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ABSTRACT

The coefficients that synthesize seismic data via the hy-
perbolic Radon transform (HRT) are estimated by solving a
linear-inverse problem. In the classical HRT, the computa-
tional cost of the inverse problem is proportional to the size
of the data and the number of Radon coefficients. We have
developed a strategy that significantly speeds up the imple-
mentation of time-domain HRTs. For this purpose, we have
defined a restricted model space of coefficients applying
hard thresholding to an initial low-resolution Radon gather.
Then, an iterative solver that operated on the restricted
model space was used to estimate the group of coefficients
that synthesized the data. The method is illustrated with syn-
thetic data and tested with a marine data example.

INTRODUCTION

The Radon transform has received a lot of attention over the past
four decades as a flexible tool for processing exploration seismol-
ogy data. Applications of the Radon transform span a diverse set of
problems, such as velocity analysis (Thorson and Claerbout, 1985),
multiple suppression (Hampson, 1986; Foster and Mosher, 1992),
near-offset reconstruction (Kabir and Verschuur, 1995), antialiasing
for reverse time migration (Wang and Nimsaila, 2014), separation
of simultaneous sources (Trad et al., 2012; Ibrahim and Sacchi,
2014), diffraction enhancement (Bansal and Imhof, 2005), deghost-
ing (Wang et al., 2014), and noise suppression of microseismic re-
cords (Forghani-Arani et al., 2013; Sabbione et al., 2015).
Radon transforms can be divided into two categories: time-invari-

ant and time-variant Radon transforms. The linear and parabolic
Radon transforms belong to the category of time-invariant trans-
forms (Hampson, 1986). Time-invariant transforms are imple-
mented via fast solvers that exploit the special Toeplitz structure
of the Radon operator in the frequency-space domain (Beylkin,
1987; Kostov, 1990; Sacchi and Porsani, 1999). On the other hand,

time-variant transforms are commonly computed in the time do-
main via iterative solvers devised for large linear-inverse problems
(Thorson and Claerbout, 1985). Time-variant transforms include the
hyperbolic Radon transform (HRT) and the apex-shifted HRT, and
they are relatively slow in comparison with parabolic transforms.
This explains the popularity of the parabolic Radon transforms
for multiple attenuation. There are situations, however, where multi-
ples cannot be modeled by the parabolic Radon transform. For
instance, the parabolic approximation fails to provide sufficient ac-
curacy to model long-offset data. Moreover, the NMO correction
that is applied prior to the parabolic Radon transform stretches
the wavelet and thus deteriorates the quality of the data. In these
particular situations, one might prefer to adopt the HRT. The com-
putational cost of the HRT could become a problem when process-
ing a large number of common-midpoint (CMP) gathers or when it
is used as part of 3D multiple prediction techniques (van Dedem and
Verschuur, 2005). Hence, different methods have been proposed to
improve the computational efficiency of the HRT, some of them in
close relation with the present work (Yilmaz, 1989; de Bazelaire
et al., 1991; Liu and Sacchi, 2002; Ng and Perz, 2004; Wang et al.,
2009; Hu et al., 2013; Nikitin et al., 2016).
In this paper, we discuss an easy-to-apply strategy to compute the

HRT quickly and efficiently. The proposed method uses the adjoint
operator to identify the subset of the Radon domain that is needed to
represent the data. An on-the-fly computation of the forward and
adjoint operators on the restricted model space leads to a very fast
implementation of the conjugate-gradient method. We also utilize
the amplitude of the Radon coefficients of the active subset to com-
pute model-space regularization weights for the linear inversion.

METHOD

Preliminaries

A common-shot or a common-receiver gather can be represented
by a superposition of apex-shifted hyperbolas in the t-x domain as
follows:
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dðt; xÞ ¼
Z
a

Z
v
m

�
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 −

ðx − aÞ2
v2

s
; v; a

�
dvda; (1)

where x is the source-receiver distance, τ indicates intercept trav-
eltime, v is the velocity of the hyperbola, a denotes the apex, and
mðτ; v; aÞ are the Radon coefficients. Equation 1 is often called the
forward Radon transform. Similarly, one can define an adjoint trans-
form that maps the data into the τ; v; a domain as follows:

madjðτ; v; aÞ ¼
Z
x
d

�
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ ðx − aÞ2

v2

s
; x

�
dx: (2)

Equations 1 and 2 are numerically computed by replacing the
integrals by summations over discretized t; x; τ; v, and a variables.
Then, the estimation ofmðτ; v; aÞ from the data dðt; xÞ entails solv-
ing a discrete linear-inverse problem (Thorson and Claerbout,
1985).
We simplify the notation by expressing the discretized version of

equations 1 and 2 in matrix-vector form as follows:

d ¼ Lm; (3)

madj ¼ LTd; (4)

where d is a vector of size N × 1 representing the data
(N ¼ Nx × Nt). Similarly,m andmadj are vectors of sizeM × 1 rep-
resenting the Radon coefficients (M ¼ Nt × Nv × Na). In realistic
scenarios, one must consider the presence of observational noise.
Therefore, the vector of Radon coefficients must be estimated from
the expression d ¼ Lmþ e, where e denotes noise. A common
practice is to estimate m by minimizing a cost function composed
of a quadratic misfit plus a regularization term as follows:

JðmÞ ¼ kLm − dk22 þ μRðmÞ: (5)

The scalar μ is the tradeoff parameter that weights the relative
importance of the misfit function versus the regularization term
RðmÞ.
The classical least-squares solution of equation 5 adopts a quad-

ratic regularization term: RðmÞ ¼ kmk22. When RðmÞ is a quad-
ratic form, the cost function J is minimized via the method of
conjugate gradients (CG). High-resolution Radon transforms, on
the other hand, adopt either a Cauchy criterion or an l1-norm to
impose sparsity on the distribution of the Radon coefficients. In
these cases, the cost function J is minimized via iterative reweighted
least-squares (Cauchy regularization; Sacchi and Ulrych, 1995) or
iterative solvers such as FISTA (l1-regularization; Lu, 2013). One
can also use the information contained in madj to generate model
weights for the regularization term in equation 5 by adopting
RðmÞ ¼ kWmk22 with W ¼ diagðjLTdþ ϵj−1Þ, where j:j denotes
the absolute value of each element of its argument, the operator
diagð:Þ maps a vector into a diagonal matrix, and ε is a small value
to avoid division by zero. In other words, the absolute values of the
adjoint coefficients madjðτ; v; aÞ are used to improve the focusing
power of the transform. This is equivalent to one iteration of the
high-resolution Radon transform in Sacchi and Ulrych (1995)
and Trad et al. (2003). In all cases, the computational cost of min-

imizing J is primarily associated to the cost of the forward and ad-
joint operators.

Restricted model space hyperbolic Radon transform

The matrix-vector formulation (equations 3 and 4) permits us to
adopt the language of linear algebra and linear-inverse problems.
However, we stress that our algorithm never forms matrices in
explicit form. In other words, the forward and adjoint operators
are computed by a series of nested loops on the variables x, τ,
v, and a. A naive implementation of the Radon forward and adjoint
operators has computational complexity of OðNτNxNvNaÞ for the
case, where Nt ¼ Nτ. If we consider data d of fixed size Nt × Nx, it
is clear that the cost of applying the forward Radon operator and its
adjoint is controlled by Nτ; Nv and Na; that is to say, by the size of
the Radon domain.
In the proposed algorithm, we restrict the size of the model do-

main by determining the triplets τ; v; a that correspond to the co-
efficients needed to fit the data. According to equation 2, the
coefficients madjðτ; v; aÞ will be relatively large when integrating
over reflections and small when integrating over random zero-mean
noise. After computing madjðτ; v; aÞ using equation 2, we define a
restricted Radon space A of active coefficients via the following
expression:

A ¼
�
ðτ; v; aÞ∶ 1

Nx
jmadjðτ; v; aÞj > T

�
; (6)

where T is the threshold. We consider a gather that has been nor-
malized to unity to adopt a parameter T that satisfies 0 < T < 1. The
restricted operators LA and LT

A are then used by our iterative solver
to compute the Radon coefficients

~m ¼ argmin
mA

½kLAmA − dk22 þ μkWAmAk22�; (7)

where we have selected a model-weighted quadratic regularization
term. Given that now there is no risk of dividing by zero, we set
WA ¼ diagðjLT

Adj−1Þ. The new cost function is minimized via
the method of CG (Hestenes and Stiefel, 1952).
We have termed this algorithm restricted domain hyperbolic Ra-

don transform (RHRT) to differentiate it from the classical HRT that
uses the complete domain of Radon coefficients to model the data.
Our algorithm has similarities to the methods presented by Liu and
Sacchi (2002), Ng and Perz (2004), and Wang et al. (2009). Liu and
Sacchi (2002) use an erosion/deflation algorithm, where the active
set of coefficients are updated in each iteration of the CG algorithm.
As a result, the cost function of the problem is continuously
changed throughout iterations of the CG method and its conver-
gence can be negatively affected. Another disadvantage of this al-
gorithm is that extra computational cost is introduced in each
iteration. Ng and Perz (2004) propose to consider the energy
stacked along each moveout parameter to prioritize their estimation
sequence via a Gauss-Seidel method. Wang et al. (2009) develop a
greedy algorithm that iteratively builds the Radon domain using the
residuals given by the data modeled in each step. The latter two
methods involve an outer loop with certain number of iterations,
thus introducing an extra parameter. Our algorithm, in contrast, ap-
plies CG directly to the restricted domain operators throughout all
of the iterations. This guarantees that the cost function of the prob-
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lem does not change during the optimization process. Furthermore,
if the parameter T is properly chosen, the HRT solution that uses all
the coefficients is very similar to the solution obtained via
the RHRT.

SYNTHETIC TESTS

To illustrate the proposed method, we have generated a noisy
synthetic common-shot gather with three reflections. The data con-
sist of 51 traces separated by Δx ¼ 20 m, with sampling interval
Δt ¼ 4 ms. A Ricker wavelet with peak frequency f0 ¼ 20 Hz

models the seismic source. Band-limited zero-mean random noise
was added to the data (signal-to-noise ratio = 2). The new method
was applied to model a noise-free version of the data. For the Ra-
don domain, the intercept ranges from τ ¼ 0 to 1.2 s, the velocity
from v ¼ 1000 to 3200 m∕s, and the apex from a ¼ −300
to 300 m.
A series of tests with varying parameters ðNv;NaÞ were used to

analyze the performance of the RHRT and compare it against the
classical HRT. For all the tests, we adopted Δτ ¼ 4 ms and a
threshold T ¼ 0.1 to restrict the domain for the RHRT. In all cases,
the trade-off was set ad hoc to μ ¼ 100, so as to be large enough to
help in the denoising of the data without hurting the signal. Both
algorithms were interrupted when the cost function change be-
tween iteration was less than 0.01%, in agreement with the stop-
ping criterion adopted by Ibrahim and Sacchi (2014). Table 1
summarizes the test results comparing both methods. We show
the computing times, number of iterations of the CG, and the final
value of the cost function for the HRT (using all the coefficients)
and RHRT. Additionally, we provide the percentage PA of the total
Radon domain coefficients that were used by the RHRT for the
inversion. The tests correspond to a code written in Julia using tools
from the Seismic.jl package (Stanton and Sacchi, 2016). In general,
we observe that RHRT selects less than 5% of the Radon domain
coefficients to reach a solution that properly honors the data, and is
approximately 20 times faster than the HRT. The relatively small

difference between methods in the value reached by the cost func-
tion suggests that the Radon coefficients included inA are sufficient
to represent the data.
To gain more insight into the proposed method, we show the re-

sults that were obtained with Nv ¼ 45 and Na ¼ 61. Figure 1 dis-
plays the Radon coefficients that form the subset A used to invert
the data. The colorbar scale was clipped to facilitate the visualiza-
tion of the plot. The noisy input, the modeled data, and the data
residual are shown in Figure 2 using the same color scale. The fig-
ure demonstrates that the data were properly modeled with the re-
stricted domain A and the hyperbolic events were preserved in the
inversion.

REAL-DATA EXAMPLE

We applied our algorithm to suppress the free-surface multiples
in a marine data set from the Gulf of Mexico. The data consist of
810 shots with 183 traces per shot. The distance between sources
and the distance between receivers is 26.67 m, with the nearest off-
set at −20.72 and the farthest offset at −4874.67 m. The data were
sampled at 4 ms and the recording time was 7 s.

Table 1. Computational time of the HRT and RHRT for the
synthetic tests. C denotes the computing time required to
estimate the Radon coefficients and model the data, I is the
number of iterations used by CG to converge to the solution,
and J� ~m� is the final value of the cost function. In the last
column, PA denotes the percentage of the total number of
coefficients �Nτ × Nv × Na� used by RHRT.

HRT RHRT

Nv Na C (s) I Jð ~mÞ C (s) I Jð ~mÞ PA

26 25 8.4 16 214.3 0.6 18 228.8 4.1

26 41 19.9 25 232.8 1.2 23 252.1 4.5

26 61 31.7 27 211.6 1.7 25 232.3 4.5

45 25 20.9 25 233.6 1.1 22 251.6 4.4

45 41 36.3 26 161.2 1.4 23 176.9 3.4

45 61 54.5 27 241.2 2.9 27 266.2 4.6

81 25 41.5 27 209.7 2.0 25 232.0 4.1

81 41 71.7 29 213.7 3.8 29 238.1 4.7

81 61 133.7 37 234.5 5.2 29 267.9 4.6

Figure 1. Active Radon space of coefficients A computed
via amplitude thresholding of the adjoint operator coefficients
madjðτ; v; aÞ.

Figure 2. Synthetic data example: (a) Input noisy data. (b) Modeled
data via the RHRT. (c) Data residual of panels (a and b).

Restricted domain Radon transforms A19
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Figure 3 shows demultiple results of a CMP gather severely
contaminated with multiples. We defined τ from 1.5 to 7 s with
Δτ ¼ 4 ms, and used a fine sampling of Δv ¼ 5 m∕s with
Nv ¼ 441 velocities varying from v ¼ 1000 to 3200 m∕s. We
set the apex to a ¼ 0. According to equations 1 and 2, this is a spe-
cial case of our algorithm, in which the method reduces to the HRT.
To restrict the Radon domain, we set the threshold parameter to
T ¼ 0.03. A low value of T is preferred to account for low-energy
reflections. According to equation 6, T ¼ 0.03 means that we are
only discarding those Radon coefficients that stack less than 3% of
the maximum possible energy. However, this low value leads to us-
ing only approximately 17% (one sixth) of the Radon coefficients
for the inversion. Thus, the computational cost of the RHRT is one
sixth the cost of the HRT. In this example, we preferred to favor the
data fitting over the regularization term to properly model all the
multiples for their removal. Thus, we used a relatively small
trade-off parameter μ ¼ 0.1. The multiples are indicated with a pol-
ygon in the velocity panel showed in Figure 3b. We isolated that
subregion of the velocity gather and model them via equation 1.
Then, we subtracted the modeled multiples shown in Figure 3c from
the input CMP gather to form the multiple-free CMP gather (Fig-
ure 3d). Finally, we show the input CMP gather and the output de-
multiple CMP gather after NMO correction in Figure 3e and 3f,
respectively. These figures demonstrate that the RHRT successfully
removed the multiples from the data. The proposed method sug-
gests that one should not use all the coefficients of the Radon do-
main to model the data.

CONCLUSION

This paper provides a strategy to model seismic data with time
HRTs using model parameters finely sampled without an excessive

computational cost. The method is based on a restriction of the Ra-
don coefficients that are used to model the data. This leads to an
algorithm that reduces the computational cost of time domain Ra-
don transforms by approximately one order. We identify the active
set of coefficients that stack reflections using the adjoint operator
followed by amplitude hard thresholding. The adjoint coefficients,
that are computed only once, also provide the weights for the regu-
larization term of the cost function. This method improves the usage
of time-domain HRT to perform multiple removal, denoising, inter-
polation, and other applications.
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