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Abstract

Rock properties inversion for complex structure subsurface is an important issue for

today’s seismic exploration. Three factors determine the major contribution to the

efficiency and accuracy of the inversion: the imaging technique must obey physical

principle of wave propagation, proper inverse theory, and suitable noise reduction.

Taking the three factors into account, I propose a strategy to perform rock

physical properties inversion based on an amplitude versus angle (AVA) imaging

technique, thus called pre-stack depth migration based rock physical parameters

inversion. The foundation is Kirchhoff migration and Aki & Richards approximation

to Zoeppritz equation, which use the Kirchhoff integral formulation to estimate rock

physical parameters directly from pre-stack seismic data. High accuracy is achieved

by integrating AVO/AVA and imaging together.

The least squares method is used to minimize a data space misfit and a model

space regularization term. The weighted misfit term measures the data reconstruc-

tion fidelity. The weighted model space regularization enforces the inverted rock

physical parameters consistency along the horizontal plane and sparseness along the

vertical direction. Rock physical properties are retrieved by applying the conjugate

gradient (CG) method on a ray-based Kirchhoff migration/inversion scheme in the

angle domain. The Green’s functions of the wave field are calculated using target

oriented ray-tracing and stored in memory in advance. Therefore, the algorithm

avoids additional calculations at each iteration.
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Chapter 1

Introduction

1.1 Background

Seismic migration is the most effective geophysical method for imaging the complex

structure of the Earth. Today, the goal of the migration extends from imaging

subsurface structures to recovering elastic properties (Beydoun and Mendes, 1989).

As rock physical parameters are not related linearly to the seismic reflection data

(Lumley and Beydoun, 1997), the inversion for elastic constants should be performed

in two steps:

1. Pre-stack depth migration/inversion (PSDM), where the seismic data are trans-

formed to common image gathers (CIGs) by migration or inversion. This step

requires a migration algorithm for complex media that preserves amplitudes.

2. Amplitude versus angle (AVA) or amplitude variation with offset (AVO) anal-

ysis by using approximations to the Zoeppritz equations (Aki and Richards,

1980; Shuey, 1985; Fatti et al., 1994), the CIGs are transformed to perturba-

tions of the elastic parameters (Beretta et al., 2002; Li et al., 2003).

Both AVA analysis and PSDM technologies have made great progress in the last

two decades. However, pre-stack migration and AVA/AVO analysis technologies are

developed by people with different goals in mind, and, consequently, AVO-based

analysis of rock properties are rarely incorporated into sophisticated migration pro-

cedures (Xu, 2003). The pre-stack migration has great advantages at the time of

1



1.1. BACKGROUND

imaging complex geological structures over other seismic processing schemes. There-

fore, integrating AVO and imaging together should lead to a new class of algorithms

capable of imaging the Earth’s interior and retrieving the physical properties (Down-

ton and Lines, 2003).

1.1.1 True amplitude migration

As one part of the inversion, true amplitude migration plays a very important role

in our algorithm. This is because it is ”capable of undoing distortions of wave prop-

agation between the sources and the receivers and thus producing angle dependent

reflection coefficients at analysis points in a lossless, isotropic, elastic earth” (Gray,

1997). Migration has been implemented since the 1920’s as a graphical method, but

imaging was the primary goal of the migration at that time, AVO/AVA preserved

CIGs was not considered during the first 60 years of the migration developments.

Fortunately, many geophysicists have been investigating amplitude preserving mi-

gration since 1980. Today, several migration methods are available. Gray (1997)

separated them into three categories:

1. The Delft migration/inversion approach developed by Berkhout (1985) and

his colleagues (de Bruin et al., 1990; de Bruin, 1992; Berkhout and Wape-

naar, 1993) at Delft University of Technology. Their method is based on an

algorithm that extrapolates wave fields up and down to the reflection point.

2. The CWP migration/inversion approach developed by Bleistein and his col-

leagues (1987; 2001; 2002a; 2002b) at the Center for Wave Phenomena at the

Colorado School of Mines. Such method is based on the theory which expresses

the scattering wave field as an integral of angle dependent reflectivity.

3. The least squares migration/inversion approach started by Tarantola (1984)

and developed by others internationally (LeBras and Clayton, 1988; Beydoun

and Mendes, 1989; Lumley and Beydoun, 1997; Xu et al., 2001; Kuehl and

Sacchi, 2003). This method minimizes a misfit for all the data of entire survey.

2



1.1. BACKGROUND

Although there are some other methods, all of them can be categorized into one or

a combination of the aforementioned methods. Further, even the three methods dif-

fer in the derivation, implementation, and applicability, there are some fundamental

similarities among them. For example, all methods are based on wave propagation

theory and ignore the losses caused by the conversion of energy from one elastic

model to another, anisotropy, attenuation, and fine layering.

The method described in this thesis is mainly based on the work developed by

Bleistein (1987; 2001; 2002a; 2002b) and Xu et al. (2001) on Kirchhoff migra-

tion/inversion. In particular, we implement our algorithm as a regularized least

squares migration problem where we estimate elastic parameter perturbations di-

rectly from the pre-stack data volume. In one word, our method is the Kirchhoff

least squares migration/inversion approach.

1.1.2 Why a Kirchhoff migration/inversion approach?

Precise imaging the Earth interior and determination of material properties are a

chief goal for exploration practitioners. Many migration methods have been devel-

oped. However, most migration methods are based on two basic wave solutions.

One class of methods is based on the direct solution of the wave equation, such

as numerical finite difference. Another class of methods is based on the asymp-

totic linear solution of the wave equation, such as the Kirchhoff imaging method.

Comparing to the black box operator—-numerical finite difference method, Kirch-

hoff approximation method allows us to do a theoretical analysis of the inversion

problem. Furthermore, Kirchhoff migration is more efficient and flexible than wave

equation migration. Therefore, I mainly concentrate on the Kirchhoff + ray tracing

asymptotic imaging method.

The fundamental work of asymptotic imaging was done by Beylkin (1985; 1990).

Bleistein (1987; 2001) extended his work to work with reflection data. Burridge et

al. (1998) developed the theory for heterogeneous, anisotropic elastic medium. In

order to overcome artifacts appearing in pre-stack common image gathers (CIGs)

3



1.1. BACKGROUND

generated by common offset (or common shot) depth migration for complex media,

Xu, et al. (2001), based on the previous work by de Hoop et al. (1994), proved

that computing CIGs in refracting/reflecting angle domain satisfies the imaging

condition1 in most cases. Bleistein et al. (2002b) proposed a method for common

angle migration/inversion. His work forms the foundation of our algorithm.

Asymptotic inverse to the generalized Radon transform (GRT) (Beylkin, 1985;

Bleistein, 1987) is also called migration (Youzwishen, 2001) or direct inversion,

which directly recovers an image of the Earth. There is another kind of inverse

method called discrete inversion, which minimizes the difference between observed

data and synthetic data. Jin et al. (1992) combined the two methods to form what

is called the migration/inversion scheme. Such method can find the best solution

when complete information is unavailable. Thus, it partially corrects the problem

caused by the limited recording aperture, which is a common problem among most

imaging methods.

Since the unit of size for seismic data is GB (109 bytes), solutions that involve

the inversion of operators that after discretization lead to large matrices are not

feasible. One way to avoid this problem is by using the Conjugate Gradients (CG)

methods. Another chief advantage of CG for solving large system of equations is

that the explicit matrix forms are not needed. Thus, we use Kirchhoff least squares

migration/inversion approach.

1.1.3 AVO/AVA

Reflection of plane waves at a plane boundary constitutes the framework for our

analysis. It builds a bridge between the rock physical properties at a reflection

point and the amplitudes of scattered waves. Zoeppritz (1919) was among the

first to investigate and discover a set of analytic relationships for reflecting waves

at interfaces. Those equations, named Zoeppritz equations, are the foundation of

modern AVO/AVA analysis. Since the Zoeppritz equations are very complex, the

1Imaging condition means that all the locally coherent events in the data are focused at a single
position after migration/inversion.

4



1.1. BACKGROUND

Figure 1.1: Amplitude (reflectivity) versus angle (AVA), the red line represents the
A&R approximation, and the black line refers to exact result.

inverse problems for estimating rock properties from angle dependent reflectivity are

mainly based on approximate analytic expression for reflection coefficients (Aki and

Richards, 1980; Shuey, 1985; Fatti et al., 1994). Figure 1.1 shows the comparison

of the true AVA and the one obtained from A&R approximation. A free software

application of CREWES reflectivity explorer (from University of Calgary) was used

to obtain the result.

There are two important applications for reflection coefficients studies. First

is direct inversion for rock properties (Beydoun and Mendes, 1989; Lumley and

Beydoun, 1997; Downton and Lines, 2002; Downton and Lines, 2003; Feng and

Sacchi, 2004b). Such method inverts the perturbation of elastic parameters (i.e.,

5



1.2. THESIS MOTIVATION

density, P-wave, and S-wave velocities) from CIGs using linearized approximation

to Zoeppritz equations. As the variation of P-wave amplitude coefficients with

reflection angle is influenced by density, P-wave, and S-wave velocities on both sides

of a reflecting boundary, and the reflection angles of P-wave are easily calculated.

Usually, P-wave amplitude coefficients are used for the elastic parameters inversion.

The second is the analysis of amplitude variations with offset (AVO) or amplitude

versus angle (AVA). AVO/AVA anomalies, which indicate areas of changes in rock

physical properties, can thus be used as oil/gas indicator for seismic exploration (Li

et al., 2003; Kuehl and Sacchi, 2003). The most famous example is ”bright spots”

which resulted in the discovery of many oil/gas fields.

In this thesis, I propose an algorithm which directly inverts elastic parameter

perturbations from the pre-stack data, then, CIGs are generated by mapping the

rock parameter vector to the common image gather panel using a linearized ap-

proximation to Zoeppritz equations. This is an important difference with respect

to earlier strategies proposed by Kuehl and Sacchi (2003) where lateral smoothness

was directly imposed on the common image gather rather than on the vector of rock

parameters. Figure 1.2 shows a overview of for our lab work flow. The forward oper-

ators are derived using the Kirchhoff approximation to linearize the wave equation.

The least squares inverse theory is applied to obtain a better solution, and then the

result is visualized to decide if the inverted results are reasonable.

1.2 Thesis motivation

Nowadays, the main role of migration extends from imaging subsurface structure

to providing detailed information about subsurface rock properties. However, the

rock properties inversion is often done in two steps. The processors transform the

seismic data to the image of the reservoir. Then, reservoir geologists interpret the

image in terms of structure, stratigraphy, and rock properties. There is relative less

work being done to directly relate the pre-stack seismic data to the rock properties

(Lumley and Beydoun, 1997). A reasonable goal, therefore, is to combine those two

6
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Figure 1.2: Work flow of our lab for rock properties inversion.

steps together by incorporating AVO/AVA-based analysis of rock properties into

sophisticated migration procedures. Such inversion for rock properties is not new.

Some geophysicists have worked on this problem (Tarantola, 1986; Beydoun and

Mendes, 1989; Lumley and Beydoun, 1997; Downton and Lines, 2003).

1.3 Scope of the thesis

In this thesis, I proposed a method for AVA migration/inversion. The rock physical

properties are inverted directly from pre-stack seismic data by applying the conju-

gate gradient (CG) method on a ray-based Kirchhoff migration/inversion scheme in

the angle domain. l2 and l1 norms are used as regularization terms to improve the

smoothness along horizontal plane, as well as the vertical resolution. The implemen-

tation of this method shows a successful delineation of subsurface structures and an

accurate recovering of local changes in rock physical properties for 2D synthetic and

real seismic data.

This thesis proceeds as follows. In Chapter 1, I discuss the background of

AVO/AVA migration/inversion. In Chapter 2, I review the theory of linearizing

the scattering problem with Kirchhoff approximation. On the basis of the theory,

7



1.3. SCOPE OF THE THESIS

I define the forward operator and the adjoint operator which are used by the CG

inversion. Another important theory, on which the AVO/AVA analysis is based,

is summarized in Chapter 3. The forward operator and the adjoint operator are

presented as well. Since the first operator’s output is the second operator’s input,

those two operators are integrated together to form a new forward and adjoint op-

erator couple. As mentioned before, the inverse procedure is done in the framework

of the least squares technique. To improve robustness of the algorithm, a weighted

regularization term is applied. All the details about the least squares inversion are

described in Chapter 4. Since the efficiency of the Green’s function’s calculation sig-

nificantly affects the cost of the true amplitude migration, the proposed algorithm

for the Green’s function computation is presented in Chapter 5. In Chapter 6, the

least squares AVA migration for rock properties inversion is applied to synthetic and

real data. In Chapter 7, the conclusions of the thesis are discussed. Further research

for improvements is also discussed.

8



Chapter 2

Kirchhoff modeling/adjoint
operators for angle dependent
reflectivity

2.1 Introduction

In exploration seismology, wave fields are intentionally created to image the interior

of the earth. The artificial seismic waves are generated and their reflections from

impedance difference within the earth are recorded. In order to invert those recorded

data precisely for subsurface structure and elastic physical parameters, the inversion

algorithm, which attempts to undo the wave propagation effects, must obey the wave

propagation theory (or wave equation).

Due to the difference of deriving the solution of the wave equation, Wave prop-

agation process in complex media is described by two main types (Hertweck, 2000).

1. finite difference, based on direct solution of wave equation (Alford et al., 1974;

Lines et al., 1999).

2. approximate high frequency asymptotic methods (e.g., Born or Kirchhoff method),

based on the Green’s theorem (Beydoun and Mendes, 1989; Duquet et al.,

2000).

Since Kirchhoff methods are conceptually simple, versatile, and more efficient

(Gray et al., 2001), our research focuses on the second method, such as ray-based

9



2.1. INTRODUCTION

Kirchhoff theory. Like any inverse problem, the linearized forward or modeling

theory is the first step.

Seismic forward modeling describes the forward process, which generates syn-

thetic data from a known earth model (Gray et al., 2001). In seismic exploration,

all math-physical operators are idealized by ignoring some features of the true nature

of the phenomena. More or less, the idealization will bring errors into the result.

Without a doubt, a problematic forward operator will lead to a wrong inverse op-

erator. However, if the main physical characters are honored, the inverted results

are still successfully used for geophysical exploration (Kuehl, 2002; Bleistein et al.,

2001; Gray, 1997).

Using a high-frequency approximation,1 the Kirchhoff forward operator repre-

sents the forward problem with a Kirchhoff integral. This linear scattering integral

can be directly inverted using generalized Radon theory and pseudo-differential op-

erator/Fourier integral operator theory (Bleistein, 1987). However, the main disad-

vantage of the direct inversion is that the result does not fit the data.

In order to overcome this shortcoming, a discrete inversion method is presented

in my study. This method approaches the true earth image iteratively doing for-

ward and adjoint processing. Such technique is called migration/inversion scheme

(Duquet et al., 2000; Youzwishen, 2001).

In general, the common image gathers (CIGs) are obtained after migration (or

inversion). In complex media, CIGs can be computed using algorithms designed to

obtain angle dependent reflectivity (Xu et al., 2001).

In this chapter, basic formulas of the wave propagation theory are presented.

Then, I review the theory of the linearizing scattering problem with the Kirch-

hoff integral which leads to Bleistein’s general approach to common angle migra-

tion/inversion method (Bleistein and Gray, 2002b). On the basis of the migra-

1High-frequency refers to the frequency content of the waves ”high” in relative sense. It means
that the length of target in the medium is many times larger than the length of wavelet of the
seismic wave (or the velocity of the medium should vary very slowly). Although our inverse theory
is based on high-frequency approximation, the method would not totally fail if the high-frequency
condition does not exactly satisfied (Bleistein et al., 2001). Therefore, such asymptotic methods
can also be used for complex structure.
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2.2. THE BASIC WAVE EQUATION

tion/inversion theory, I define a forward operator and an adjoint operator that are

implemented numerically in Fortran subroutines.

The method described in this chapter is based on the equation that was deduced

by Bleistein et al (2002b). The subroutines, representing the forward and the adjoint

operators, were originally developed by Dr. Sacchi and improved by the author.

2.2 The basic wave equation

Algorithms derived from the wave equation play an important role in the seismic

industry. The wave equation describes the medium properties as a function of the

physical parameters. Here I review the basic wave equation with the Lagrangian

description2.

2.2.1 The elastic wave equation

Consider an elastic body. The linearized equation of motion (generalized Newton’s

Second Law) is described as

τij,j − ρui,tt= −fi, (2.2.1)

where i, j = 1, 2, 3 stand for x, y, z respectively; τ represents the stress tensor; f

represents the source function; ρ is the density of the solid ; ui refers to the particle

displacement vector.

In addition, τij and ui can also be described by linearized stress-strain relation

(generalized Hooke’s Law)

τij − cijklekl = −sij, (2.2.2)

where cijkl represents the stiffness tensor; ekl represents the strain tensor; sij refers

to the source strain tensor.

2Lagrangian description emphasizes the study of a particle that is specified by its original
position at some reference time (Aki and Richards, 1980).
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2.2. THE BASIC WAVE EQUATION

In the isotropic case we can reduce the number of independent stiffness coeffi-

cients in equation (2.2.2) to two by

cijkl = λδijδkl + µ(δikδjl + δilδjk),

with λ and µ being known as the Lamé constants.

Substituting the strain-displacement relations eij =
1
2
(ui,j + uj,i) to stress-strain

relation equation (2.2.2), then substituting result to equation of motion (2.2.1),

finally, we obtain stress-displacement relation

(cijkluk,l),j −ρui,tt = −fi. (2.2.3)

In case of homogeneity, above equation can be simplified to

(λ+ 2µ)∇(∇.~u) + µ∇× ~u− ρ∂
2~u

∂t2
= −~f, (2.2.4)

where

∇ =~i
∂

∂x
+~j

∂

∂y
+ ~k

∂

∂z
.

Now defining the Lamé potential φ and ψ as

~u = ∇φ+∇× ~ψ, (2.2.5)

we obtain the wave equation for a homogeneous, isotropic solid

∇2φ− 1

c2p

∂2φ

∂t2
= −fφ, (2.2.6)

for a compressional wave, where cp =
√

λ+2µ
ρ

, and

∇2 ~ψ − 1

c2s

∂2 ~ψ

∂t2
= −~fψ, (2.2.7)

for a shear wave, where cs =
√

µ
ρ
.
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2.3. LINEARIZING THE SCATTERING PROBLEM

2.2.2 The acoustic wave equation

When seismic waves propagate through a fluid medium (such as water or oil) in

which µ = 0, the elastic wave equation (2.2.4) reduces to

∇(λ∇.~u)− ρ∂
2~u

∂t2
= −~f. (2.2.8)

Instead of using the displacement vector ~u(~x, t), it is more common to use the

pressure p

p(~x, t) = −λ∇.~u(~x, t). (2.2.9)

First dividing both sides of equation (2.2.8) with ρ, then taking divergence of both

sides, next, substituting equation (2.2.9) to the result, finally, one obtains

∇.(1
ρ
∇p)− 1

λ

∂2p

∂t2
= −f̃ , (2.2.10)

where f̃ = ∇.( 1
ρ
~f). If the medium with constant density ρ, above equation can be

simplified as

∇2 p− 1

c2
∂2p

∂t2
= −f̃ , (2.2.11)

where c =
√

λ
ρ
is the acoustic wave velocity.

2.3 Linearizing the scattering problem

As a well-established theory, the linear inverse theory makes geophysical inverse

problems tractable (Claerbout, 1992). So the scattering wave fields are usually sim-

plified linearly to the perturbation of the physical parameters by ignoring nonlinear

parts3 based on high frequency assumption.

3Generally, the linear events correspond to the primary reflections which are caused by per-
turbation of underground and the nonlinear events correspond to the multiple reflections of those
subsurfaces. Therefore, linear inverse theory is valid for de-multiple data.
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2.3. LINEARIZING THE SCATTERING PROBLEM

2.3.1 Solution of the wave equation

Assuming an infinite space with two layers, a point source s is generated in the

upper layer, then in the upper layer, the wave field satisfies

∇2u(x, s, ω) +
ω2

c2(x)
u(x, s, ω) = −δ(x− s). (2.3.1)

where c(x) is the wave speed, x is the arbitrary position, ω is the angular frequency,

u(x, s, ω) is the total wave field which is composed from the incident wave field

uI(x, s, ω) generated by the point source and the scattered wavefield uS(x, s, ω)

generated by the interface between two layers, then the equation (2.3.1) can be

written as

∇2uS(x, s, ω) +
ω2

c2(x)
uS(x, s, ω) = −[∇2uI(x, s, ω) +

ω2

c2(x)
uI(x, s, ω)]− δ(x− s),

(2.3.2)

and the incident wave field uI(x, s, ω) satisfies the Green’s function under the high

frequency assumption

∇2uI(x, s, ω) +
ω2

c2(x)
uI(x, s, ω) = −δ(x− s). (2.3.3)

Substituting this equation to equation (2.3.2), one obtains

∇2uS(x, s, ω) +
ω2

c2(x)
uS(x, s, ω) = 0. (2.3.4)

In order to solve above equation, the Green’s theorem, ”which allows us to represent

a wavefield on either of a surface of infinite extent in terms of the wavefield and its

normal derivative on the surface” (Bleistein et al., 2001) , is used. We define another

Green’s function G(r,x, ω)

∇2G(r,x, ω) +
ω2

c2(x)
G(r,x, ω) = −δ(r− x), (2.3.5)

with r being the receiver position, and x arbitrary point in the upper layer. Apply

the Green’s theorem to equation (2.3.4) and (2.3.5) in the upper layer. After some

manipulations we obtain

uS(r, s, ω) =

∮

S̆

[

G(x, r, ω)∇uS(x, s, ω)− uS(x, s, ω)∇G(x, r, ω)
]

dS̆, (2.3.6)
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2.3. LINEARIZING THE SCATTERING PROBLEM

n

n

S
,

S0

s

r

Figure 2.1: A special choice of closed surface S̆ (Ś + S0) for the derivation of the
Kirchhoff integrals. s, r are source, receiver respectively.

where S̆ is the surface enclosing entire upper layer volume

S̆ = Ś + S0,

where Ś and S0 are the surfaces of the plane and the half sphere showed in Figure 2.1.

In the physical experiment, energy of any impulse signal will become zero at an

infinite boundary, the above equation becomes

uS(r, s, ω) = −
∫

Ś

[

G(x, r, ω)
∂uS(x, s, ω)

∂n
− uS(x, s, ω)

G(x, r, ω)

∂n

]

dŚ, (2.3.7)

~n represents normal direction unit (see Figure 2.1). Because the normal direction

is pointed outward from the domain of integration in the Green’s theorem, here I

define n upward pointing normal to the interface Ś, so I add minus sign in front of

the integral. As it is written, this expression is a non-linear equation, the scattered

wavefield is a function of itself. Therefore the Kirchhoff approximation is used to

linearize scattered wavefield expression.

2.3.2 Kirchhoff approximation

The Kirchhoff approximation is a method which uses the Kirchhoff integral to ap-

proximate solution of scattered wave from an infinite interface. This approximation

assumes the relationship between the leading-order incident and upward-scattered

wave as

uS = R(θ)uI ,
∂uS
∂n

= −R(θ)∂uI
∂n

, on Ś, (2.3.8)
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2.3. LINEARIZING THE SCATTERING PROBLEM

where R(θ) is the angle dependent reflectivity; θ is the specular angle of reflection.

Now, I substitute equation (2.3.8) to equation (2.3.7) and after some manipulations,

the linearized scattering problem is written as

uS(r, s, ω) =

∫

Ś

R(x, θ)
∂
[

G(x, s, ω)G(r,x, ω)
]

∂n
dŚ. (2.3.9)

For an arbitrary background velocity field, the Green’s functions can be expressed

as

G(x,y, ω) = eiωτ(x,y)A(x,y),

where τ(x,y) is the traveltime and defined by the Eikonal equation

1

c2(x)
− (∇τ(x,y))2 = 0, (2.3.10)

and A(x,y) is amplitude (geometrical spreading factor) which obeys the transport

equation

2∇τ(x,y).∇A(x,y) + A(x,y)∇2τ(x,y) = 0. (2.3.11)

Then, the scattering problem can be expressed as

uS(r, s, ω) = iω

∫

Ś

R(x, θ)A(r,x, s).
[

~n.∇τ(r,x, s)
]

.eiωτ(r,x,s)dŚ, (2.3.12)

where

A(r,x, s) = A(r,x)A(x, s)

τ(r,x, s) = τ(r,x) + τ(x, s),

~n.∇τ(r,x, s) = −|∇τ(r,x, s)| = −|2 cos θ
c(x)

~ν|,

where ~ν is the unit vector of the travel time gradients, or the migration dip direc-

tion (Bleistein and Gray, 2002b). We finally obtain the linear scattering problem

equation4

uS(r, s, ω) = S(ω)

∫

R(x, θ)A(r,x, s)
∣
∣
∣
2 cos θ

c(x)

∣
∣
∣eiωτ(r,x,s)dŚ, (2.3.13)

4KMAH indexK, which account for phase shifts in the Green’s functions due to caustics in their
ray fields (for details see (Bleistein and Gray, 2002b)), is ignored in this equation for calculation
efficiency in our algorithm.
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2.4. ASYMPTOTIC INVERSION

where S(ω) is the signature defined by

S(ω) =







−iωW (ω) for 3D

|ω|W (ω) for 2D

√

|ω|√ σsσr

σs+σr
e3iπsgn(ω)/4W (ω) for 2.5D

where W (ω) represents wavelet, σs and σr are the parameters, which describe out-

of-plane behavior with the units of Length2/Time, defined by

dx

dσi
= pi i = s, r (2.3.14)

with p being slowness vector.

2.4 Asymptotic inversion

In geophysical exploration, inversion is more complex than other processing, i.e.

imaging an earth model from the data. Generally, inversion with perfect data will

give a perfect result (Claerbout, 1992). Unfortunately seismic data are incomplete

and inaccurate, which make inversion a difficult task. Even more, a general ex-

pression of this inversion does not exist. Therefore, approximated expressions are

derived with the generalized Radon theory and pseudo-differential operator/Fourier

integral operator theory (Beylkin, 1985; Bleistein, 1987). Since common angle mi-

gration can obtain an improved, artifact free image, Bleistein and Gray (2002b)

proposed an algorithm for common-opening-angle migration (or inversion),

Ŕ(x, θ, φ) =
1

8π3

[2 cos θ

c(x)

]2
∫∫

S(ω)
uS(r, s, ω)

A(r,x, s)
e−iωτ(r,x,s)

∣
∣
∣~ν.

∂~ν

∂α1

× ∂~ν

∂α2

∣
∣
∣

.δ(θ′ − θ)δ(φ′ − φ)
∣
∣
∣
∂(α1, α2, θ

′, φ′)

∂(s1, s2, r1, r2)

∣
∣
∣dωds1ds2dr1dr2, (2.4.1)

where Ŕ(x, θ, φ) is recovered angle dependent reflectivity, s, r are sources and re-

ceivers defined by surface coordinates (s1, s2, r1, r2), θ refers to the reflection angle

(Figure 2.2), φ refers to the azimuth, α1, α2 refer to any parameter that defines rays.
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2.5. MODELING OPERATORS OF LINEAR SCATTERING
PROBLEM

0
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n
a2

a1

r1s1
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s2

Figure 2.2: Coordinates for AVA Kirchhoff migration/inversion. All variables are
referenced to the output point x. In the neighborhood of x, the dip ~ν, the unit
vector in the direction of the ray from the source s to the output point x and the
unit vector in the direction of the ray from the output point x to the receiver r are
in the same plane. Those two unit vectors spin around ~ν as φ varies.

Unfortunately, the reconstructed data, which use the forward operator on in-

verted model, do not fit the data. Therefore, an iterative constraint method is used

to obtain a solution that honors the data.

2.5 Modeling operators of linear scattering prob-

lem

Unlike direct inversion (i.e., asymptotic inversion), the discrete inversion technique

approximates the inverse by minimizing the difference between the observed data

and the synthetic data calculated from the predicted earth model. Thus, the process

computing synthetic data from model space to data space, and its inverse process, in

some sense, back projecting from data space to model space are needed. These pro-

cesses are called forward and backward/adjoint (or migration) modeling respectively

(Claerbout, 1992; Gray et al., 2001).
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2.5. MODELING OPERATORS OF LINEAR SCATTERING
PROBLEM

2.5.1 Forward modeling

Forward modeling, also called modeling, can be realized by using equation (2.3.13)

with a known earth model:

uS(r, s, ω) = S(ω)

∫

V

R(x, θ)A(r,x, s)
∣
∣
∣
2 cos θ

c(x)

∣
∣
∣eiωτ(r,x,s)W (ω)d3x, (2.5.1)

where R(x, θ) is the model,W (ω) represents the source wavelet in frequency domain,

and V is the volume of the model one would like to recover.

The last equation can be expressed as a linear Kirchhoff operator, denoted K,
which has two distinct parts: an integral operator L, and a source wavelet operator

C (or convolution operator in time domain)

d(r, s, ω) = KR(x, θ)

= CLR(x, θ). (2.5.2)

In this equation, R(x, θ) is the angle dependent reflectivity, and d(r, s, ω) represents

the data. The integral operator is expressed as

(LR)(r, s, ω) =
∫

R(x, θ)A(r,x, s)
∣
∣
∣
2 cos θ

c(x)

∣
∣
∣eiωτ(r,x,s)d3x. (2.5.3)

The operator C is given by

(Cr)(ω) = S(ω)W (ω)r(ω), (2.5.4)

where r(ω) is a dummy variable to which the operator is applied, and S(ω) is defined

in equation (2.3.13) without the wavelet term.

2.5.2 Adjoint modeling

Adjoint modeling, also called migration, is an approximated reverse process for

removing the forward modeling effects. In the mathematical sense, adjoint means

the complex conjugate of the matrix transpose (Claerbout, 1992). Thus, the adjoint

operator can be derived from forward operator using this definition

R̂(x, θ) = (CL)Td(r, s, ω)

= LTCTd(r, s, ω), (2.5.5)
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where R̂(x, θ) is recovered angle dependent reflectivity, and d(r, s, ω) are the data,

T means transpose.

The above equation shows that the adjoint operator has two parts corresponding

to the forward operator: first undoing the multiply with the conjugate-transpose

multiply, and then reversing the summation over the traveltime isochron. To be

exact, they can be written as

d′(r, s, ω) = (CTd)(r, s, ω)

= S(ω)d(r, s, ω)W ∗(ω),

(2.5.6)

R̂(x, θ) = (LTd′)(x, θ)

=

∫

A(r,x, s)e−iωτ(r,x,s)
∣
∣
∣
2 cos θ

c(x)

∣
∣
∣d′(r, s, ω)drdsdω.

Where d′(r, s, ω) is a solution obtained by the adjoint, and W ∗(ω) denotes the

conjugate of the wavelet, A(r,x, s)e−iωτ(r,x,s) the conjugate Green’s function.

The adjoint operator in equation (2.5.6) images the structure of the subsurface

correctly (Bleistein et al., 2001; Vanelle, 2002) as the inverse operator in equation

(2.4.1) does. Both of them use the same phase shift factor e−iωτ(r,x,s). But the ad-

joint operator does not recover full information about the reflectivity as the inverse

operator does. To avoid instabilities during inversion, which is common in ill-posed

inverse problems, the adjoint operator replaces inversion by multiplication. There-

fore, the result is a blurred version of the original image (Youzwishen, 2001). In

figure 2.3 we portray the result of using the adjoint and inverse operators to image

a 1-D earth structure. As showed in the figure, the inverse process retrieves a more

accurate description of the subsurface than the adjoint operator.

2.5.3 Implementation of modeling operators

Since seismic data sets are large and complicated, forward and adjoint modeling can

not be expressed simply by matrix operations. Therefore, the subroutines are used

to perform these two processes. In order to check that the two subroutines are true
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Figure 2.3: (A) The original reflectivity R. (B) Synthetic common shot gather
created by the forward operator d = CLR. (C) The smeared reflectivity recovered
by the adjoint operator R̂ = LTCTd. (D) The approximated reflectivity retrieved
by the iterative inverse technique with forward/adjoint operators.
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adjoints of each other, the dot-product test is used (Claerbout, 1992), which notes

yT (Ax) = (ATy)Tx, (2.5.7)

where x,y are any random vectors or matrices, A and AT represent forward and

adjoint processing subroutines respectively.

The pseudo-code for the subroutine is given below. The subroutine named

Kir for adj is for an acoustic earth model. The data are represented in time domain.

# Subroutine for Kirchhoff forward/adjoint modeling operators

if adjoint operator, then

fast Fourier transform data and multiply signature: dtemp = fft(d) ∗ S(ω)
conjugate-transpose multiply wavelet with data: dtemp = CTdtemp

endif

for itrace = all receivers for each source

for x = all (x, y, z) positions of earth model

for θ = all reflection angles less than maximum aperture

read Green’s functions table (amplitude, time) from file

if forward operator, then

create data from angle dependent reflectivity:

dtemp(itrace, time) = LR(x, θ)
elseif adjoint operator, then

create angle dependent reflectivity from data:

R̂(x, θ) = LTdtemp(itrace, time)
endif

endfor

endfor

endfor

if forward operator, then

multiply wavelet with data: dtemp = Cdtemp
multiply signature and inverse fast Fourier transform data:
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2.6. SUMMARY

d = real{ifft [dtemp ∗ S(ω)]}
endif

2.6 Summary

In this chapter, the basic wave equation for scattering problem is derived based on

generalized Newton’s and Hooke’s laws. This non-linear scattering problem is lin-

earized by taking advantage of the Kirchhoff approximation. The linearized solution

of the wave equation can be used to further recover the earth image.

Based on the linearized integral, an asymptotic inverse solution is found with

the generalized Radon theory (Bleistein and Gray, 2002b).
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Chapter 3

Forward/adjoint operators for
rock property inversion

3.1 Introduction

Reflection and transmission of seismic waves have been studied significantly for re-

trieving rock properties from angle dependent reflectivity. The earliest researches

about this topic were done in nineteenth century (Green, 1839; Knott, 1899). Zoep-

pritz (1919) deduced a set of equations to compute the amplitudes of reflected and

transmitted waves, and successfully being used in tomographic inversion for calcu-

lating reflection and transmission coefficients (Wang, 1999). However, the inversion

problem, which estimates elastic parameters from angle dependent reflectivity using

Zoeppritz equations, still is a difficult problem. Fortunately, after many laborious

exercises, Koefoed (1955) predicted that there would be an invertible relationship

between angle dependent coefficient and medium parameters. Koefoed’s prediction

was realized by many later geophysicists (Bortfeld, 1961; Aki and Richards, 1980;

Shuey, 1985; Fatti et al., 1994; Wang, 1999). Although those approximations differ

in accuracy, medium, and wavefield parameterizations. All of them are based on

the same assumption (Rüger, 2002).

1. The media on both sides of the reflecting boundary have similar elastic prop-

erties, and the relative changes in the P- and S-wave velocities and densities

across the interface are small.
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3.2. A&R APPROXIMATION TO THE ZOEPPRITZ EQUATIONS

2. The incidence angle is sufficiently smaller than the critical angle. At the

critical angle, the amplitudes change abruptly and phase changes make any

parameter extraction difficult.

Among all approximations, the classic representation was derived by Aki and

Richards’s (A&R). Their approximation to Zoeppritz equation is always used or

further simplified by others. Therefore, I focus on A&R approximation as forward

processing to estimate rock properties.

Although A&R approximations are derived for plane waves, they can be used

for spherical waves. The reasons are: for far source spherical wave, the wavefront

can be approximated locally by plane surface. For near source spherical wave, the

wave can be decomposed into a sum of plane waves, and approximation operators

can be applied to each plane wave.

In this chapter, I present A&R approximations for P-wave reflection coefficients.

Base on this equation, then the forward and adjoint operators are defined. Obvi-

ously, I only show the summary of the most important approximated equation to my

thesis. Details about the Zoeppritz equations and its approximation can be found

in Aki and Richards (1980).

3.2 A&R approximation to the Zoeppritz equa-

tions

Reflection and transmission will occur when waves propagate in a discontinuous

medium. The elementary formulas for reflection/transmission coefficients can be de-

rived by using kinematic and dynamic boundary conditions. The kinematic bound-

ary condition assumes that displacements are continuous through the boundary,

the dynamic boundary condition is the continuity of traction across the interface.

Based on these two boundary conditions, the exact formulae for P-P wave1 reflection

coefficients can be expressed in terms of the ray parameter p (Aki and Richards,

1P-P wave refers to the wave style that both incident wave and reflected wave are P-wave.
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1980)

P̀ Ṕ =

(
b cos i1
vp1
− c cos i2

vp2

)
F −

(
a+ d cos i1

vp1

cos j2
vs2

)
Hp2

D
. (3.2.1)

Where P̀ , and Ṕ represent incident, and reflected P-wave respectively, and

a = ρ2(1− 2v2s2p
2)− ρ1(1− 2v2s1p

2),

b = ρ2(1− 2v2s2p
2) + 2ρ1v

2
s1p

2,

c = ρ1(1− 2v2s1p
2) + 2ρ2v

2
s2p

2,

d = 2(ρ2v
2
s2 − ρ1v2s1),

F = b
cos j1
vs1

+ c
cos j2
vs2

,

H = a− dcos i2
vp2

cos j1
vs1

,

D =
detM

vp1vp2vs1vs2
,

with ρ1, vp1, and vs1 being upper layer’s density, P-wave velocity, and S-wave velocity

respectively, ρ2, vp2, and vs2 being lower layer’s density, P-wave velocity, and S-wave

velocity respectively (Figure 3.1), i1 , i2 referring to P-wave incident/reflected and

transmitted angle respectively, and j1, j2 representing S-wave reflected, transmitted

angle respectively, ray parameter p denoting as

p =
sin i1
vp1

=
sin j1
vs1

,

and the coefficient matrices M defining as

M =







−vp1p − cos j1 vp2p cos j2
cos i1 −vs1p cos i2 −vs2p

2ρ1v
2
s1p cos i1 ρ1vs1(1− 2v2s1p

2) 2ρ2v
2
s2p cos i2 ρ2vs2(1− 2v2s2p

2)
−ρ1vp1(1− 2v2s1p

2) 2ρ1v
2
s1p cos j1 ρ2vp2(1− 2v2s2p

2) −2ρ2v2s2p cos j2







One can see that above expressions are very complex. Rock properties (i.e. ρ,

vp, and vs) inversion seems to be a ‘mission impossible’. Fortunately, under the

assumption on page 24, Aki and Richards (1980) approximated above equations as

P̀ Ṕ =
1

2
(1− 4

v2s
v2p

sin2 i)
4ρ
ρ

+
sec2 i

2

4vp
vp
− 4v2s

v2p
sin2 i

4vs
vs

, (3.2.2)
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Figure 3.1: Coordinates for analysis of reflected wave set up by a plane P-wave
incident on an interface between two solids.

where the elastic properties are:

4vs = vs2 − vs1,

vs = (vs2 + vs1)/2,

4vp = vp2 − vp1,

vp = (vp2 + vp1)/2,

4ρ = ρ2 − ρ1,

ρ = (ρ2 + ρ1)/2,

i = (i1 + i2)/2.

Since this approximation is derived from the assumption of small percentage chang-

ing in elastic properties, the difference between incident angle i1 and transmitted

angle i2 will be small. Therefore, the reflection angle θ can be approximated as the

angle i showed above.

3.3 Modeling operators for A&R approximation

As mention in section 2.5 on page 18, the discrete inversion needs the forward

and adjoint modeling operators. However, the angle dependent reflectivity is still
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3.3. MODELING OPERATORS FOR A&R APPROXIMATION

nonlinear to 4ρ
ρ
, 4vp

vp
, and 4vs

vs
in the equation (3.2.2). This is because that the

unknown vs

vp
is a nonconstant coefficient, but function of rock physical parameters.

One simplification assumes that the ratio of vs to vp is constant2 (Wiggins et al.,

1983)
vs
vp

= 1/2. (3.3.1)

Substituting equation (3.3) to equation (3.2.2), one obtains

R(x, θ) =
1

2
(1− sin2 θ)

4ρ
ρ

+
sec2 θ

2

4vp
vp
− sin2 θ

4vs
vs

, (3.3.2)

where x is any point on the interface, and θ refers to the reflection angle.

3.3.1 Forward modeling

The linear approximated equation can be used to calculate the angle dependent

reflectivity for a known elastic interface. The equation (3.3.2) can be expressed as

a linear operator Z

R(x, θ) = Zf(x) (3.3.3)

where f(x) represents elastic parameters matrix or vector composed of 4ρ
ρ
, 4vp

vp
, and

4vs

vs
, R(x, θ) is the synthetic angle dependent reflectivity. The linear approximated

operator denotes

(Zf)(x) = 1

2
(1− sin2 θ)

4ρ
ρ

+
sec2 θ

2

4vp
vp
− sin2 θ

4vs
vs

. (3.3.4)

As working with discrete geophysical data, the linear operator (equation 3.3.4)

can be thought of as matrices, and the parameters as vectors or matrices. The

discrete forward problem3 is expressed as







R(θ1)
R(θ2)

...
R(θn)








=








1
2
(1− sin2 θ1)

sec2 θ1
2

− sin2 θ1
1
2
(1− sin2 θ2)

sec2 θ2
2

− sin2 θ2
...

...
...

1
2
(1− sin2 θn)

sec2 θn

2
− sin2 θn













4ρ
ρ

4vp

vp
4vs

vs




 . (3.3.5)

2Other experimental approximations can be used depending on local rock physical condition
for real data.

3To be simple, this expression is only for one reflection point in space.
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3.3.2 Adjoint modeling

As defined in section 2.5.2 on page 19, the adjoint operator can be obtained by

taking the transpose of the forward matrix. Thus, the adjoint modeling operator is

f̂(x) = ZTR(x, θ) (3.3.6)

where f̂(x) is the result obtained by applying the adjoint operator to the model.

As mentioned above, when working with discrete expression of the model and

data, the adjoint operators are implemented as matrices. Equation (3.3.6) can be

expressed as







4̂ρ
ρ

4̂vp

vp

4̂vs

vs







=





1
2
(1− sin2 θ1)

1
2
(1− sin2 θ2) . . . 1

2
(1− sin2 θn)

sec2 θ1
2

sec2 θ2
2

. . . sec2 θn

2

− sin2 θ1 − sin2 θ2 . . . − sin2 θn












R(θ1)
R(θ2)

...
R(θn)







.

(3.3.7)

3.4 Implementation of modeling operators

A&R approximation operators can be completed by matrices operation. In order

to combine with the Kirchhoff modeling processing, the subroutines operators are

defined to perform A&R approximation processing.

The pseudo-code for the subroutine is given below. The subroutine named

A&R for adj is for an earth model.

# Subroutine for A&R forward/adjoint modeling operators

for x = all (x, y, z) positions of earth model

for θ = all reflection angles less than maximum aperture

if forward operator, then

create angle dependent reflectivity from elastic model:

R(x, θ) = Zf(x)
elseif adjoint operator, then
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create model from angle dependent reflectivity:

f̂(x) = ZTR(x, θ)
endif

endfor

endfor

3.5 Integrating AVA inversion with Kirchhoff mi-

gration

In the Chapter 2, I reviewed the linear scattering problem

d = CLR(x, θ). (3.5.1)

Note that the angle dependent reflectivity R(x, θ) is related to the vector of physical

parameters f(x) via a Zoeppritz forward operator

R(x, θ) = Zf(x) (3.5.2)

Therefore, combining equation 3.5.1 and equation 3.5.2, the seismic data can now

be expressed by

d = CLZf(x). (3.5.3)

and its adjoint operator can be written as

f̂(x) = ZTLTCTd. (3.5.4)

Our inverse algorithm is based on the equation 3.5.3 and equation 3.5.44 By

means of the CG, we can easily obtain the perturbation of rock properties f(x).

The common image gather R(x, θ) is generated by substituting the inverted rock

physical parameters back to the A&R approximation to the Zoeppritz equation.

4Actually, the three variables of f(x) are correlated (Downton and Lines, 2001). The algo-
rithm presented here does not included a model covariance matrix. Including correlation among
parameters is a non-trivial problem since these parameters are unknown.
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3.6 Summary

In this chapter, the A&R approximation of P-wave’s reflectivity is presented for

Zoeppritz equations . Using kinematic and dynamic boundary conditions, the ap-

proximation leads a way to retrieval rock properties from CIGs in angle domain

efficiently. In order to linearize A&R approximation to elastic parameters 4ρ
ρ
, 4vp

vp
,

and 4vs

vs
, the assumption vs

vp
= 1/2 is used, which was derived by Wiggins et al.

(1983).

To simplify the problem, the forward processing operators of A&R approxima-

tion are derived for plane wave. Since a relative large radius of a spherical wave can

be approximated locally by a plane surface. Moreover, spherical wave can be de-

composed into a sum of plane wave, and the operators can be applied to each plane

wave individually. Therefore, the operators can still be used for spherical waves.

The forward and adjoint operators are derived from the linearized A&R ap-

proximation. In keeping with the previous algorithm, the discrete operators are

performed with subroutines. This enables combination of two parallel operators,

Kirchhoff and A&R approximation operators, together to invert rock properties

directly from pre-stack seismic data.
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Chapter 4

Inversion of angle gathers and
rock properties

4.1 Introduction

Seismic inversion is the processing which determines the characteristics of the inte-

rior of the earth based on observations from a surface. It is the reverse calculation

of the forward problem. Generally, perfect data1 will give perfect inverted result

(Claerbout, 1992). But seismic data are incomplete and inaccurate. In order to

avoid dividing by zero, many geophysicists replace inversion with migration (or

adjoint processing). However, the migrated result can not recover amplitude infor-

mation, which is important for AVA/AVO analysis. Moreover, the adjoint operators

treat missing data as assuming they are zero-valued data, which further limit the

resolution. Fortunately, since adjoint processing is the first step of inversion (Taran-

tola, 1984; Claerbout, 1992). The inversion can be approached by using forward and

adjoint operators iteratively. Such numerical method is called discrete inversion.

Discrete inversion technique finds the solution by minimizing the cost function

(Tarantola, 1987; Jin et al., 1992; Thierry et al., 1999), which is composed by

two parts: one is l2 norm misfit —- difference between the observed data and the

predicted data from the earth model; another is the regularization terms which force

1Perfect data are noise free data, and contain enough information to evaluate all of the rock
physical properties within every cell of a tomographic grid.
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the solution toward the desired characteristics. Usually, the regularization terms are

defined in terms of l1 and l2 norms.

In this chapter, I present the basic idea and formulas of discrete inversion theory.

Then, the forward and adjoint operators for rock properties inversion are defined

and finally, an inversion methodology is proposed.

4.2 Discrete inversion theory

Geophysical data are discretely recorded with regular or irregular time/space sam-

ples. Thus, the data can be expressed as matrices or vectors. Moreover, the word

”inversion” originally come from ”matrix inversion” (Claerbout, 1992). Therefore,

the linear operator can be thought of as matrices.

4.2.1 Seismic discrete inversion problem

Retrieving approximated rock properties from a pre-stack data set can be regarded

as linear inverse problem

d = Gm+ n, (4.2.1)

where d refers to the pre-stack data defined as a vector of (d1, d2, . . . , dN)
T , N

is the number of observation data, m refers to the model defined as a vector of

(m1,m2, . . . ,mM)T , M is the number of unknowns of the model, n represents addi-

tive noise that we assume Gaussian, and G represents the matrix operator defined

as 






G11 G12 . . . G1M

G21 G22 . . . G2M
...

...
. . .

...
GN1 GN2 . . . GNM







.

Since there is no way to collect reflected data from each small tomographic grid

within the earth. Usually, the number of data N is smaller than the number of

unknowns M . Therefore, the inverse problem (equation 4.2.1) will have more than

one solution. In order to resolve such an ill-posed problem, a constrained least

squares approach is used.
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The least squares approach finds the solution by minimizing error or distance

between synthetic and original data. The distance is equivalent to following objective

or cost function

J (m) = eTe = (d−Gm)T (d−Gm) = ||d−Gm||22. (4.2.2)

To obtain the minimum of the cost function, the derivative of the function (equation

4.2.2) with respect to the model parameters is set to zero

∂J (m)

∂m
=
∂(d−Gm)T (d−Gm)

∂m
= 0, (4.2.3)

after some manipulations, one obtains

m̃ = (GTG)−1GTd, (4.2.4)

where m̃ are the recovered model parameters. GTd denotes adjoint (or the gradient

of the cost function). GTG is the Hessian.

In geophysical inverse problem, the Hessian is a huge matrix2. We will face a

daunting computation for the inversion of the Hessian if we use this equation to

invert the model parameters3. This is why we will directly operate on the minimiza-

tion of the cost function using the method of conjugate gradients (CG). In other

words we will avoid forming the inverse of GTG4. A good review of the CG method

and application to geophysical inverse problems can be found in Scales (1987).

It is important to distinguish migration and inversion. As mentioned above,

migration is the gradient at first iteration of a local optimization (Tarantola, 1984).

2For example, a 2D pre-stack seismic data, the number of elements of Hessian is (Ns×Nr×Nt)
2,

it would be more than trillions, where Ns, Nr, Nt represent number of source, receiver, and time
sample respectively

3The computation of inverting a N × N matrix is N 3, but CG only K × N2 with K being
number of iteration, and N À K.

4This is a task only feasible for small 1D problems
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To be clear

m̃ = (GTG)−1GTd

= G†d inversion,

(4.2.5)

m̂ = GTd migration.

Obviously, if GTG = I, where I is used to indicate the identity operator, the

inversion is precisely estimated by the migration. In seismic application, unfortu-

nately, this situation seldom occurs.

Applied to perfect data, inversion will give perfect result. This is why that inver-

sion is more appealing academically than migration. However, it is also important

for us to know the limitation of the inverse operator G†

m̃ = G†d

= (GTG)−1GTd

= (GTG)−1GTGm (4.2.6)

= G†Gm.

Clearly, if G†G = (GTG)−1GTG = I. The inverted image equals to the true

image of the subsurface. In general, noise and the inherent problem of operator

mismatch precludes us of attempting to find an exact inverse to the operator G.

We simply consider the solution where G†G ≈ I, in other words, the inverted image

m̃ should offer some improvements with respect to the migrated result m̂, and a

good approximation to the true image m. Figure 2.3 shows a good example for the

above statement.

4.2.2 Constraints

As mentioned above, the geophysical problems (equation 4.2.1) are ill-posed. Thus,

the matrix GTG in equation (4.2.4) is in general unstable or not invertible. In order

to retrieve a stable, unique solution from noisy and incomplete data, constraints are
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applied to force a desired solution. Hence, a new cost function is formed by a data

misfit term and a constraint term

J (m) = ||d−Gm||22 + µ||R(m)||ll. (4.2.7)

Where regularization term R(m) is expressed as an l norm (i.e., l1 or l2 norm), and

µ denotes the trade-off parameter, which defines the priority given to satisfying the

constraint versus the data misfit term.

The trade-off parameter affects the solution greatly. If the trade-off parameter is

set to zero, the solution will totally fit the data. Inversely, when the trade-off param-

eter approaches infinity, all efforts will be put toward minimizing the regularization

term and the solution will not fit the data. Thus, to retrieve a realistic solution,

the optional trade-off parameter must be a compromise to satisfy both terms. The

details for determining trade-off parameters, please see Youzwishen (2001).

The desirable solution can be obtained by minimizing the cost function (equation

4.2.7)
∂J (m)

∂m
= 2GTGm− 2GTd+ 2µQT

mQmm = 0, (4.2.8)

after some manipulations, one obtains

m̃ = (GTG+ µQT
mQm)−1GTd. (4.2.9)

where Qm is derived from the regularization term ||R(m)||l

QT
mQm =

1

2

∂||R(m)||ll
∂m

The same as the equation (4.2.4), the equation (4.2.9) need to calculate the

Hessian GTG. To make calculation efficiently, the CG algorithm is used for such

constrained least squares inversion.

Usually, there are two kinds of constraints, quadratic constraints expressed in

l2 norm and non-quadratic constraints expressed, for instance, with an l1 norm.

Quadratic constraints result in a linear inverse problem. This is because the ma-

trix Qm in equation (4.2.9) is not the function of the model m. Non-quadratic

36
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constraints result in a nonlinear inverse problem. However, many geophysicists pro-

posed algorithms which solve the l1 norm non-quadratic constraints problem in a

linear, iterative manner (Scale and Smith, 1994; Sacchi, 1997; Youzwishen, 2001).

Quadratic constraints

Since most structures of the earth vary continuously along horizontal direction, the

common quadratic constraint is to enforce a continuous solution (Youzwishen, 2001;

Duquet et al., 2000). The simplest one of such continuous solution is a flat solution

that has little change between adjacent parameters.

The flat solution can be obtained by minimizing the first derivative of the model

norm.

m′ =
∂m

∂x
≈ mi+1 −mi

4x . (4.2.10)

Obviously, the derivative in above equation can be estimated by convolution with

the filter (1,−1)/4x. Thus, The equation (4.2.10) can be rewritten as weighting

matrices D1 which act on the vector of model parameters m

D1m =
1

4x










1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 −1
0 . . . 0 0 1



















m1

m2
...

mM−1

mM










.

Applying the flat regularization term to the cost function, the solution can be ob-

tained by replacing the weighting matrix of equation (4.2.9) with the derivative

matrix D1

m̃ = (GTG+ µDT
1D1)

−1GTd. (4.2.11)

Where the transpose matrix DT
1 is defined as

DT
1 =










1 0 0 . . . 0
−1 1 0 . . . 0
...

. . . . . .
...

...
0 . . . −1 1 0
0 . . . 0 −1 1
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The smooth convolution matrices (D1 and DT
1 ) showed above are only for one

dimensional problem. In two (2D) or three (3D) dimensional problems, the matrix

of parameters will be rewritten in lexicographic order. The derivative matrices for

such cases will be determined by model parameters which are adjacent in the vector

m. For example, a model parameters panel of a 2D problem can be written as








m11 m12 . . . m1nx

m21 m22 . . . m2nx

...
...

. . .
...

mnz1 mnz2 . . . mnznx







→




























m11

m12
...

m1nx

m21

m22
...

m2nx

...
mnz1

mnz2
...

mnznx




























with nx, nz being number of samples along the horizontal and the vertical direction

respectively. The smooth convolution matrices applied for the horizontal and the

vertical directions are

Dx =










Dx1

Dx2 0
Dx3

0
. . .

Dxnz










,

and

Dz =










Dz1

Dz2 0
Dz3

0
. . .

Dznx
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respectively, where

Dx1 = Dx2 = · · · = Dxnz
=










1 −1
1 −1 0

. . . . . .

0 1 −1
1










︸ ︷︷ ︸

total number is nx

,

Dz1 = Dz2 = · · · = Dznx−1 =









1
nx−1 numbers of zero

︷︸︸︷. . . −1
1 . . . −1 0

. . . . . .

0 1 . . . −1









︸ ︷︷ ︸

total number is 2×nx

,

Dznx
=








1
1 0

0
. . .

1








︸ ︷︷ ︸

total number is nx

.

Non-quadratic constraints

The most common non-quadratic regularization term is the l1 norm. Unlike smooth-

ing terms, sparseness will preserve edges and discontinuities along faults, and in-

crease vertical resolution (Sacchi et al., 2003). When sparseness is enforced on a

model parameter, the resulting solution will be spiky. In the same vein, as sparse-

ness is enforced on the first derivative of a model parameter, the resulting solution

will be blocky.

Since this thesis focuses on AVA and variation of rock properties inversion, I

mainly discuss the spiky regularization term. It is defined as

R(m) =
M∑

i=1

|mi|. (4.2.12)
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Substituting equation (4.2.12) into equation (4.2.7), and minimizing this cost func-

tion, after some manipulations, one obtains

2GTGm− 2GTd+ µsign(m) = 0. (4.2.13)

where sign(mi) =
mi

|mi|
. Subsequently,

m̃ = [GTG+
µ

2
sign(m)m−1]−1GTd. (4.2.14)

Obviously, this equation is nonlinear. Because the solution is the function of itself,

in order to solve it with CG, let’s rewrite the spiky regularization term

R(m) =
M∑

i=1

∣
∣
∣
mi

√

|mi|

∣
∣
∣

2

= ||Qmm||22 (4.2.15)

where Qm is the diagonal matrix defined in terms of the vector m

Qm =













1√
|m1|

1√
|m2|

0

1√
|m3|

0
. . .

1√
|mM |













(4.2.16)

To avoid divided by zero, we often replace the unknowns in equation (4.2.16) by

1
√

|m1|
→ 1
√

|m1|+ ε
, (4.2.17)

where ε is a small positive number.

By defining a new spiky constraint operator as equation (4.2.16) and equation

(4.2.17), the l1 norm function (equation 4.2.12) is rewritten as an l2 norm func-

tion (equation 4.2.15). Thus, the weakly nonlinear problem (equation 4.2.13) can

be solved by using the iteratively re-weighted least squares technique in a linear,

iterative manner (Scale and Smith, 1994).
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4.3 Constrained least-squares migration/inversion

As mentioned above, in order to avoid forming matrix GTG, the cost function itself

is used to find a solution. Therefore, numerical optimization techniques are used for

minimizing the cost function iteratively. We minimize the following cost function:

J (m) = ||d−Gm||22 + λ||Rsm(m)||22 + µ||Rsp(m)||22. (4.3.1)

where Rsm represents smoothness constraint described in subsection 4.2.2, Rsp de-

notes sparseness constraint described in subsection 4.2.2. λ, and µ are tradeoff

parameters.

In the cost function showed above, the smoothness constraint and the sparseness

constraint seem to be in conflict in some sense. As smoothness constraint enforces

smoothness and penalizes discontinuities and rapid parameters changes. At the

same time, the sparseness constraint enforces the discontinuities. However, giving

the proper weights (tradeoff parameters) for those two operators, the promised result

will be smoothed or discontinued at the area where it should be. Therefore, such

cost function is suitable for retrieving earth’s properties. Usually in the earth, along

the horizontal direction, faults cut off the continuity of the background. Along the

vertical direction, rock properties are continuous in the layers, and discontinuous

between the layers.

Iterative gradient minimization by conjugate gradients (CG) is one of the best

methods for geophysical inverse problems. There are two advantages of using CG

minimization for seismic inversion. First, CG minimization approaches the desired

solution by repeating forward/adjoint-type processes. Thus, it avoids inverting the

product GTG directly. This is very important for seismic inverse problems. In fact,

seismic forward and adjoint operators are coded as functions rather than matrices.

Second, CG minimization is an efficient way for the seismic inversion because it

is N
K

times faster than traditional Gaussian elimination methods, where N is the

dimension of the inverted matrix and K is the number of iterations, and N À K.
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4.3.1 Conjugate gradients implementation

The pseudo-code for the subroutine of CG is given below. The subroutine named

CG operator. Details about the CG algorithm can be found in Claerbout (1992),

Strang (1986), and especially Scale (1987).

# Subroutine for CG algorithm

# initialization

r = d # d represents the data

m =m0 # m refers to the model

# calculating gradient

p = GT r

s = p

q = Gp

# begin iteration

for iter = 1,max iteration

α′ = sT s

α = α′

qT q

m =m+ α ∗ p # update model

r = r− α ∗ q # update residual

s = GT r

β = sT s
α′

p = s+ β ∗ p
q = Gp

end

4.3.2 Forward/adjoint operator for inversion

As shown in section 4.3.1, the CG algorithm includes only one matrix operator G,

but the cost function on page 41 contains more than one matrix operator. Moveover,
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the forward operator G is composed by Kirchhoff and A&R forward operators. For

this reason, an integrated matrix (or argumented matrix) operator must be formed.

In other words, the reformed cost function with regularization term (equation 4.3.1)

should look like the standard cost function (equation 4.2.2). Since the sparseness

regularization term can be rewritten in the form of quasi l2 norm (equation 4.2.15),

the cost function can be expressed in quadratic form by substituting the flat con-

straint operator D1 and the spiky constraint operator Qm described in the section

4.2.2 into equation (4.3.1)

J (m) = ||d−Gm||22 + λ||D1m||2 + µ||Qmm||22. (4.3.2)

The above equation is equivalent to

J (m) = ||dA −GAm||22, (4.3.3)

where dA is a new data vector which is composed by padding zeros5 to the end of

the data vector d

dA =

(
d
0

)

(4.3.4)

and GA is the argumented operator

GA =





G√
λD1√
µQm



 , (4.3.5)

with the matrix operator G being denoted as

G = CLZ, (4.3.6)

where CL forms the Kirchhoff forward operator which is described in section 2.5.1

on page 19, and Z represents A&R forward operator which is described in section

3.3.1 on page 28.

Substituting equation (4.3.4) and (4.3.5) to equation (4.3.3), and comparing to

standard cost function. Finally, one obtains forward operator for such constrained

5Numbers of zero are determined by the number of parameters of D1 and Qm.
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least squares inverse problem

(
d
0

)

=





CLZ√
λD1√
µQm



m, (4.3.7)

and its adjoint operator

m̂ =
(

ZTLTCT
√
λDT

1

√
µQT

m

)
(
d
0

)

. (4.3.8)

4.4 Implementation of the inversion algorithm

The desired solution of the inverse problem can be retrieved by the CG algorithm.

The computation steps are listed below (Sacchi, 1997).

1. Initialize the model parameters for rock properties f(x). Most commonly,

the default model is set to zero for each parameter if there is not enough

information to begin elsewhere.

2. Input Green’s function table and macro velocity model. Green’s functions are

calculated by the target oriented ray tracing method.

3. Select maximum iteration and the tradeoff parameters and emax.

4. Call the CG subroutine. The CG subroutine also calls the Kirchhoff for-

ward/adjoint and A&R forward/adjoint subroutines.

5. During the CG iteration processing, output the result if |J k−J k−1|
(|J k|+|J k−1|)/2

≤ emax,

where J k is the cost function evaluated at iteration k.

6. Plot the image and the misfit to determine if the tradeoff parameter need

adjustment.

4.5 Summary

In this chapter, I review the discrete inverse theory. An inversion method based on

the CG algorithm is proposed. This inverse technique uses the forward and adjoint
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operators couple to retrieve the approximated solution iteratively. The advantages

of such iterative inverse technique are as follows.

1. The algorithm can be easily coded and efficiently executed.

2. The scheme avoids computed the product GTG which can not be formed for

multidimensional geophysical inverse problems.

3. The algorithm does not require large amount of computer memory. The for-

ward and adjoint operators are coded as functions rather than matrices.

Since faults cut off the continuity of the background in the horizontal plane,

and rock properties are continuous in the layers but discontinuous between the

layers along the vertical direction, the quadratic smoothing constraint is used in the

horizontal plane and a non-quadratic sparse constraint is applied to improve the

vertical resolution. This technique has been developed by our group in recent years

(Feng and Sacchi, 2004a).
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Chapter 5

Target oriented ray tracing for
Green’s function

5.1 Introduction

Due to its flexibility and efficiency, ray based Kirchhoff migration/inversion is more

popular than other methods in exploration geophysics. Imaging goals focus now on

recovering elastic properties. True amplitude migration for complex media, which

is based on a weighted diffraction stack, becomes more and more important. How-

ever, the Green’s functions (or weighting functions) are computationally expensive.

Therefore, an efficient strategy for calculating the Green’s functions1, as well as high

accuracy, will significantly reduce the cost of the amplitude-preserving migration.

The Green’s functions are composed of two parts: travel times and amplitudes.

Generally, the travel time and amplitude can be obtained by ray tracing methods,

which mainly consists in solving the two ray equations — eikonal and transport

equations. Based on high frequency approximation, usually the seismic ray tracing

is used to calculate the rays, travel times, wavefronts (the kinematic aspects of wave

propagation, computed by eikonal equation) and amplitudes (dynamic part of the

wave propagation, computed by the transport equation).

There are lots of ray tracing methods for calculating the Green’s function. The

1If the source function is an impulse, the solution of the Helmholtz equation is called Green’s
function, or impulse response.
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Target areaO

O’

S1 S2 .... ... ... ... ... Sn ...

Figure 5.1: Target oriented ray tracing.

classical paper, which is written by Cerveny et al. (1977), forms the foundation of

dynamic ray tracing. However, these algorithms are quite expensive. Vanelle (2002)

proposed an algorithm based on hyperbolic traveltimes expansion. Because the

method uses only kinematic ray tracing, the computational efficiency is increased.

In this Chapter, I propose a target oriented ray tracing for computing the Green’s

function based on the kinematic ray tracing. Therefore, the algorithm is efficient.

Furthermore, our method takes into account all relevant arrivals from all directions

by shooting dense up-going rays from the image points. As the angles of the rays

are needed for the approximation. I also present the algorithm for computing angle

based on the eikonal equation.

5.2 Target oriented ray tracing

Target oriented ray tracing is used to compute the Green’s function for the Kirchhoff

migration/inversion algorithm (Figure 5.1). The rays are shot from the image points

up to the surface. To avoid migration/inversion operator aliasing, the density of the

rays are chosen depending on the complexity of the model, the more complex of

the model is, the more dense of the rays will be used. Since the ray tracing is only

executed in selected image domain at which the interesting targets locate. Therefore,
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Figure 5.2: Sketch of a filter grid.

it will be efficient and flexible. For example, no acquisition regularity assumption is

necessary, and the algorithm can be easily applied on parallel computers.

5.2.1 The macro-velocity model

The ray tracing requires the input of a macro velocity model (or migration velocity

model). The macro velocity, which is the low frequency background of the earth

model, hence for synthetic data, is obtained from the earth model using a low pass

filter. For example, a 2D filter denotes

F =










fi−n,i−n . . . fi−n,i . . . fi−n,i+n
...

. . .
...

...
fi,i−n . . . fi,i . . . fi,i+n
...

...
. . .

...
fi+n,i−n . . . fi+n,i . . . fi+n,i+n










, (5.2.1)

on the condition of
n∑

j,k=−n

|fi−j,i−k| = 1.0,

where i and n are showed in the Figure 5.2. Usually, I choose n = 100 for the filter.

When dealing with real seismic data, we invert the Dix’s equation (1955) to
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obtain the interval velocities ci from stacking velocities C(t).

C2(t) =
1

t

N−1∑

i=0

4tic2i (5.2.2)

where 4ti is the time interval, and t =
∑N−1

i=0 4ti.
The inversion of equation 5.2.2 only gives the vertical velocity variation at some

CMP locations. The lateral velocity variation can be obtained by any interpolation

method between the CMPs.

5.2.2 The Green’s function

As mentioned before, the Green’s function should be calculated before the Kirchhoff

migration/inverstion. The Green’s function includes amplitude and time informa-

tion, which is crucial for the Kirchhoff operators. However, calculating the Green’s

function is troublesome, since there is no analytical expression for complex media.

An approximation to the Green’s function is created by a modeling scheme that uses

the first-guess wave speed profile (Bleistein et al., 2001), or macro/migration veloc-

ity model. Such an approximate function can be constructed by finite-difference

method (FD) or asymptotic method (Chapter 2). The FD method is more accu-

rate, but expensive. Furthermore, it can not provide the reflection angle information

directly, which is important for our proposed AVA inversion algorithm. Unsurpris-

ingly, the asymptotic method has those merits that FD does not have. Therefore,

an asymptotic method called ray tracing is used to obtain the Green’s function in

this thesis.

Seismic ray tracing method mainly consists of solving the two ray equations–

eikonal and transport equations. It is an asymptotic approximation to the wave

equation that describes the process of propagation of seismic waves in the high

frequency regime. Ray tracing can be used to calculate the rays, travel times,

wavefronts and amplitudes. Since the traditional dynamic ray tracing is expensive,

an approximation for 2D acoustic Green’s function is proposed.
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5.3. TRAVEL TIMES APPROXIMATION

5.3 Travel times approximation

The eikonal equation is usually solved by ”method of characteristics”. More details

see Bleistein, et al. (2001) or Kravtson and Orlov (1990). The ray tracing system

(kinematic) is composed of six ordinary differential equations. Usually, they are

written as following two vectors equation

dx

dτ
= c2(x)p

(5.3.1)

dp

dτ
= − 1

c(x)
∇c(x)

where x(x1, x2, x3) represents any position in the subsurface, c(x) is velocity, τ refers

to travel time, p is slowness vector denoted as

p(x) = ∇τ(x) = 1

c(x)
(~i sinφ cos θ +~j sinφ sin θ + ~k cosφ)

for 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

where φ, θ are the angle of the ray at point x, and ~i,~j,~k are direction units.

For small steps (in time or space), the ray can be thought as a straight line.

Then, after some manipulations, the equation (5.3.1) can be rewritten as

dx1
dt

= c(x) sin θ

dx2
dt

= c(x) cos θ for 2D, (5.3.2)

dθ

dt
= −c(x)

dx1
cos θ +

c(x)

dx2
sin θ

and,

dx1
dt

= c(x) sinφ cos θ

dx2
dt

= c(x) sinφ sin θ

dx3
dt

= c(x) cosφ for 3D. (5.3.3)

dφ

dt
=

c(x)

dx3
sinφ−

[c(x)

dx1
cos θ +

c(x)

dx2
sin θ

]

cosφ

dθ

dt
=

c(x)
dx1

sin θ − c(x)
dx2

cos θ

sinφ
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Figure 5.3: Comparing of analytic result with ray racing. Background is traveltime
error(maximum error is less than 0.0039 seconds). The source is located at (5000m,
5000m).The wavefront is contoured in 0.080 seconds increments.

5.3.1 Accuracy of the travel times approximation

I have tested the accuracy of the method on two models. One is analytic gradient

model with velocity c = a+ bz to test the travel time; another is a 16 layers model

to test the angle and travel time. Both examples show high accuracy.

The gradient model has a = 1000m/s, and b = 1.2s−1. I shoot 179 rays from

point (5000m, 5000m) with initial angle −89 ∼ 89 using ray tracing and calculate

the position of the wavefront at each 4t = 4ms, then calculate wavefront’s travel

time with analytic method. The range of the absolute error between two methods

is less than 0.0039 seconds, see Figure 5.3.

For the 16 layers model, the analytical results (transmitted angles of the rays)

are obtained by using Snell Law at each interface. I shoot 121 rays with angle

−60 ∼ 60. Figure 5.4 is the result I compare the results of the approximated ray

tracing with the analytical results, Figure 5.5 is the relative traveltime error using
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Figure 5.4: Comparing Snell Law model with ray racing. Background is layer ve-
locity. The source is located at (4900m,4700m).

equation:

terror =
tray − tSnell

tSnell
.

The analytic equation, given by (Vanelle, 2002), is

τ =
1

b
arcosh

(

1 +
b2r2

2VsVg

)

,

where

arcosh(y) = log(y +
√

y2 − 1),

where Vs, Vg are the velocities at source and receiver, r is the distance between source

and receiver, b is the velocity gradient.
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Figure 5.5: Relative traveltime errors that are computed with the Snell law model
at the surface.

5.4 Geometrical spreading/amplitude approxima-

tion

Amplitude information is useful for migration and inversion. In order to obtain an

approximate form of the amplitude, we begin with the amplitude in constant media

A =
1

R
, (5.4.1)

where R is the distance between source and receiver (Figure 5.6A). In this figure,

the length of arc l is

l = Rθ, (5.4.2)

where θ is the angle between two rays. If the θ is small enough, the arc l ≈ d. Then,

substituting it to equation (5.4.2) and equation (5.4.1). Finally, we obtain

A =
θ

d
, (5.4.3)

In some sense, θ
d
is the density of the rays. Therefore, we can use above equation to

estimate amplitude. In 2D situation, the amplitude is

A =

√

θ

d
. (5.4.4)
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Figure 5.6: Amplitude in constant velocity media, initial angle is 0o (A), and any
angle (B).

However, the above equations are only valid for the ray which is generated vertically

to the surface, in other situations, a weight is needed. In Figure 5.6B, according

to equation (5.4.3) the amplitude is θ
AB

. But we only know the length of CD.

Therefore, an expression, which represents AB with CD , is needed. As mentioned

above, the angle θ is small. Using simple geometric considerations we can obtain

6 AO′C = α, OA ≈ OO′, 6 OAO′ ≈ 6 OO′A = 90o,

then we can derive

AO′ = CO′ cosα.

Because AB = 2AO′ and CD = 2CO′, after some manipulations, finally, we obtain

A =

√

θ

d cosα
for 2D. (5.4.5)

Usually, the rays reach the surface with almost right angle, therefore, equation

(5.4.5) still can be simplified as equation (5.4.4).
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5.4.1 Accuracy of the amplitude approximation

I first test the approximation for of the amplitude with a constant velocity model.

In this case, the velocity is 3000 m/s. Source position is x = 8000 m, z = 8000 m.

The 2D analytic equation I used here is

A =
1√
r

where r is the distance between source and receiver. The compared results are shown

in Figure 5.7.

I also test the approximated equation with a gradient model (v = a + bz). In

this case, a = 3000 m/s, b = 0.4 s−1. The source position is x = 8000 m, z = 8000

m. The analytic equation (Vanelle, 2002) I used here is

A =

√

2
√
b2r4 + 4vsvgr2

where vs, vg are the velocities at source and receiver, r is the distance between source

and receiver, b is the velocity gradient. Figure 5.7, Figure 5.8 and Figure 5.9 show

the comparing result. The relative errors are negligible, even for very large velocity

perturbation.

Approximated
Analytic

Figure 5.7: Comparing amplitude between analytic method and approximate
method using constant velocity model. The source is located at (8000 m, 8000m).
The amplitude contour increment is 0.1.
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Figure 5.8: Comparing amplitude between analytic method and approximate
method using gradient velocity model (v = 3000 + 0.4z). The source is located
at (8000 m, 8000m). The amplitude contour increment is 0.1.

5.5 Summary

Since an efficient strategy for calculating the Green’s functions with high accuracy

will significantly reduce the amplitude-preserving migration cost, I propose an ap-

proximation to the amplitude of the Green’s function for the weighted pre-stack

Kirchhoff migration based on the eikonal equation.

56



5.5. SUMMARY

0 2000 4000 6000 8000
−0.01

−0.005

0

0.005

0.01

Depth [m]

R
el

at
iv

e 
am

pl
itu

de
 e

rr
or

(A)

0 2000 4000 6000 8000
−0.01

−0.005

0

0.005

0.01

Depth [m]

R
el

at
iv

e 
am

pl
itu

de
 e

rr
or

(B)

0 2000 4000 6000 8000
−0.01

−0.005

0

0.005

0.01

Depth [m]

R
el

at
iv

e 
am

pl
itu

de
 e

rr
or

(C)

0 2000 4000 6000 8000
−0.01

−0.005

0

0.005

0.01

Depth [m]

R
el

at
iv

e 
am

pl
itu

de
 e

rr
or

(D)

0 2000 4000 6000 8000
−0.01

−0.005

0

0.005

0.01

Depth [m]

R
el

at
iv

e 
am

pl
itu

de
 e

rr
or

(E)

0 2000 4000 6000 8000
−0.01

−0.005

0

0.005

0.01

Depth [m]

R
el

at
iv

e 
am

pl
itu

de
 e

rr
or

(F)

Figure 5.9: Relative amplitude error between analytic method and approximate
method using gradient velocity model v = a + b.z [m/s]. The source is located at
(8000 m, 8000 m). a = 3000 and b = 0 (A), 0.1 (B), 1 (C), 10 (D), 100 (E), and 1000
(F). The initial angle is 0◦ (blue), 15◦ (green), 30◦ (red), 45◦ (yellow), 60◦ (black),
75◦ (magenta). Note that the relative error is small (less than 0.5%).
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Chapter 6

Synthetic and field data examples

6.1 Introduction

In the previous chapters, the discrete inverse theory was reviewed. The proposed

algorithm for AVA and rock properties inversion was presented as well. The goal

now is to exhibit with examples the performance of the proposed algorithm. Since it

is difficult to test the accuracy of a method for an unknown real earth, the method

will be applied to a simplified earth model (synthetic data).

As part of the accuracy test, modeling (or generating) a synthetic data set is

an important step. Generally, in order to validate an inverse method, the synthetic

data should be both as exact and as detailed as one wants (Gray et al., 2001). Also,

the modeling method for the synthetic data should be different from the one that

the proposed inverse method is based on (Kuehl, 2002). On the whole, the forward

modeling must be a different, and more accurate operator.

Since full wave equation finite difference (FD) modeling has no aperture limita-

tions, and generates all the events along with the wave equation (i.e., multiples and

direct waves), therefore, instead of using approximate high frequency asymptotic

method from which the inverse operators are derived (section 2.1), the FD method

is an ideal way to obtain the synthetic data.

Because of the difficulties of modeling real earth data with the FD techniques,

traditionally, the earth model, from which the synthetic data is generated, is simpli-

fied and idealized from the real earth. For example, a 3D elastic earth is simplified
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as a 2D, or 2.5D (Bleistein, 1986) acoustic model, such simplification may exist in

some definite situations. For example, as seismic data are collected along straight

lines. The third dimension can be omitted. Thus, the data sets are two dimensional,

and 2.5D assumption compensations the amplitude loss due to 2D assumption. If

the P wave propagation governs in the entire volume, P waves propagating in elastic

earth can be approximated by an acoustic wave model.

6.2 Synthetic data examples

Synthetic data tests are essential to calibrate an inverse method. This is because the

details of the earth model is known before the inversion. Comparing the inverted

result with the known image, the synthetic examples will illustrate advantage and

pitfall of a method. Moreover, such applications can update the algorithm by fine-

tuning the inverse code.

6.2.1 Seismic modeling for synthetic data test

I have been studying the problem of retrieving angle gathers for reflectivity inversion,

as well as the problem of recovering rock properties in the previous chapters. As part

of my research, I now have to generate a synthetic data set. The latter is used to test

the accuracy of the rock properties inversion and angle gather migration/inversion

code that I have been developing as part of my thesis research. Due to the difficulties

of modeling three dimensional elastic data with a FD technique, the synthetic data

are generated in two dimensional isotropic acoustic models. Once I have set up

a synthetic ”Earth Model”, this is the distribution of velocities and densities in a

2D grid, I use acoustic FD to synthesize seismic data. For this purpose, I use the

acoustic FD code provided by the Seismic Unix (sufdmod2). Such method is an

approximation to the wave equation, but it is more accurate than the Kirchhoff

integrals.
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6.2.2 Inverse algorithm for 2D acoustic synthetic data

After computing the synthetic data, the perturbation of rock properties are recov-

ered by using the proposed algorithm which is composed of the Kirchhoff migra-

tion/inversion and A&R inversion algorithm. The Kirchhoff algorithm, integrated

with A&R inversion algorithm, is capable of performing both the well known Kirch-

hoff sum for migration (this is the so called adjoint operator) and the forward mod-

eling Kirchhoff operator. In other words, the algorithm can generate outputs from

operators G (forward) and GT (adjoint).

Since the synthetic data is generated from a 2D acoustic model, the operator

which I present in chapter 4 must be changed from a 3D elastic case to the 2D

acoustic one. To be more precise

G[f(x)] = KZ[f(x)] = CLZ[f(x)] (6.2.1)

where 2D Kirchhoff operator K denotes

uS(r, s, ω) = |ω|
∫

S

R(x, θ)A(r,x, s)
∣
∣
∣
2 cos θ

c(x)

∣
∣
∣eiωτ(r,x,s)W (ω)d2x, (6.2.2)

with A(r,x, s)eiωτ(r,x,s) being the 2D Green’s function, and the 2D A&R operator

denotes

R(x, θ) = Z[f(x)] = 1

2
(1− sin2 θ)

4ρ
ρ

+
sec2 θ

2

4vp
vp

. (6.2.3)

This equation expresses a relationship between the amplitude in the CIGs and

the physical parameters that could be associated to rock properties. In seismic

exploration, we cannot neglect the contribution from vs. In such case, full A&R

approximation is needed. It does not make sense of inverting rock properties without

including vs. It is only for synthetics constructed with the acoustic wave equation

that vs is not taken into account in the inversion.

Given the forward/adjoint operators, the 2D inversion can be realized by using

the algorithm presented on section 4.4.
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v=3200 m/s, =1.8 g/cm^3r

v=3350 m/s, =1.85 g/cm^3r

v=3480 m/s, =1.89 g/cm^3r

v=3540 m/s, =1.92 g/cm^3r

v=3100 m/s, =1.79 g/cm^3r v=3300 m/s, =1.82 g/cm^3r

v=3600 m/s =2.0 g/cm^3r

Figure 6.1: Model with structure.

Number Shot First shot Number of Receiver First
of spacing position receivers spacing receiver

shots [m] (x, z) [m] per shot [m] offset [m]

51 20 (2000, 0) 201 20 2000

Table 6.1: Acquisition geometry for synthetic model.

6.2.3 Simple model with structures

The model has seven layers, including a horizontal layer, a fold, a pinch out and

interfaces with topography (Figure 6.1). This acoustic model parameters are ex-

pressed as compressional velocities and densities, ranging from 3100 m/s to 3600

m/s, and from 1.79 g/cm3 to 2.0 g/cm3, respectively. In order to validate the high

frequency assumption, the maximum relative perturbations of velocity and density

are chosen less than 15% at the interfaces.

To generate the acoustic data using FD, I have adopted a source function with

central frequency fc = 30 Hz. The sampling interval and grid sampling are com-
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puted to honor stability conditions1. The velocity and density model extend from

x = 0 to x = 6000m and z = 0 to z = 2500m, with grid intervals ∆x = 2.5 m and

∆z = 2.5m. The sampling rate of data is ∆t = 4ms. The details of acquisition

geometry for the experiment are specified in Table 6.1. Given above parameters, the

data are generated by the acoustic FD code provided by Seismic Unix (sufdmod2).

Figure 6.2 shows one shot gather of the synthetic data. The shot position locates at

x = 2040 m, and z = 0 m (or No. 101 trace). The reflection waves exhibit clearly

amplitude variation versus offset (AVO)2.

The first arrivals, which are not needed for reflection data image, are muted

from the data. Beside of the head waves, there are other noises (i.e., multiples

and edge diffraction waves). Since those noises are weak comparing to the primary

reflections, I leave them on the data to test the proposed algorithm under more

difficult situations. In addition to the noise problem, the wavelet, which is used by

the FD code of Seismic Unix, will bring some time delay3. The total delay is half

length of the period of the wavelet—- T
2
.

Green’s function

As mentioned before, the Green’s function should be calculated before the Kirchhoff

migration/inverstion on a macro velocity model. The macro velocity is obtained

from the earth model using a low pass filter. The smoothed macro velocity model

is showed in Figure 6.3.

Based on the algorithm described in section 4.4, the rock properties and CIGs

are obtained. The detail steps are

1. Calculate the Green’s function table with target oriented ray tracing method

on the migration velocity model. I shoot 121 rays at each subsurface grid point

1The condition for stability is vmax4t
4x

≤ 2√
a
, with constant a being the sum of the absolute

value of the weight for the various wavefield terms in the finite-difference approximation for ∇2.
Details about the stable condition, please see Lines et al. (1999).

2For example, the first event of Figure 6.2B becomes more and more clear along with the offset
increasing.

3The time delay is caused by convolving a non-zero phase wavelet with the reflectivity series.
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Figure 6.2: One common shot gather of synthetic data before (A), and after (B)
muting the head waves. Shot position is (2040 m, 0 m).

in the range of -80o ∼ 80o, with 1o interval. The computed Green’s function

table is stored in file for next step use.

2. Initialize the model parameters (4ρ
ρ
, 4vp

vp
) with zero vector. The maximum

iteration is set to 20, and the tolerance is set to emax = 10−7.

3. Try different sets of tradeoff parameters. Each time, I set the λ = µ which

means giving the same weight to smoothness and sparseness. I totally try three

sets of the tradeoff parameters, λ = µ = 0.1, λ = µ = 0.01, and λ = µ = 0.005.

4. Input the other parameters for the algorithm, such as the data, the Green’s

function table and the migration velocity model etc., then run the CG code.

5. Visualize the result, such as stacked imaging, inverted model parameters (4ρ
ρ
,

4vp

vp
) and check difference between the reconstructed synthetic data with origi-

nal data, then choose the best one. For this simple model, I select the tradeoff
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Figure 6.3: Macro velocity model obtained by using a low pass 2D filter.

parameters λ = µ = 0.01.

The accuracy of the method is determined by comparing the inverted result with

the true model, such as stacked image, AVA curves and rock parameters, etc.

Stacked image

The goal of the stack is to lineate the subsurface structures. Therefore, stacking

the inverted result can examine the structural imaging capabilities of the inverse

operators. Stacking is the processing that sums the CIGs along a parameter (i.e.,

offset, angle). Since such processing can enhance the ratio of signal-to-noise and

suppress imaging artifacts and multiples, traditionally, it is used as a standard step

in seismic data process to improve the image quality.

The results prove that the Kirchhoff propagator is accurate to recover a good

image of the synthetic model (Figure 6.4). However, the inverted image is not spiky,

which means the proposed algorithm does not recover the partially lost frequency

information caused by band pass wavelet.
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Figure 6.4: Comparison the structure of the inverted image with the true model.
(A)True image. (B)Stacked image. (C) Inverted perturbation of vp. (D) Inverted
perturbation of ρ. Note that the recovered image is not spiky due to the band-limited
wavelet.
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Figure 6.5: Inverted CIGs (A) and corresponding AVA (B) for synthetic data at
x = 3600 m. The labels R1-R6 correspond to the six reflectors from top to bottom.
All picked values (dot-dash lines) have been scaled with the true AVA (solid lines).
Note that all of the AVA of the reflectors drop down to the zero at high angles due
to the limit aperture effects.
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CIGs and AVA analysis

Retrieving correct the structural information is only a prerequisite for a successful

inversion. The more challenge part is to obtain accurate amplitude information from

CIGs and a good estimation of rock properties. As the CIGs describe the ampli-

tude variation along the reflection angle for a series of positions. Thus, the events

on the CIGs must be flat. Furthermore, the amplitude variation of any position

should fit the true AVA. Because the synthetic data are generated by using acoustic

wave equation, the inverted AVA curve should fit the acoustic AVA equation. Such

equation can be found in the book of Berkhout (1987).

R(x, θ1) =
ρ2(x)v2(x) cos θ1 − ρ1(x)v1(x) cos θ2
ρ2(x)v2(x) cos θ1 + ρ1(x)v1(x) cos θ2

, (6.2.4)

where x is any position of subsurface, ρ1(x), ρ2(x), and v1(x), v2(x) represent the

densities and velocities of the adjacent layers, respectively. The incident and trans-

mitted angles denote θ1, θ2 respectively.

Under high frequency assumption, the above equation is a good approximation

to the equation (6.2.3). Thus, the equation (6.2.4) can be used to test the inverted

AVA.

Figure 6.5 depicts the inverted CIGs (A) and corresponding picked AVA (B) at

position of x = 3600 m. R1-R6 corresponds the six layers from top to bottom in

the CIGs. Due to the limited aperture effects, the CIGs is absent at large angle.

Apart from those limited aperture effects, the CIGs is clean and free of alias. All

events are flat along the horizontal direction and sparse along depth. The picked

AVAs (dot-dash lines) also prove that the CIGs are in good agreement with the true

AVA response. All curves fit the theoretical AVAs (solid lines) very well except the

fourth layer.

Figure 6.6 illustrates the inverted perturbations of the velocity (A) and density

(B) at x = 2750 m. The true perturbations are drawn with solid lines. The smeared

results match the true variation closely. However, the error rises when the depth of

layers increases. This is because no energy loss due to transmission is included in
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Figure 6.6: Inverted perturbations of velocity (A) and density (B) extracted from
Figure 6.4C and Figure 6.4D respectively at x=2750 m. The inverted result (dash
lines) have been scaled with the true variation (solid lines).

68



6.2. SYNTHETIC DATA EXAMPLES

0

0.5

1.0

1.5

T
im

e 
[s

]

50 100 150 200
Trace

(A)

0

0.5

1.0

1.5

T
im

e 
[s

]

50 100 150 200
Trace

(B)

0

0.5

1.0

1.5

T
im

e 
[s

]

50 100 150 200
Trace

(C)

Figure 6.7: Comparison of original data (A) with reconstructed data (B) and the
error (C) between them.

the inverse algorithm. Therefore, the accuracy of the inversion result degrades for

deeper horizons.

The inverted results have been scaled with the true perturbations before plotting.

The perturbation (or relative variation) for the velocity and the density in Figure

6.6 denotes as

4ρ′ =
4ρ
ρ

for density

4v′ =
4v
v

for velocity

with 4ρ, and 4v being absolute variation of density and velocity of adjacent layers

respectively, ρ, v being average of density and velocity of adjacent layers respectively.

Figure 6.7 exemplifies the error (C) between the original synthetic data (A)

and the reconstructed data (B)4. The reconstructed data, which are generated by

applying modeling operator to the inverted model, are consistent with the original

synthetic data. Since the inverse algorithm is based on primary wave fields propaga-

4The errors (Figure 6.7 (C)) are amplified to the same magnitude before plotting.
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Figure 6.8: Normalized data misfit.

tion, the multiples and the edge diffraction waves were not taken into consideration.

Therefore, the major error is caused by the energy of these two waves. Therefore,

it is very important to de-multiple before the inversion.

Figure 6.8 shows the data misfit versus iteration. In this example, a total 20

iterations were needed to reach the solution that minimized the cost function of our

inverse problem.

6.2.4 Marmousi model

The Marmousi (Versteeg and Grau, 1991) model is a complex structure model with

numbers of very thin layers broken by several major faults and unconformity surface,

which is based on a detailed geological 2D cross section of a real offshore Angola

basin (Figure 6.9). The Marmousi data sets consist of 240 single-cable marine shot

records which are acquired using acoustic finite-difference modeling. The sampling

rate of data is ∆t = 4ms. The details of acquisition geometry for the experiment

are specified in Table 6.2. Both velocity and density are various. This model was

generated by the French Petroleum Institute, and was released to the industry for

the purpose of testing migration and velocity estimation techniques (Versteeg, 1994).

The inverse steps are the same as the simple model:
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Number Shot First shot Number of Receiver First Receiver
of spacing position receivers spacing receiver depth

shots [m] (x, z) [m] per shot [m] offset [m] [m]

240 25 (3000, 8) 96 25 200 12

Table 6.2: Acquisition geometry for Marmousi model.

1. The Green’s function table is calculate with target oriented ray tracing method

on the migration velocity model. I shoot 242 rays at each subsurface grid point

in the range of -60o ∼ 60o, with 0.5o interval. The computed Green’s function

table is stored in a binary file for next processing step.

2. Initialize the model parameters (4ρ
ρ
, 4vp

vp
) with zero values. The maximum

iteration is set to 10, and the tolerance is set to emax = 10−7.

3. Try different sets of tradeoff parameters. I set the λ = µ which means giving

the same weight to smoothness and sparseness. I totally try five sets of the

tradeoff parameters, λ = µ = 0.5, λ = µ = 0.1, λ = µ = 0.05 , λ = µ = 0.01,

and λ = µ = 0.005.

4. Input the other parameters for the algorithm, such as the data, the Green’s

function table and the migration velocity model etc., then run the CG code.

5. Visualize the result, such as stacked images, inverted model parameters (4ρ
ρ
,

4vp

vp
) and check difference between the reconstructed synthetic data with orig-

inal data, then I select the tradeoff parameters λ = µ = 0.1.

Since the intricate structure of this model produces very realistic seismic data,

the Marmousi model is an excellent test data set. However, many imaging methods

cannot completely recover the target structure, while some methods can produce a

nearly perfect image, but with more calculations. Thus, a compromise between the

accuracy and efficiency should be the best way for industrial exploration. As men-

tioned earlier, the algorithm proposed in this thesis is based on the high frequency
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approximation. On the contrary, the condition of wave propagation in the Marmousi

model is far from such approximation. Nevertheless, the proposed scheme proves

to produce a good structural image of the Marmousi model. Figure 6.10 depicts a

good result of the inverted stack image (A) of the Marmousi model. The retrieved

perturbations of the velocity (B) and density (C) are also showed together. Despite

of the dim effects, the faults and oil trap can still be seen clearly. This proves that

the inverse algorithm is accurate enough to recover the structure of the 2D complex

model.

Now, the focus is on retrieving rock properties and AVA analysis. At this stage,

those inverse steps are still challengeable for highly complex earth models. Since

amplitude recovering is more vulnerable to operator accuracy than structural imag-

ing, it is crucial to select the areas for AVA where the process will be successful.

The criteria for such selection, as presenting in Kuehl (2002) thesis, are:

1. the depth points should be located in the upper half of the model so as to

ensure sufficiently large angle range coverage.

2. . . . the picked reflection event, the target, ought to be generated by a single,

local plane, interface.

Obviously, only a few of the reflections of the Marmousi model satisfy the above

criteria. Figure 6.11 shows the CIGs and corresponding picked amplitudes. Figure

6.12 and Figure 6.13 illustrate the inverted perturbations of the velocity (A) and

density (B) at x = 3600 m (less complex structure zone) and x = 6425 m (complex

structure zone). The true perturbations are drawn with solid lines. The smeared

results match the true variation closely above the depth z = 1500 m. Due to the

multiples and transmission losses, the error increases with depth.

Figure 6.14 exemplifies the error (C) between the original synthetic data (A)

and the reconstructed data (B) for one shot gather. The reconstructed data are

consistent with the original synthetic data except for the deep events.
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Figure 6.9: Compressional velocity field (A) and density field (B) of Marmousi
model.
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Figure 6.10: Inverted stack image (A), variation of velocity (B) and density (C) of
the Marmousi model.
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Figure 6.11: Inverted CIGs (A) and corresponding AVA (B) for Marmousi data
at x = 6400 m. The labels R1-R3 correspond to the three reflectors from top to
bottom. All picked values (dot-dash lines) have been scaled with the true AVA
(solid lines). Note that all of the AVA of the reflectors drop down to the zero at low
or/and high angles due to the limited aperture effects.
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Figure 6.12: Inverted perturbations of velocity (A) and density (B) extracted from
Figure 6.10B and Figure 6.10C respectively at x = 3600 m. The inverted results
(dash lines) have been scaled with the true variation (solid lines).
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Figure 6.13: Inverted perturbations of velocity (A) and density (B) extracted from
Figure 6.10B and Figure 6.10C respectively at x = 6425 m. The inverted results
(dash lines) have been scaled with the true variation (solid lines). Note that the
transmission loss debases the inverted result for deeper layers.
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Figure 6.14: Comparison of Marmousi data (A) with reconstructed data (B) and
the error (C) between them.
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6.3 Real data example

The algorithm now is applied to a real data. The data have been acquired in the

Gulf of Mexico by Western Geophysical and donated to academic and industrial

research groups for test purposes. The Gulf of Mexico data sets are collected along

a relatively deep sea (1400 m below sea level). The start time is t = 1.5 s and the

sampling rate of data is ∆t = 4ms. The details of acquisition geometry are specified

in Table 6.3. Only a small part of the data have been used to test our algorithm

(first 100 shorts) (Figure 6.15). The following procedures are applied to the data to

do the inversion:

1. Compute Green’s function tables based on the velocity model provided by

(Figure 6.16). The velocity model is computed using Dix inversion. I shoot

121 rays at each subsurface grid point in the range of -60o ∼ 60o, with 1o

interval. The computed Green’s function table is stored in a binary file for the

next step.

2. Initialize the model parameters (4ρ
ρ
, 4vp

vp
, 4vs

vs
). The maximum iteration is set

to 10, and the tolerance is set to emax = 10−7.

3. Try different sets of tradeoff parameters. I set the λ = µ which means giving

the same weight to smoothness and sparseness. I totally try three sets of the

tradeoff parameters, λ = µ = 0.1, λ = µ = 0.01, and λ = µ = 0.005.

4. Input the other parameters for the algorithm, such as the data, the Green’s

function table and the migration velocity model etc., then run the CG code.

5. Visualize the result, such as stacked images inverted model parameters (4ρ
ρ
,

4vp

vp
, 4vs

vs
) and check difference between the reconstructed synthetic data with

original data. In this example I selected the tradeoff parameters λ = µ =

0.005.

The inverted perturbations of P-wave, S-wave velocity and density are shown in

Figure 6.17. The signal to noise (S/N) ratio and stability of the inversion is good
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Number Shot Number of Receiver nearest farthest
of spacing receivers spacing offset offset

shots [m] per shot [m] [m] [m]

2000− 3000 26.7 180 26.7 20.6 4876

Table 6.3: Acquisition geometry for Gulf of Mexico data set.

for P wave velocity and density perturbations, and medium for S wave velocity

perturbation. The CIGs at CMP = 1069 is shown in Figure 6.18. Unfortunately,

there is no borehole in the area. The inverted result can not be validated by further

information.

6.4 Summary

In this chapter, the integrated method was successfully applied to invert the rock

properties from synthetic data and real data. The proposed algorithm appears

robust and efficient combining with target oriented ray tracing. Since CG inverse

method performs both the forward and adjoint operators once in each iteration,

the computational cost grows with the iteration number. Therefore, the Green’s

functions are calculated in advance and stored in computer memory to avoid extra

calculations.
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Figure 6.15: Near offset section with the study area.
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Figure 6.16: The macro velocity model for real data obtained by Dix inversion.
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Figure 6.17: Inverted P-wave velocity perturbation (A), S-wave velocity perturba-
tion (B), and density perturbation (C) for real data. The original value is multiplied
by 2000.
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Figure 6.18: Common image gather at CMP = 1069 for real data.
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Chapter 7

Conclusions

Today, the goal of migration has extended from imaging subsurface structures to

recovering elastic properties. As the rock physical parameters are not related linearly

to the seismic reflection data, usually, the inversion for elastic constants is performed

by two linear sub-step: true amplitude pre-stack depth migration and, AVO/AVA

analysis. Since pre-stack migration has great advantages at the time of imaging

complex geological structures over other seismic processing schemes; integrating

AVO and imaging together should lead to a new class of algorithms capable of

imaging the Earth’s interior and retrieving the physical properties.

In this thesis, I proposed a linearized inverse strategy to perform amplitude

versus angle (AVA) imaging and rock physical properties inversion by applying the

conjugate gradient method on a ray-based Kirchhoff migration/inversion scheme

in the angle domain. The structural complexity is incorporated in the AVA/AVO

estimation problem. Model space regularization terms are applied to enforce a

desired solution. In our case, the first order model derivatives and the l1 model

norm are incorporated to enhance the spatial continuity of reflectors and gain vertical

resolution at the same time.

To make the algorithm efficient, the Green’s functions are calculated using kine-

matic ray tracing. Furthermore, combining with target oriented ray tracing, our

method takes into account all relevant arrivals from all directions by shooting dense

up-going rays from the image points. Since the conjugate gradient algorithm calls
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the forward and adjoint operators once in each iteration, the Green’s functions are

calculated in advance and stored in memory. Although the high memory storage

is required, the strategy is still efficient to avoid extra calculation for the Green’s

function in each iteration.

It is also important to point out that the rock physical properties are directly

recovered from pre-stack seismic data. AVA/AVO analysis is obtained as a byprod-

uct of pre-stack migration/inversion. As the CIGs are obtained using Zoeppritz

equation (PP wave). The inverted rock physical properties will make all events in

CIGs flat and free of noise.

As mentioned in the above Chapters, the transmission loss is not taken into

account. The inverted result degrades for deep reflectors targets. As exploration

targets are usually found at greater depth, future work will concentrate on enhancing

the image of deeper interfaces.

This research project has provided a unifying link between AVO based inter-

pretation and pre-stack imaging. The l2 and l1 norms are applied as regularization

terms to enforce smoothness along the horizontal plane, and improve the vertical

resolution as the same time. This is a new technique developed by our groups (Feng

and Sacchi, 2004a). Since the inverted results not only depend on the data, but also

rely on prior information, the inverted rock physical properties are more geologi-

cally consistent. A similar working strategy is also exploded by Downton and Lines

(2004). Hopefully, new developments in this area will be seen in the near future.
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