perturbations accordingly to⎛
⎜⎝δρ

δλ

δμ

⎞
⎟⎠ =

⎛
⎜⎝ 1 0 0

V 2
p − 2V 2

s 2ρVp −4ρVs

V 2
s 0 2ρVs

⎞
⎟⎠

⎛
⎜⎝ δ�

δVp

δVs

⎞
⎟⎠ , (A10)

where m = (ρ, Vp, Vs)T represents the background model and δm = (δ�, δVp, δVs)T the model perturbation. eqs (A4), (A7), (A9) and (A10)
together define the Born approximation for elastic wave equation system (general form as eq. (A1)).

A1.2 Derivation of the adjoint of Fréchet derivative operator L†

The adjoint of the Fréchet derivative of the elastic FWI objective function is the elastic RTM operator. The latter is the adjoint of the elastic
Born modelling operator that maps data perturbation to model perturbation. If we take the adjoint of the eq. (A1), we can obtain

δm∗ = L†δd =
(

∂d

∂m

)†
δd = −

(
∂S

∂m
u

)† (
S−1

)†
R†δd

= −
(

∂S

∂m
u

)† (
S†)−1

R†δd = −
[

∂S

∂m

(
S−1f

)]† (
S†)−1

R†δd,

(A11)

where δm∗ is the adjoint model perturbation (δm∗ = (δ�∗, δV ∗
p , δV ∗

s )T ), L† is the elastic RTM operator, and R† is the adjoint of sampling
operator. The elastic RTM operator (adjoint of Fréchet derivative operator) also contains two wave propagation operators: one forward (S−1)
and one backward ([S†]−1) propagators. We introduce the adjoint-state variable p = (S†)−1R†δd. The latter satisfies the adjoint-state equation
corresponding to the general state eq. (5)

S†p = R†δd, (A12)

where p is the adjoint-state variable of the state variable u, S† is the adjoint wave equation operator and R†δd is the adjoint source. The
estimated model perturbations or images can be simplified

δm∗ = −
(

∂S

∂m
u

)†
p, (A13)

or rewritten the implicit inner product over time explicitly

δm(x)∗ = −
∫ (

∂S(x, t)

∂m(x)
u(x, t)

)†
p(x, t)dt = −

∫
p(x, t)T

(
∂S(x, t)

∂m(x)
u(x, t)

)
dt, (A14)

where p(x, t)† = p(x, t)T. The model perturbation kernels obtained using the mathematical adjoint-state method are similar to Claerbout’s
physical zeros-lag cross-correlation imaging condition (Claerbout 1985). The only difference is that expression A14 has an additional
scattering operator (the operator ∂S(x, t)/∂m(x)) applied on the wavefield. After applying the adjoint wave equation operator S† to the
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first-order velocity-stress elastic wave equation system 4, we arrive the following adjoint-state wave equation

(
ρI 0
0 I

) † (
∂

∂t

)†
p −

(
0 D

CDT 0

)†

p = R†δd, (A15)

where

p =
(

υ

τ

)
, υ =

⎛
⎜⎝υx

υy

υz

⎞
⎟⎠ , τ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

τxx

τyy

τzz

τyz

τxz

τxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, δd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δdv x

δdv y

δdv z

δdσ xx

δdσ yy

δdσ zz

δdσ yz

δdσ xz

δdσ xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A16)

where p is the adjoint-state wavefield with υ the adjoint variable associated to particle velocity and τ as the adjoint variable associate to the
stress field. The data vector δd acts as the adjoint source of the adjoint-state equation. The final condition p|t = T = 0 is imposed, and a free
surface boundary condition on the top boundary and absorbing boundary conditions on the other boundaries of the model are imposed on the
adjoint-state wave equation. The differential operator is anti-self-adjoint:

(
∂

∂x

)† = − (
∂

∂x

)
. Consequently, one can write the expression D† =

−DT. The adjoint-state eq. (A15) changes to

(
ρI 0
0 I

) (
− ∂

∂t

)
p +

(
0 DC

DT 0

)
p = R†δd. (A17)

The wave equation operator in the adjoint-state equation is slightly different to that of the state eq. (4). The adjoint-state equation can be
redefined into a form that resembles the state equation using a transformation of variables

p̃ =
(

I 0
0 C

)
p,

where p̃ = (υ̃, τ̃ )T is the transformed adjoint-state variable, υ̃ = (υ̃x , υ̃y, υ̃z)T and τ̃ = (τ̃xx , τ̃yy, τ̃zz, τ̃yz, τ̃xz, τ̃xy)T . Multiplying both sides
of the adjoint-state eq. (A17) by the transformation matrix, the adjoint-state equation becomes

(
ρI 0
0 I

) (
− ∂

∂t

)
p̃ +

(
0 D

CDT 0

)
p̃ =

(
I 0
0 C

)
R†δd, (A18)

where the adjoint-state equation now has the same structure as the state eq. (4). The same numerical solver adopted in solving the elastic
wave equation system 4 can be reused to solve the adjoint wave equation (eq. A18). The difference is that time evolution is in reverse-time
direction in the adjoint wave equation. After computing the transformed adjoint-state variable p̃, the original adjoint-state variable p can be
retrieved by the inverse transformation

p =
(

I 0
0 C−1

)
p̃ =

(
I 0
0 C−1

) (
υ̃

τ̃

)
=

(
υ̃

C−1τ̃

)
, (A19)

with

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ + μ

3λμ + 2μ2
− λ

6λμ + 4μ2
− λ

6λμ + 4μ2
0 0 0

− λ

6λμ + 4μ2

λ + μ

3λμ + 2μ2
− λ

6λμ + 4μ2
0 0 0

− λ

6λμ + 4μ2
− λ

6λμ + 4μ2

λ + μ

3λμ + 2μ2
0 0 0

0 0 0
1

μ
0 0

0 0 0 0
1

μ
0

0 0 0 0 0
1

μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A20)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/2/1007/5874260 by Veterinary M

edicine Library E user on 21 D
ecem

ber 2020



Time-domain elastic Gauss–Newton FWI 1039

Using the elastic wave equation (eq. 4), the adjoint wave equation (eq. A18) and the model perturbation equation (eq. A14), the adjoint
model perturbations (δm∗ = (δρ∗, δλ∗, δμ∗)T) can be expressed as

δρ∗ = −
∫

v̇ · υdt = −
∫

v̇ · υ̃dt

= −
∫

(v̇x υ̃x + v̇y υ̃y + v̇z υ̃z)dt

δλ∗ =
∫ (

∂C

∂λ
DT v

)
· τdt =

∫ (
∂C

∂λ
C−1σ̇

)
· (

C−1τ̃
)

dt

=
∫

(σ̇xx + σ̇yy + σ̇zz)(τ̃xx + τ̃yy + τ̃zz)

(3λ + 2μ)2
dt

δμ∗ =
∫ (

∂C

∂μ
DT v

)
· τdt =

∫ (
∂C

∂μ
C−1σ̇

)
· (

C−1τ̃
)

dt

=
∫ [

− 3λ2 + 4λμ

2μ2(3λ + 2μ)2
(σ̇xx + σ̇yy + σ̇zz)(τ̃xx + τ̃yy + τ̃zz)

+ 1

2μ2
(σ̇xx τ̃xx + σ̇yy τ̃yy + σ̇zz τ̃zz) + 1

μ2
(σ̇yz τ̃yz + σ̇xz τ̃xz + σ̇xy τ̃xy)

]
dt, (A21)

where the over-dot means time derivative.
The wave speeds are easier to resolve than the Lamé parameters in elastic FWI (Tarantola 1986; Forgues & Lambare 1997). The chain

rule can connect different parameter perturbations in elastic FWI⎛
⎜⎝δ�∗

δV ∗
p

δV ∗
s

⎞
⎟⎠ =

⎛
⎜⎝1 V 2

p − 2V 2
s V 2

s

0 2ρVp 0
0 −4ρVs 2ρVs

⎞
⎟⎠

⎛
⎜⎝δρ∗

δλ∗

δμ∗

⎞
⎟⎠ . (A22)

eqs (A18), (A21) and (A22) together define the adjoint Fréchet operator (elastic RTM operator).
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