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Abstract

The thesis presents an improved global optimization scheme for applications in geo-

physical optimization problems with large model dimension. The importance of

regularization in the geophysical inversion problems is discussed with particular em-

phasis on enforcement of edge preserving regularization.

In the first part, I am dealing with an optimization problem where the cost

function surface is unknown. I have introduced a new method based on simulated

annealing optimization to estimate the phase of the embedded wavelet in the seismic

data.

The second part of the thesis deals with optimization schemes in the context

of different regularization constraints. A new global optimization technique based

on model space preconditioning is developed to enforce blockyness in the estimated

model. The model space preconditioning is achieved by means of nonlinear edge pre-

serving operators such that the global optimization algorithm, rather than relying

completely on the random perturbations, samples a favorably biased model space.

The new approach is studied on optimization of one dimensional earth elastic pa-

rameters from amplitude variation with offset (AVO) seismic data. The results,

with and without applications of model preconditioning operators, are compared.

A linearized inversion scheme is also presented for the estimation of elastic param-

eters from AVO data. The thesis shows a comparison of results when the linearized

inversion has failed and global optimization has succeeded in estimating the elastic

parameters from AVO data. The results are further validated by a careful compar-

ison of well log data with the estimated elastic parameters from AVO data.

Last part of the thesis deals with the application of model preconditioning based



global optimization in optimizing over a two dimensional model space. Classical

global optimization schemes have very slow convergence when the model dimension

is large. Model preconditioning based global optimization has paved the way for

optimization involving large model space. I have successfully applied the scheme

to optimize for the interval velocity and density over a two dimensional grid via

waveform inversion.
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Chapter 1

Introduction

Science of optimization forms the backbone of any inverse problem. Inversion is a

mean of estimating the unknown from what is known or measured. The unknowns

are the model parameters. The objective of inversion is to obtain the best accept-

able estimation of the model parameters that satisfy the data and the imposed

constraints. In order to do so, a criterion is chosen for comparing different available

model parameters and then choosing the best one. Such a criterion is known as the

cost function or the objective function. In inverse problems, the cost function is a

measure between the misfit in the observed data and the estimated data obtained

from the model parameters. In most of the inverse problems, there may be more

than one criterion to be satisfied to obtain an acceptable estimation of the model

parameters. For example, we might want to obtain an estimation of the model pa-

rameters that are smooth along the lateral direction. Imposition of such constraints

in the model space results in the regularization of the inverse problem that allows

to obtain a solution that is physically reasonable and consistent with the a priori

information.

Depending on the relation between model parameters and data, an inverse prob-

lem is broadly classified into two categories, namely, (a) linear and (b) nonlinear.

In the following sections, I discuss each categories of inverse problems.

1.1 Linear/linearized inverse problems

A linear function between model and data makes the inverse problem linear and

simpler compared to a nonlinear function which complicates inversion and hence

optimization. A linear inverse problem is formulated as follows



1.1 Linear/linearized inverse problems 2

d = Gm + n, (1.1)

where d is the vector of measured data, m is the vector of unknown model parame-

ters and n is the additive noise. The operator G linearly relates the observed data

with unknown model parameters. Such an inverse problem has an explicit form of

linear relationship between model and data. Depending on the amount of informa-

tion content in the linear relationship d = Gm + n, an inverse problem is classified

into two categories namely, (a) overdetermined problem and (b) underdetermined

problem (Menke, 1984).

1.1.1 Overdetermined problem

An inverse problem is classified as ”overdetermined” if the linear function between

the model and data d = Gm+n contains more than required information to exactly

determine the solution. In general, such a situation arises when there exist more

known parameters (data) than the unknown parameters (model). A simple example

of overdetermined problem is the fitting of a straight line to more than two data

points, assuming that the data points are not collinear. An overdetermined problem

is solved by the least-squares approach.

Least-squares approach is based on minimization of a norm defined as the sum

of the square of errors between the observed and the predicted data. Such a norm

is commonly referred to as the L2-norm. The L2-norm between the observed and

the predicted data is given by

J = (dp − d)T (dp − d), (1.2)

where dp = Gm represents the predicted data for the model m. Equation 1.2 can

be written as

J = (Gm− d)T (Gm− d). (1.3)

Minimum of the above set of linear equations is obtained by computing the deriva-

tives with respect to the model parameters and equating them to zero. After differ-

entiation and rearrangement of terms we obtain

m̃ = (GTG)−1GTd, (1.4)
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where m̃ represents the estimated model obtained while assuming that (GTG)−1

exists. Equation 1.4 represents the well known least-squares solution to the overde-

termined linear inverse problem.

1.1.2 Underdetermined problem

An inverse problem is underdetermined when there exists less than required infor-

mation in the linear model-data relationship d = Gm + n to exactly determine the

solution (Menke, 1984). Such a situation usually arises when there are less number

of data points compared to the number of unknowns. A simple example is to fit a

straight line given that there exists only one datum. Such a problem has infinitely

many solutions and can not be solved with the least-squares approach.

An underdetermined inverse problem requires regularization. The idea is to se-

lect a particular suite of solutions from infinitely possible solutions that honor the

data. For example, in case of fitting a straight line to a single datum, it might be

known a priori that the straight line passes through a known point, say the origin.

Such an a priori information is enough to solve the problem. Incorporation of a

priori knowledge about the model space help in reducing the domain of the solution

such that a solution is obtained that belong to a particular class of solutions that fit

the data and at the same time honor the a priori information. An elegant way of

assuming a priori information about the model is to enforce a measure of simplicity

in the solution. The idea is that among many solutions, the most pertinent solution

is the one that is simple. Distance is a measure of simplicity. A preferred measure

of the distance and hence simplicity of the model solution is given by the quadratic

function L = mTm. Solution to the regularized optimization problem where the

model solution is simple and at the same time honors the data is solved by the

approach involving Lagrange multipliers. The constrained optimization function is

given by

J = mTm + λT (Gm− d), (1.5)

where λ is the Lagrange multiplier. The first part of the above equation is a measure

of the model simplicity and the second part is a measure of the data misfit. Taking

the derivative of equation 1.5 with respect to the model and equating the resulting

equation to zero yields

m = −1

2
GT λ. (1.6)
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Substituting for m by λ and satisfying the condition that d−Gm = 0 yields

λ = −2(GGT )−1d. (1.7)

Thus from equation 1.6, we obtain the estimated model m̃ given by

m̃ = GT (GGT )−1d. (1.8)

It is evident from equation 1.8 that for an underdetermined problem the solu-

tion fits the data exactly. This is an undesirable consequence when the data are

contaminated with noise. Ideally, the solution should fit the data only to the extent

that the error between observed and predicted data (data misfit) contained the noise

present in the data. Such an ideal solution is hard to obtain. In order to obtain a

compromise between the data misfit and the model norm, a trade-off parameter (µ)

is chosen that allows for different weights to be applied on the data misfit term and

the model norm. When µ is zero, the solution will not represent the information

regarding the a priori knowledge. On the other hand, when µ is set to a very high

value, the solution will heavily tilt towards a model that honors the a priori knowl-

edge but not the data misfit. Thus, the value of the trade-off parameter needs to

be so chosen that the resulting solution provides a good balance between the model

norm and the data misfit. There exists no simple method to know beforehand the

value of an ideal trade-off parameter and more often than not, the trade-off parame-

ter should be determined on a trial and error basis (Menke, 1984). The cost function

containing the model norm and the data misfit is given by

J = µmTm + (Gm− d)T (Gm− d), (1.9)

where µ represents the trade-off parameter that regulates the importance of data

misfit and the model norm in the optimization process. Taking the derivative of

equation 1.9 with respect to the model and setting the resulting equation to zero,

we obtain

µIm + (GTGm−GTd) = 0, (1.10)

where I represents the identity matrix. Thus solving for the unknown model m̃ yields

m̃ = (GTG + µI)−1GTd. (1.11)
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The estimated model is known as the damped least-squares solution.

So far I have discussed inverse problems involving explicit linear relationship

between model and data. However, most of the inverse problems are not explicitly

linear. In the following discussion, I delve into those inverse problems that are not

apparently linear but can be linearized.

1.1.3 Linearized inverse problems

Certain inverse problems that are not explicitly linear, can be linearized in terms

of model and data perturbations. Let the forward operator relating the data and

model be represented by

d = g(m), (1.12)

where g is the nonlinear operator relating the model with the data. Let the mea-

sured data d be obtained from a model m = m0 + ∆m. Where ∆m is the model

perturbation with respect to a reference model m0. Thus

d = g(m0 + ∆m). (1.13)

Let the predicted data dp for the reference model be given by

dp = g(m0). (1.14)

Expanding equation 1.13 in a Taylor series at m0, we obtain

g(m0 + ∆m) = g(m0) +
∂g(m0)

∂m
|m=m0∆m + O(|∆m|2). (1.15)

Ignoring the higher-order terms involving model perturbation we obtain

d = dp + Gl∆m, (1.16)

where the elements of the matrix Gl are the partial derivatives of the predicted data

computed with respect to the model. The above equation can be written in terms

of the model perturbation and data perturbation as follows

∆d = Gl∆m. (1.17)
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Equation 1.17 is linear in terms of model and data perturbations.

Certain inverse problems are linearizable via approximations of the forward op-

erator. For example, estimation of earth elastic parameters from AVO data using a

forward operator that involves computation of reflection coefficients from Zoeppritz

equations is a nonlinear problem. However, for a reasonable angle of reflection, the

Zoeppritz equations can be approximated to obtain a linear form. Aki-Richards

equation (Aki and Richards, 1980) is one of such linear representations of the Zoep-

pritz equations.

Not all inverse problems can be expressed in a linear or linearizable form. Non-

linear relationship between the model and data lead to a class of inverse problems

known as ”nonlinear inverse problem”.

1.2 Nonlinear inverse problems

As mentioned before, nonlinear inverse problems belong to a class of inverse theory

where there exists nonlinearity in the model-data relationship. Nonlinear relation

between model and data makes the inverse problem more complex compared to

the inverse problems with linear model-data relationship. Nonlinear model-data

relationship leads to nonquadratic cost function as opposed to the linear model-

data relationship where the cost function is quadratic. The cost function topology

is likely to be multimodal in case of nonquadratic cost function. Optimization of

such cost function is complex because of the presence of several minima in the cost

function surface.

In the following sections, I discuss important gradient based methods and global

optimization methods to solve for nonlinear inverse problems.

1.2.1 Iterative least-squares method

Certain nonlinear inverse problems have the advantage that the minimum of the

cost function can be reached iteratively through local linearization processes. The

iterative least-squares technique starts from a suitably chosen initial model. In each

iteration, the model is updated by obtaining a solution of the linearized inverse

problem (equation 1.17) by means of constrained least-squares approach (equation

1.11). The iterations for updating the model is terminated when the least-squares

error is reduced to a value less than or equal to a predefined value (Lines and
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Treitel, 1984). At each iteration of the iterative least-squares method, the algorithm

approximates the cost function topology to a paraboloid tangent to that point on

the cost function surface that corresponds to the current model (Menke, 1984). The

updated model in the next iteration is the point that corresponds to the minimum

of the approximated paraboloid that corresponded to the model at the previous

iteration. Figure 1.1 shows the convergence of iterative least-squares algorithm with

respect to a cost function exhibiting multimodality. McAulay(1985) applied the

k+1

Global minimum

Local minima

Approximated paraboloid

model

C
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ct
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m m k

Figure 1.1: The convergence of iterative least-squares algorithm. The model mk at
the iteration k gets updated to the model mk+1 at the iteration k + 1.

iterative least-squares method to seismic waveform inversion.

Success of iterative least-squares method for nonlinear inverse problems depends

on the chosen initial model. If the initial model is close to the global minimum of

the cost function then there is greater likelihood that the method will converge to

the desired minimum. On the other hand, if the initial model is not close enough to

the global minimum, the algorithm may become oscillatory or converge to a local

minimum or a maximum depending on the location of the initial model (Menke,

1984).

1.2.2 Nonlinear conjugate gradient method

Another approach to obtain a solution of nonlinear inverse problem is to obtain a

minimum of the cost function by means of nonlinear conjugate gradient algorithm.
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Nonlinear conjugate gradient algorithm is a generalization of the conjugate gradient

algorithm to optimize for nonlinear functions. While conjugate gradient algorithm

aims at finding the solution to the system of linear equations GTGm = GTd, the

nonlinear conjugate gradient aims at finding a solution to a nonlinear system of

equations. The success of nonlinear conjugate gradient algorithm lies in the fact

that the initial model be chosen such that the paraboloid approximation of the cost

function in the vicinity of the initial model encompasses the global minimum of the

cost function. When this condition fails, the nonlinear conjugate gradient algorithm

may not necessarily converge to the global minimum of the cost function.

So far I have discussed important concepts involving gradient based optimization

schemes for linear, linearized and nonlinear inversion or optimization algorithms.

Gradient based optimization schemes form an important part of the theory of in-

version or optimization. In spite of their mathematical elegance and convergence

properties, the gradient based minimization techniques are not completely foolproof.

Optimization schemes based on computation of gradient will always converge to the

nearest minimum corresponding to the initial model. Hence, such techniques are

often referred to as the ”local optimization” schemes. When the cost function is

quadratic, the surface of the cost function is a paraboloid containing a single min-

imum. The local optimization algorithms, in case of quadratic cost functions, are

very efficient in finding the desired model. However, in case of a nonlinear inverse

problem, the shape of the cost function becomes complex. The iterative procedures

described above are likely to miss the global minimum unless the initial model is

chosen so close to the global minimum that the paraboloid approximation of the

cost function in the vicinity of the initial model encompasses the global minimum.

Optimization of nonlinear problems to estimate the model corresponding to the

global minimum thus requires a very carefully chosen initial model. A great deal

of a priori information about the model is required so as to chose the initial model

that corresponds to a point close to the global minimum of the cost function. When

the a priori information is sparse and the inverse problem is nonlinear, the local

optimization schemes are likely to fail. Most of the geophysical inverse problems,

unless the forward operator is approximated, are nonlinear and the shape of the

cost function surface is highly complex. In such situations global optimization algo-

rithms, as discussed below, are employed to ”hopefully” achieve convergence to the

global minimum of the cost function surface. Global optimization algorithms pro-

vide means to ”jump out” of a local minimum and allow the convergence to proceed
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towards the global minimum. Furthermore, the idea of linearizing a nonlinear data-

model functionality so as to use a local optimization algorithm, inadvertently brings

in inaccuracies to the optimization problem. Such inaccuracies are undesirable and

in complex geophysical problems might adversely influence the results.

1.2.3 Global optimization methods

As mentioned in the previous section, global optimization algorithms such as the

Monte Carlo method, the genetic algorithm, simulated annealing and neighborhood

algorithm are employed in optimization problems where the cost function is non-

quadratic and hence likely to exhibit multimodality. Monte Carlo methods are

exhaustive search techniques that try to encompass the entire model space. When

the model space is large, Monte Carlo technique to obtain the model corresponding

to the global minimum becomes computationally very expensive and impracticable.

Genetic algorithm and simulated annealing algorithms provide a directed search

method to attain the global minimum. The essence of genetic algorithm lies in the

process of natural evolution. With the progress of evolution, the current species are

more intelligent and better adaptive to the natural circumstances compared to their

previous generations. A similar analogy is drawn in the development of genetic

algorithm. With the progress of generations, the fitness of the candidate models

comprising the population pool increases compared to the previous generations.

The population pool is updated in each generation such that only the candidates

that have better fitness compared to others have a higher probability to move to

the next generations. The algorithm, at the same time, provides a finite probability

for the less fit candidate models to move to the next generations. This step in the

algorithm provides a mean to climb uphill the cost function surface, thus helping the

algorithm to ”jump out” of a local minimum. After progress through a large num-

ber of generations, the resulting population pool contains highly efficient candidate

models. The solution is obtained by choosing a model from the efficient population

pool. The simulated annealing algorithm, on the other hand, mimics the process of

thermodynamic annealing. When the temperature of a molten solid is lowered very

slowly, the chaotic motion of the molecules of the solid reduces and at a very small

temperature the solid attains the minimum energy forming a crystal. The simulated

annealing algorithm accepts or rejects a model with a finite probability depending

upon the temperature and the cost function. The acceptance/rejection in simu-
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lated annealing algorithm constitutes what is known as the ”Metropolis criterion”.

This step in the algorithm provides a finite probability for a model with higher

cost function to get accepted for the future iteration, thus helping the algorithm to

”jump out” of a local minimum. The Neighborhood Algorithm (NA), introduced by

Sambridge (1999a, b), is a global optimization algorithm where simple geometrical

structures or cells are used to obtain the convergence to a global minimum. The

neighborhood algorithm proceeds in two stages. In the first stage the model space is

searched to generate an ensemble of the model that provide good data misfit. The

second stage involves exploring the model ensemble to derive information about the

convergence properties.

Global optimization schemes become computationally very expensive when the

model dimension becomes large. This problem is referred to as ”the curse of di-

mensionality”. The primary goal of my thesis is to address this problem effectively

in applied seismological optimization problems so that the advantages of global op-

timization can be harnessed effectively. My approach is to incorporate a priori

information about the model space into the global optimization algorithm such that

the model space is favorably preconditioned. The preconditioned model space helps

the global optimization algorithm to preferably sample the model space in consistent

with the a priori information. I have incorporated the a priori information into the

simulated annealing algorithm as a second stage of the optimization routine. This

approach helped in favorably preconditioning the model space without losing the

benefits of exhaustive search. I have discussed, with examples, the application of

model preconditioning based global optimization scheme in relatively large model

dimension and complex nonlinear geophysical problems.

1.3 Scope and Goals

Most of the geophysical inverse problems involve a nonlinear relationship between

the data and the model. Any optimization method with a gradient based algorithm

is likely to converge to a minimum that is closest to the starting point in the cost

function topology. The way to get around such a shortcoming is to linearize the

relation between the data and the model. Every such linearization incorporates

approximations to the forward model. This adversely affects the accuracy of the

solution. In the past, with limited computing facilities, there was no way but to

rely on the optimization schemes based on local optimization procedures. With



1.4 Organization of the thesis 11

the advent of modern computing facilities and efficient global optimization algo-

rithms, it is now possible to obtain better results without requiring to introduce

linearization schemes to the forward modelling operator. Slow convergence rate is

the primary disadvantage of any global optimization scheme. The slow convergence

rate becomes more conspicuous as the model dimension increases. In geophysical

problems, there are requirements when the optimization need to be performed over

a large model space. In such situations, classical global optimization algorithms

become prohibitively slow. The major contribution of the thesis is to use the a

priori information in such a way that the model space is suitably preconditioned

for the global optimization involving applied seismological problems. In such a case,

the global optimization scheme, instead of relying completely on the random per-

turbations of the model parameters, optimizes over a suitably conditioned model

space that is consistent with the a priori information. Incorporation of the a priori

information as the second stage of the optimization scheme favorably preconditions

the model space while preserving the benefits of exhaustive search obtained from

the classical simulated annealing technique. I have shown examples where the new

technique has operated successfully over a large model space to optimize for the

subsurface model parameters via waveform inversion.

1.4 Organization of the thesis

The thesis is organized as follows. In Chapter 2, I am reviewing the local and

global optimization methods while posing inversion as an optimization problem. I

discuss important gradient based optimization techniques such as the steepest de-

scent algorithm, linear and nonlinear conjugate gradient algorithms, Newton’s and

Marquardt methods followed by the global optimization methods such as the Monte

Carlo technique, genetic algorithm and simulated annealing. Since, I am using simu-

lated annealing as the global optimization algorithm, I will discus in greater details

the simulated annealing technique along with its other variants. In Chapter 3, I

discuss a new application of global optimization scheme in a blind deconvolution

problem. I have used classical simulated annealing technique to optimize for the

coefficients of an all-pass operator so as to estimate the mixed phase wavelet from

seismic data. In Chapter 4, I am reviewing the theories involved in regularization

of the inverse problem. A priori information about the model is incorporated into

the optimization algorithm by adding regularization terms to the cost function. I
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review two important regularization constraints, namely, sparseness constraint and

blockyness constraint. I show an example where sparseness constraint is applied to

real seismic data to recover the high frequency components. I have also made a brief

review of blockyness constraint. In Chapter 5, I discuss application of nonlinear con-

jugate gradient (NLCG) based local optimization technique to estimate the earth

elastic parameters (Vp, Vs and ρ) from amplitude variation with offset data. In this

chapter, I discuss Zoeppritz equations and their various approximations followed by

ray-tracing based forward model to obtain angle and offset dependent seismic gath-

ers. I show an example of application of NLCG algorithm in AVO inversion with

the cost function supplemented with blockyness constraint. I further show that

NLCG based optimization fails when the forward model involves greater degree of

nonlinearity. The example shows the convergence of NLCG based optimization to

a local minimum. The purpose of this example is to show the necessity of global

optimization in AVO inversion problems. In Chapter 6, I discuss global optimization

based AVO inversion for estimation of earth elastic parameters. The optimization

involved a relatively large model space. The thesis introduces a new concept of

model preconditioning based global optimization where optimization over a larger

model space can be effectively achieved. I have used nonlinear edge preservation and

smoothing operators to suitably precondition the model space. The model precon-

ditioner is applied as a second stage of the optimization algorithm. In Chapter 7, I

have carried forward the concept of model preconditioning based global optimization

to optimize for model parameters over a two dimensional grid. This example shows

the potential of applying global optimization in inverse problems where the model

dimension is very large.

1.5 Contributions

The thesis proposes new method that combines a priori information with the classic

global optimization schemes to alleviate the adverse effects due to increased model

dimension. I have shown a new application of global optimization scheme in a blind

deconvolution problem where the model dimension is small. The algorithm esti-

mated the coefficients of all-pass operators efficiently. However, in the subsequent

applications of global optimization, the rate of convergence suffered drastically due

to the increased model dimension. In the problem of estimating the earth elastic

parameters via waveform inversion of AVO data, the model parameterization ne-
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cessitated introduction of pseudo-layers. This led to a large increase in the model

dimension. Hence, the convergence of the algorithm became slow to the extent that

the global optimization scheme became computationally prohibitive. Incorporation

of a priori information in the global optimization scheme favorably modifies the

model space. The modified model space is a subset of the entire model space that

can be generated by random perturbations. A smaller model space, consistent with

the a priori information reduces nonuniqueness in the problem and helps the algo-

rithm converge faster. In the last part of the thesis, the algorithm was successfully

tested on a very large model dimensional problem.

The thesis opens up a new approach that allows application of global optimiza-

tion algorithms in applied seismological problems involving large model dimension

which have so far been dealt with local optimization techniques.



Chapter 2

Inversion: Local and Global

optimization

2.1 Introduction

Computers operate in bits and bytes. Hence, the world of scientific computing is

discrete. The bits and bytes of computer technology have resulted in the develop-

ment of an exciting branch of science known as the ’discrete inverse theory’. Theory

of inversion falls into two broad categories, namely, direct inversion and indirect

inversion. Inverse problems where direct analytical expressions exist for calculation

of model parameters from data belong to the former category. However, for ma-

jority of geophysical inverse problems no such direct formula exists. Furthermore,

geophysical data are mostly incomplete and noisy. In such situations, it is desirable

to estimate the model parameters through indirect means that involve optimization

of a function relating model and data. A function designed for the optimization to

estimate the model parameters from data is referred to as the cost function. The

function usually consists of two parts, namely, (a) the data misfit part that relates

how closely or distantly an estimated model fits the observed data and (b) the reg-

ularization part that augments the cost function in such a way that the optimized

solution honors the a priori information as well.

Most optimization processes involve iterative approach. The iterations start from

an initial model that is either obtained from a random distribution or through some

”smart guess”. With every iteration the current model is updated. The iterations

continue till the optimized model minimizes the cost function within a predefined
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accuracy. Figure 2.1 shows a schematic flow of an optimization process. Different

optimization schemes differ from one another in the way the model is updated in

each iteration.

Topology of a cost function generally comprises several local minima and global
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Figure 2.1: Flowchart showing optimization process.

minimum. The necessary condition that a cost function f(m) will have an extremum

at m = m∗ is that the partial derivatives with respect to the variable m are zero.

The sufficient conditions for the extremum to be a minimum is that the matrix of

second partial derivative of the cost function f(m) with respect to model is positive-

definite and negative-definite for the extremum to be a maximum point. Optimiza-

tion schemes that use gradient information of the cost function to update the model

always proceed in the downhill slope of the cost function topology. Such methods

are termed as ”local optimization” because they always converge to the nearest min-

imum corresponding to the location of the initial model. In case of a multimodal
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cost function, there exists a fair chance that the convergence will lead to a local min-

imum unless the initial model lies within the vicinity of the global minimum. The

other class of optimization schemes that aim at achieving convergence to the global

minimum even in presence of multimodality, are termed as ”global optimization”

algorithms. Such algorithms rely on random perturbation of the model, instead of

the derivative information of the cost function, to update the model. Optimization

approaches based on random perturbation of the model provide the means to ”jump

out” of the local minimum and possibly converge to the global minimum.

Despite the shortcoming of convergence to a local minimum, the local optimiza-

tion schemes are based on elegant mathematical foundation. Furthermore, the local

optimization techniques are highly efficient as they make use of more information

about the cost function as opposed to the global optimization schemes. On the

other hand, global optimization schemes that rely completely on random perturba-

tions are computationally very expensive. Such schemes are prohibitively slow for

optimization over a large model dimension. With the advent of high performance

computing facilities, the benefits of global optimization schemes are gradually mak-

ing their way to more realistic optimization problems.

The table below provides a list of important local and global optimization schemes.

Each of these optimization schemes will be discussed in more details in the sections

to follow.

Table 2.1: Local and global optimization schemes
Local optimization Global optimization

Steepest descent method Monte Carlo method
Conjugate gradient method Genetic algorithm
Nonlinear conjugate gradient method Simulated annealing methods
Newton’s method
Marquardt method

2.2 Local optimization

Inversion can be posed as an optimization problem. The function to be optimized

is called the cost function. In this section, I discuss necessary and sufficient con-

ditions for existence of local extrema and the algorithmic means to investigate the



2.2 Local optimization 17

convergence to a possible solution that corresponds to a minimum.

The surface of a cost function may have a single, well-defined minimum or many

minima. A cost function surface showing many minima is referred to as the multi-

modal surface. Global minimum of a cost function is the lowest minimum among all

the minima. Figure 2.2 shows a cost function surface that contains many minima

and the global minimum.

The necessary condition for a point m∗ on the cost function surface to lie on an

Global minimum

J

m

Local minimum

Local minimum

Figure 2.2: Local minima and global minimum of a cost function

extremum is given by the equation below.

∂f(m∗)
∂m1

=
∂f(m∗)

∂m2

= . . . =
∂f(m∗)

∂mn

= 0. (2.1)

The sufficient condition for the point m∗ to be a maximum is that the matrix

containing the second partial derivative of the cost function with respect to the

model is negative-definite at m∗. Similarly, the sufficient condition that the point

m∗ is a minimum is that the matrix containing the second partial derivative of the

cost function with respect to the model evaluated at m = m∗ is positive-definite.

The proof for the necessary and sufficient conditions follow from the Taylor series

expansion of the cost function f(m) at m = m∗.



2.2 Local optimization 18

2.2.1 Convergence to a local minimum

The gradient of a function provides information about the direction of maximum

increase of a function. Hence to achieve the minimum of a cost function, we proceed

in the direction of negative gradient. Gradient of a multivariate function with n

variables is given be the following vector representation.

∇f =




∂f
∂m1
∂f

∂m2
∂f

∂m3
...

∂f
∂mn




(2.2)

As mentioned before, gradient vector provides the direction of maximum ascent of

the cost function. However, the direction of maximum ascent is dependent on the

location and hence provides the direction of maximum increase corresponding to

that location. Thus the direction of maximum ascent provided by the gradient is a

local property rather than a global one. Figure 2.3 shows the direction of maximum

local ascent as per the gradient information (Rao, 1996).

It is obvious that negative of the gradient direction provides the direction of

maximum descent. Thus, a minimum of a function is obtained in the fastest way if

we proceed in the direction of the negative gradient. All local optimization methods

use the information provided by the gradient vector to achieve convergence.

Computation of gradient requires evaluation of partial derivatives of the cost

function with respect to the model parameters mi. Partial derivatives of a function

can be evaluated analytically. However, in certain situations analytical evaluation

of partial derivatives is not possible. Such situations necessitate the numerical com-

putation of partial derivatives. Partial derivatives can be computed by the finite-

difference equation as follows

∂f

∂mi

' f(mi + ∆mi)− f(mi)

∆mi

, (2.3)

where mi is a component of the vector m and ∆mi is a small increment in mi.

The above finite-difference equation requires one additional calculation of the cost

function at mi +∆mi. For better accuracy, the partial derivative can be numerically

calculated by the following finite-difference equation.
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Figure 2.3: Steepest ascent along the gradient direction. The contours show the
equal cost function values.

∂f

∂mi

' f(mi + ∆mi)− f(mi −∆mi)

2∆mi

. (2.4)

Equation 2.4 however requires the calculation of the cost function two times thus,

making the optimization computationally less economical.

In certain situations, partial derivatives of the cost function do not exist even in

numerical formulations. Problems involving cost functions whose partial derivatives

are not defined over the search regime require random perturbation based optimiza-

tion techniques.

In the following section, I will review various widely used techniques to achieve

convergence to a local minimum of a function. I will discuss important gradient

based optimization algorithms when the cost function is quadratic (linear/linearized

inverse problem) and nonquadratic (nonlinear inverse problem).
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2.2.2 Gradient based optimization for quadratic cost func-

tion

A linear/linearized inverse problem can be posed as an optimization problem where

the cost function is quadratic. This means that the surface of the cost function is a

paraboloid with a single minimum. The following discussion provides, in detail, the

important algorithms employed to optimize a quadratic cost function.

2.2.2.1 Steepest descent algorithm

A quadratic function f(m) = 1
2
mTGm − dTm will have a single minimum with

respect to the model parameters if the second-order partial derivative matrix G is

positive-definite. For a two dimensional model space, the quadratic cost function is

shown in Figure 2.4.

In Figure 2.5, the contours show the constant cost function values. The arrows
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Figure 2.4: Shape of a quadratic cost function when the G matrix is positive-definite.

show the direction in which the steepest descent algorithm proceeds.

The main idea behind the steepest descent algorithm is that given the topology

of a function, the calculated gradient at any point gives the direction of maximum
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Figure 2.5: Convergence in steepest descent algorithm. Contours show the equal
cost function regions.

increase of the function. Thus, if the aim is to find the minimum of the cost function

then the algorithm proceeds along a negative gradient direction calculated at each

iteration. Though the negative gradient provides the direction of maximum decrease

in the cost function, it does not provide the step size. One way to obtain the step

size is to keep it constant. However, if the step size is large, there is a possibility that

the algorithm will overshoot the minimum point and become oscillatory. In order

to avoid such a situation, the step size is calculated by computing the optimum step

size at every iteration. This is done by computing the first order derivative with

respect to the step size and equating to zero. Figure 2.6 shows the flowchart for

steepest descent algorithm. The pseudo-code for the steepest descent algorithm is

provided in Algorithm 2.1.

2.2.2.2 Conjugate gradient algorithm

Conjugate gradient is one of the most useful algorithms to solve high dimensional

linear and nonlinear equations. The linear conjugate gradient algorithm was pro-

posed by Hestenes and Stiefel (1952) as a means to solve large linear systems of

equations involving positive-definite coefficient matrix. The method became popu-

lar because it provided faster convergence to a solution compared to the steepest

descent method and also it did not require large computer memory to store large
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Figure 2.6: Flowchart for steepest descent algorithm.

matrices. In the following discussion, I derive the expressions for the conjugate gra-

dient algorithm with Fletcher-Reeves method (Rao, 1996).

Let us minimize the quadratic function f(m) = 1
2
mTGm − dTm. Let m0 be

the initial model. The negative gradient of the function f(m) provides the maxi-

mum descent at m = m0. Following the direction of steepest descent for the first

iteration, we obtain the expression for the search direction

S0 = −∇f0 = −Gm0 + d. (2.5)

Let α0 be the step length to update the model along the steepest descent direction

S0. To calculate the optimum step length α0, we take the derivative of f(m0+α0m0)

with respect to α0 and equate to zero. Thus, we have

ST
0∇f |m1=m0+α0S0 = 0. (2.6)

After a little algebraic manipulation of terms, the optimum step length for updating

the model m0 to m1 is obtained as
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Algorithm 2.1 Pseudo-code for steepest descent algorithm
1: Given m0;
2: Set k ← 0;
3: while (Convergence criteria not satisfied) do
4: Sk ← −∇f(mk);
5: if Sk = 0 then
6: Stop
7: end if
8: αk ← minαf(mk + αSk);
9: mk+1 ← mk + αkSk;

10: k ← k + 1
11: end while

α0 = − ST
0∇f0

ST
0 GS0

. (2.7)

It should be noted here that the above equation for the optimum step length can be

generalized for the kth iteration for which the step length αk is given by

αk = − ST
k∇fk

ST
k GSk

. (2.8)

Since the residue vector at the kth iteration is rk = Gmk − d = ∇fk, equation 2.8

can be written as

αk = − rT
k Sk

ST
k GSk

. (2.9)

The current search direction S1 is given as a linear combination of the previous

search direction and the current gradient vector. Thus, the second search direction

S1 is given by

S1 = −∇f(m1) + β1S0, (2.10)

where β1 is a scalar chosen in such a way that the current search direction S1 and

the previous search direction S0 are conjugates, implying ST
0 GS1 = 0. Multiplying

equation 2.10 by ST
0 G on both sides, we obtain by the conjugacy property

ST
0 GS1 = ST

0 G(−∇f(m1) + β1S0) = 0. (2.11)
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Since, m1 = m0 + α0S0, we have S0 = m1−m0

α0
. Thus equation 2.11 can be written

as

−(m1 −m0)
T

α0

GS1 = ST
0 G(−∇f(m1) + β1S0) = 0. (2.12)

Since, ∇f(m1)−∇f(m0) = G(m1 −m0), equation 2.12 can be written as

(∇f(m1)−∇f(m0))
T (∇f(m1)− β1S0) = 0. (2.13)

Solving for β1, we obtain

β1 =
∇f(m1)

T∇f(m1)−∇f(m0)
T∇f(m1)

∇f(m1)TS0 +∇f(m0)TS0

. (2.14)

Using equation 2.6, we have

β1 = −∇f(m1)
T∇f(m1)

∇f(m0)TS0

. (2.15)

Since S0 = −∇f(m0), equation 2.15 can be written as

β1 =
∇f(m1)

T∇f(m1)

∇f(m0)T∇f(m0)
. (2.16)

We express the third search direction as the linear combination of the gradient at

m = m2 and all the past search directions, namely S0 and S1. Thus

S2 = −∇f(m2) + β2S1 + γ2S0, (2.17)

where S2 is the current search direction at the updated model m2, β2 and γ2 are

two scalars that ensure conjugacy among the current and past search directions.

The condition of conjugacy between S0 and S2 requires that γ2 be zero. From the

condition of conjugacy between S1 and S2 we obtain

β2 =
∇f(m2)

T∇f(m2)

∇f(m1)T∇f(m1)
. (2.18)

Hence, the current search direction is given by

S2 = −∇f(m2) +
∇f(m2)

T∇f(m2)

∇f(m1)T∇f(m1)
S1. (2.19)
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Proceeding likewise the expression for the search direction can be generalized and

given by the following equation for the kth iteration.

Sk = −∇f(mk) + βkSk−1, (2.20)

where βk = ∇f(mk)T∇f(mk)
∇f(mk−1)T∇f(mk−1)

. The above equation defines the search directions

employed in the Fletcher-Reeves method. As mentioned earlier, the residual vector

rk at the kth iteration is given by rk = ∇f(mk). Hence βk can be written as

βk =
rT

k rk

rT
k−1rk−1

. (2.21)

Pseudo-code for the conjugate gradient algorithm is provided in Algorithm 2.2.

Algorithm 2.2 Pseudo-code for conjugate gradient algorithm
1: Given m0;
2: Set k ← 0, r0 ← Gm0 − d, S0 ← −r0;
3: while (Convergence criteria not satisfied) do

4: αk ← − rT
k Sk

ST
k GSk

;

5: mk+1 ← mk + αkSk;
6: rk+1 ← Gmk+1 − d;

7: βk+1 ← rk+1
T rk+1

rkT rk
;

8: Sk+1 = −rk+1 + βk+1Sk;
9: k ← k + 1;

10: end while

Comparison with steepest descent algorithm: A toy example

Conjugate gradient algorithm provides a faster convergence to a local minimum of

the function. If n is the dimensionality of the model space then it is expected that the

conjugate gradient algorithm will converge to a solution in n steps. In the following

toy example I compare the conjugate gradient algorithm with the steepest descent

algorithm and I show that the conjugate gradient algorithm indeed converges to a

minimum in two steps in a two dimensional model space and it takes less iterations

than that of the steepest descent algorithm.
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A toy example

I am solving a simple linear system of equation Gm = d in two dimensional model

space. In this example, I chose

G =


 15.0 3.0

2.0 5.0


 ;d =


 2.0

1.5


 . (2.22)

Equivalently, we can write the above problem as an optimization problem where

f(m) =
1

2
mTGm− dTm. (2.23)

Thus in a two dimensional model space (m1,m2)

f(m1,m2) = 15m2
1 + 5m1m2 + 5m2

2 − 2m1 − 1.5m2, (2.24)

where m = [m1,m2, ]
T is the vector of unknown model parameters.

Figure 2.7 shows the convergence steps using both the steepest descent method

and the conjugate gradient method. As expected, the conjugate gradient method

converged to the solution in two steps whereas the steepest descent method took

more than four steps to converge.

2.2.3 Gradient based optimization for nonquadratic cost func-

tion

A nonlinear inverse problem, when posed as an optimization problem, leads to non-

quadratic cost function. The surface of such a cost function is likely to exhibit

multimodality. There exist elegant gradient based optimization techniques to op-

timize for nonquadratic cost function. However, such techniques are likely to fail

when the chosen initial model is not close enough to the global minimum of the

cost function. Below I discuss nonlinear conjugate gradient optimization scheme

employed in optimization of nonquadratic cost functions.

2.2.3.1 Nonlinear conjugate gradient algorithm

The conjugate gradient algorithm discussed above is a minimization algorithm for

a quadratic function. Certain changes are made to make the conjugate gradient
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Figure 2.7: Comparison of convergence between steepest descent algorithm and
conjugate gradient algorithm. The solid black line shows the steepest descent and
the dashed red line shows the conjugate gradient iterations.

algorithm applicable to minimization of nonquadratic functions with nonlinearity

expressed in the system of equations that we wish to solve.

As discussed earlier, if the function to be minimized is quadratic e.g. f(m) =
1
2
mTGm − dTm, the step length αk along the direction Sk for which the func-

tion f(mk + αkSk) is a minimum, can be analytically calculated by minimizing the

function f(mk, αk) with respect αk. However, for nonlinear functions, in general,

there does not exist analytical expression to determine the optimum step length αk.

Thus, a line search technique is used to optimally determine the step size αk. The

nonlinear function is minimized along the direction of Sk and the residual rk(= ∇f)

is replaced by the gradient of the nonlinear function.

The Fletcher-Reeves method of updating the parameter β can be employed in

nonlinear conjugate gradient algorithm. A small modification to the Fletcher-Reeves

method was suggested by Polak and Ribière. The following equation shows the

Polak-Ribière method to update the parameter β.
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β(k+1) =
∇fT

(k+1)(∇f(k+1) −∇fk)

‖∇fk‖2
. (2.25)

It should be noted here that when the cost function is perfectly quadratic and

the line search for α is exact, ∇fT
i ∇fj = 0, for all i 6= j. In such a case, Fletcher-

Reeves method and Polak and Ribière method are identical. For a nonquadratic cost

function, in general, the line search is not exact. Hence, the Fletcher-Reeves method

and the Polak and Ribière method behave differently in nonlinear conjugate gradient

algorithms. Numerical studies show that Polak and Ribière method is generally

more robust than the Fletcher-Reeves method (Nocedal and Wright, 1999). The

pseudo-code for the nonlinear conjugate gradient with the Fletcher-Reeves method

and Polak and Ribière method is provided in Algorithm 2.3.

In chapter 5, I shall discuss an application of nonlinear conjugate gradient

Algorithm 2.3 Pseudo-code for nonlinear conjugate gradient algorithm
1: Given m0;
2: Compute f0 ← f(m0), ∇f0 ← ∇f(m0);
3: Set k ← 0, S0 ← −∇f0;
4: while (Convergence criteria not satisfied) do
5: Calculate αk by line search;
6: m(k+1) ← mk + αkSk;
7: Calculate ∇f(k+1);
8: if (Fletcher-Reeves) then

9: β(k+1) ←
∇fT

(k+1)
∇f(k+1)

∇fT
k ∇fk

;

10: end if
11: if (Polak-Ribière) then

12: β(k+1) ←
∇fT

(k+1)
(∇f(k+1)−∇fk)

‖∇fk‖2 ;
13: end if
14: S(k+1) ← −∇f(k+1) + β(k+1)Sk;
15: k ← k + 1;
16: end while

algorithm with Polak-Ribiere method (Equation 2.25) in the estimation of earth

elastic parameters from amplitude variation with offset data.

2.2.3.2 Newton’s optimization method

The idea of well known Newton’s method of root finding for a univariate function

can be used for optimization of a multivariate function. Let f(m) be a multivariate
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function whose Taylor series expansion at m = mi is given by

f(m) = f(mi) +∇f(mi)(m−mi) +
1

2
(m−mi)

THi(m−mi), (2.26)

where Hi = ∇2f(m)|mi
is the Hessian matrix evaluated at m = mi. The first

derivative is zero at the point where the function is minimum. So equating ∂f(m)
∂m

to

zero, we obtain from equation 2.26

∇f(m) = ∇f(mi) + Hi(m−mi) = 0. (2.27)

Thus mi+1 for the updated model is given as

mi+1 = mi −H−1
i ∇f(mi). (2.28)

Equation 2.28 is analogous to the expression for the Newton’s root finding method

for a univariate function which is given by

xi+1 = xi − f ′(xi)

f ′′(xi)
, (2.29)

where f(x) is a univariate function of x. Convergence is achieved by the Newton’s

method provided that the Hessian matrix is nonsingular.

It should be noted here that for a quadratic cost function, Newton’s method will

find the minimum in one step.

2.2.3.3 Marquardt optimization method

Marquardt’s method for optimization (Marquardt, 1963) uses the benefits of both

Newton’s technique and gradient descent technique to obtain a faster convergence.

Marquardt’s method modifies the diagonal terms of the hessian matrix by adding a

variable scaling factor. The modified hessian matrix is given by

H̃i = Hi + λiI, (2.30)

where I is an identity matrix and λi is a scalar to modify the diagonal elements of

the hessian matrix. It is evident from equation 2.30 that for very large λi the term

λiI dominates the hessian matrix Hi. In such a case

H̃−1
i = (Hi + λiI)

−1 ' 1

λi

I. (2.31)
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It follows from equation 2.28 that when λi is too large, the model is updated in a

gradient descent approach. It is obvious that when λi is reduced to a small number,

the model is updated with a Newton’s method approach.

Newton’s method provides a faster convergence when the model is close to the

minimum point whereas gradient descent algorithm provides a faster approach to

bring the initial model closer to the minimum point. Thus the Marquardt algorithm

provides a faster convergence when λi is set to a large parameter during the initial

iterations and then gradually reduced to a small number during the later iterations

as the updated model approaches the optimum point.

All gradient based optimization schemes converge to a minimum nearest to the

initial model, hence they are referred to as the local optimization algorithms. When

the inverse problem is nonlinear, the cost function is nonquadratic and likely to

exhibit multimodality. In such situations, gradient based optimization schemes will

not converge to the global minimum unless the initial model is close enough to the

global minimum. Global optimization algorithms such as the Monte Carlo meth-

ods, genetic algorithm or simulated annealing provide the means to achieve possible

convergence to the global minimum in presence of multimodality. In the following

section, I discuss important concepts in various global optimization algorithms.

2.3 Global optimization

In the thesis, I pose inversion as an optimization problem. Solution of a linear

system of equations is same as the minimization of a quadratic function. Local

minimization procedures discussed above are suitable when the cost function exhibits

a single minimum. However, geophysical inverse problems are in general nonlinear

and highly complex. In such cases, the cost function is likely to show several minima.

Local optimization techniques are expected to fail in such situations as they have

the tendency to converge to the nearest local minimum. Unless there is sufficient

a priori information so as to make a ”smart guess” about the initial model, local

minimization algorithms are expected to converge to a false solution and yield poor

results. Gradient based optimization schemes do not provide the means to ”jump

out” of a local minimum and hence possibly converge to a global solution. In

most situations however, the global optimization schemes are computationally more

expensive compared to the local optimization schemes. With the availability of high
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computing modern day computers, the cost effectiveness of the global optimization

schemes have grown many folds and provide a promising way to find more accurate

solutions in highly complex optimization/inversion problems. Figure 2.8 shows two

types of cost function with the topology having (a) one minimum and (b) several

minima.

2.3.1 Monte Carlo optimization

Global optimization schemes during the early stages of development were based on

pure random generation to generate new model for simulations. The main idea was

to exhaustively sample the model space with a uniform random number generator

and evaluate the cost function at each model. If a model, sampled randomly within

a model space, reduces the cost function then the model is accepted otherwise re-

jected. Global optimization based on such exhaustive search technique is referred

to as ”Monte Carlo optimization”. Monte Carlo optimization, though applied to

complex optimization problems (Press, 1968; Wiggins, 1969), have proven to be

computationally expensive. When the model space becomes large, as is the case

with the inversion of seismic data, Monte Carlo methods become impracticable.

The primary motivation to develop efficient global optimization technique lies in

the fact that the technique should be practicable in obtaining better results com-

pared to the local optimization techniques in situations where the problem is com-

plex and the model dimensionality is large. Two important global optimization

algorithms, (a) Simulated Annealing and (b) Genetic Algorithm, have been devel-

oped to deal with situations where local optimization algorithms are likely to fail

and pure Monte Carlo technique to obtain a global solution is computationally pro-

hibitive.

In the next sections, I will review the efficient global optimization algorithms.

Since I am using simulated annealing optimization scheme in my thesis, I will discuss

this technique in more details. Selection of simulated annealing as an optimization

algorithm is just a matter of choice. The global optimization algorithm that I am

proposing in the thesis could have used genetic algorithm as the basis optimization

algorithm and such applications would be straightforward.
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Figure 2.8: Cost function topology. (a) Single minimum and (b) multiple minima.
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2.3.2 Simulated Annealing

An inversion problem when posed as an optimization problem, essentially aims at

finding a model that best fits the data such that the cost function f(m) attains a

global minimum. Local optimization always moves in the downhill direction, thus

leaving no scope for the algorithm to move towards a global minimum when stuck

in a local minimum. When a cost function has a single minimum, local optimization

schemes are efficient and reasonable solutions are obtained. However, in many cases,

and more so in geophysical inverse problems, the topology of the cost function is

unknown.

Simulated annealing is a procedure analogous to thermodynamic annealing where

the chaotic motions of atoms of a molten solid settle down to form a crystal under

certain suitable conditions. In thermodynamical processes, the fractional distribu-

tion of particles at a particular energy state (Ei) at a temperature T, is given by the

Boltzmann or Gibbs distribution function as mentioned below (Sen and Stoffa, 1995)

Ni

N
=

gie
− Ei

kBT

Z(T )
, (2.32)

where Ni is the number of particles in the energy state Ei. The total number of

particles N =
∑

i Ni. The degeneracy, number of states with energy Ei, is given by

gi. The Boltzmann constant is given by kB and Z is the partition function given by

the equation

Z(T ) =
∑

i

gie
− Ei

kBT . (2.33)

When the temperature T is reduced gradually, at T → 0, the probability of the

state corresponding to the minimum energy becomes increasingly large. If the cool-

ing schedule is too fast, the particles do not attain the minimum energy state, instead

they get trapped in a local minimum energy state forming glass.

With a similar analogy, the unknown model parameters constitute the molecules

of a molten solid. When the temperature is reduced, the chaotic motion of the

molecules gradually ceases and the state corresponding to the global minimum en-

ergy (global minimum of the cost function) becomes highly probable at a very low

temperature. This is evident in Figure 2.9. Figure 2.9 shows the evaluation of the

multimodal cost function given by the equation 2.34 (Sen and Stoffa, 1995) at differ-

ent temperature T and subsequent calculation of the Gibbs probability distribution
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function (pdf).

J(m1,m2) = sgn(
sin m1

m1

)(|sin m1

m1

|) 1
4 sgn(

sin m2

m2

)(|sin m2

m2

|) 1
4 . (2.34)

Calculation of Gibbs pdf requires that the cost function be evaluated at all

Figure 2.9: Dependence of Gibbs probability density function on temperature T.
The Gibbs pdf at (a) T = 100. (b) T = 10. (c) T = 1. (d) T = 0.01.

model parameter positions. Such an evaluation makes optimization unnecessary.

It is possible to gain insight into the posterior distribution of the model without

calculating the Gibbs pdf by the algorithms discussed in the following sections.

2.3.2.1 Metropolis algorithm

Metropolis et al. (1953) proposed the early criterion to obtain a condition for the

acceptance/rejection of a model depending upon the evaluated cost function and



2.3 Global optimization 35

the cost temperature. Kirkpatrick et al. (1983) brought out a wider applicability of

Metropolis algorithm. Metropolis algorithm requires an initial model to be chosen

and the cost function be evaluated at the initial model. A random perturbation

is applied to the initial model and the cost function is evaluated and compared to

the cost function obtained at the previous iteration. If there is a lowering of the

cost function then the new model is unconditionally accepted. If the cost function

shows an increase then the new model is accepted with the probability of P =

e−
∆E
T ; where ∆E is the difference of the cost function evaluated at the current

and previous iteration. Such an accpetance/rejection condition is known as the

”Metropolis criterion”.

A toy example

I apply the Metropolis algorithm to find the global minimum of a function that

exhibits highly multimodal character. The test function is given by the equation

2.34. The function has a global maximum of 1.0 at (0,0). I redefine the function as

follows and minimize the function following Metropolis algorithm.

f(m1, m2) = (1− J(m1,m2))
2. (2.35)

The function J(m1,m2) has a minimum at (0,0). I chose an upper and lower bounds

of±10 for the model space. I chose a temperature scale T =[100 50 10 5 1 0.5 0.1 0.05

0.01 0.005 0.001 0.0005 0.0001] and number of random moves per temperature was

set to 1000. Figure 2.10 shows the estimated solution obtained from the Metropolis

algorithm. Figure 2.11 shows the cost function evaluated at each iteration. The plot

shows that the value of the cost function decreases and the final estimated model

agrees quite well with the global minimum. Figure 2.12 shows a flowchart for the

Metropolis algorithm.

In chapter 3, I am presenting a new method based on the Metropolis algorithm

to estimate non-minimum phase wavelet from seismic data.

2.3.2.2 Very Fast Simulated Annealing Algorithm

The following functions form the basis of fast and very fast simulated annealing

algorithm.

1. Model generating probability distribution function (pdf).
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Figure 2.10: The cost function and the location of the estimated model obtained
from the Metropolis algorithm. The estimated model agrees well with the global
minimum. The black dot shows the initial model and the red dot shows the estimated
model. Initial model is at (9.0,-9.0) and the estimated model is at (-0.0760,0.2622).
Global minimum is at (0,0).

2. The pdf for the acceptance/rejection criterion (Metropolis condition).

3. Decay of temperature (T) or the cooling/annealing schedule.

Metropolis algorithm, discussed in the previous section, followed a uniform model

generating function. Such a uniform pdf provided very slow convergence which could

be improved by introducing a multidimensional Gaussian pdf such that as the an-

nealing progressed, the probability of generating a model with lower energy state

became higher (Szu and Hartley, 1987). The multidimensional Gaussian pdf as used

in the Metropolis algorithm as a model generating distribution function is given by

f(∆m) = (2πT )−
M
2 exp(−∆m2

2T
), (2.36)
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Figure 2.11: The cost function evaluated at each iteration of the Metropolis algo-
rithm. The cost function shows a decrease and attains a value close to the global
minimum.

where m is the model generated at a particular iteration at a temperature T. The

model dimension is given by M and ∆m is the perturbation with respect to the

previous model. Figure 2.13 shows the variations in the Gaussian model generating

pdf as the temperature is annealed.

The Metropolis algorithm provides the following temperature schedule that

guarantees global convergence.

Tk =
T0

ln(1 + k)
, (2.37)

where Tk is the temperature at the kth iteration and T0 is the initial temperature.

As noted before, speed of the algorithm is controlled by the rate at which the tem-

perature is decreased. There exists a trade-off in terms of faster convergence and

attainment of the global minimum. If the temperature is decreased too rapidly, the
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Figure 2.12: Flowchart for Metropolis algorithm

algorithm, instead of converging to the global minimum, is likely to get stuck in a

local minimum. If the temperature is decreased too slowly, the algorithm becomes

prohibitively expensive. The annealing schedule (the rate at which the temperature

is decreased) can be made faster by introducing model generating pdf with the fol-

lowing characteristics

1. The pdf has a sharper peak at low temperature.

2. The pdf has a slightly fatter tail at low temperature.

A faster cooling schedule compared to the Metropolis algorithm can be achieved

without affecting the global convergence by introducing a Cauchy pdf for the model

generating function. Simulated annealing where the Cauchy pdf is used as the model

generating function, is known as the ”Fast Simulated Annealing”. The Cauchy pdf

is given by

f(∆m) =
1

π

T

(∆m2 + T 2)(M+1)/2
. (2.38)



2.3 Global optimization 39

−10 0 10

0.02

0.12

f(
m

)

−10 0 10

0.1

0.3

−10 0 10

0.2

1.2

−10 0 10

1

3

m

(a) (b)

(c) (d)

Figure 2.13: Gaussian model generating function at temperature (a) T = 10 (b)
T = 1 (c) T = 0.1 (d) T = 0.01. The sharpness of the pdf grows as the temperature
is decreased.

With a Cauchy pdf, the temperature cooling schedule can be made faster by setting

to

Tk =
T0

k
, (2.39)

where Tk is the temperature at the kth iteration and T0 is the initial temperature. It

can be proved that for a model generating function given by the equation 2.38, the

temperature cooling schedule as indicated by the equation 2.39, samples the entire

model states with a finite probability. The sampled model states have a finite prob-

ability of acceptance and rejection as given by the Metropolis criterion. Hence, for

the model generating function given by the Cauchy pdf, the convergence to global

minimum is statistically guaranteed. Figure 2.14 shows the behavior of Cauchy pdf

as the temperature is decreased.

Ingber (1989) introduced the concept of model parameter temperature and a
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Figure 2.14: The Cauchy model generating function at temperature (a) T = 10,
(b) T = 1, (c) T = 0.1, and (d) T = 0.01. The sharpness of the pdf grows as the
temperature is decreased.

Cauchy-like model generation scheme for each of the model parameters. This re-

sulted in a much faster cooling scale for the individual model parameters which can

be accelerated or retarded by including a quenching term to the cooling schedule.

The algorithm is known as the ”Very Fast Simulated Annealing (VFSA)”. The

VFSA algorithm provides a means to regulate the expansion or contraction of the

model generating pdf depending on the sensitivity of the model parameters to the

cost function. Figure 2.15 shows the Cauchy-like model generating pdf and its be-

havior when the temperature is varied. As seen in the figure, the expansion or

contraction of the model generating pdf can be regulated by computing the sensi-

tivity of each model parameter with respect to the cost function. This will allow for

a larger or smaller search space for the individual model parameter. The expansion

or contraction of the model generating pdf is referred to as ”reannealing”.

Figure 2.16 shows a comparison of different model generating pdfs. It is ob-
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Figure 2.15: The VFSA Cauchy-like model generating function at temperature (a)
T = 10, (b) T = 1, (c) T = 0.1, and (d) T = 0.01. The sharpness of the pdf grows
as the temperature is decreased.

served that the Cauchy and VFSA Cauchy-like distribution functions provide a

sharper peak at lower temperature. This means that at low temperature, when the

model is close to the global minimum, a smaller perturbation to the model param-

eter is more likely at the later iterations. This is a desirable effect. We also note

that at lower temperature, the VFSA Cauchy-like distribution provides a fatter tail.

This suggests that at lower temperature, there also exists a relatively higher proba-

bility to generate a model from a slightly larger search space. Such a feature in the

model generating function provides the algorithm the means to escape from a local

minimum even at a lower temperature.

The VFSA approach provides for two kinds of temperatures, (a) the accep-

tance/rejection temperature and (b) the model parameter temperature. The ac-

ceptance/rejection temperature plays the same role as in the Metropolis algorithm.

The model parameter temperature controls the search space of individual model
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Figure 2.16: Model generating functions- Gauss (black line), Cauchy (red line) and
VFSA Cauchy-like (blue line) distribution functions at (a) T = 10, (b) T = 1, (c)
T = 0.1, and (d) T = 0.01.

parameters by expanding or contracting the model generating pdf.

The algorithm

Let us consider a particular model parameter mk
i in the model vector m at an iter-

ation k. Let the upper and lower bounds in the model parameter search space be

Bi and Ai such that Ai ≤ mk
i ≤ Bi. The new model parameter generated in the

(k + 1)th iteration is given by

m
(k+1)
i = mk

i + yi(Bi − Ai), (2.40)

where yi is a random number between [−1, 1]. The model parameter m
(k+1)
i is gen-

erated such that Ai ≤ m
(k+1)
i ≤ Bi. The model generating function for the kth

iteration is given by the expression

gT (y) =
M∏
i=1

1

(2|yi|+ Ti) ln(1 + 1
Ti

)
, (2.41)

where M is the model dimension and Ti is the model parameter temperature for the

ith model. The cumulative probability is given by
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GTi =
1

2
+

sgn(yi)

2

ln(1 + |yi|
Ti

)

ln(1 + 1
Ti

)
. (2.42)

Thus, as the algorithm proceeds, new model parameters in the subsequent iterations

are generated according to the above mentioned pdf by generating a random number

from a uniform distribution ui ∈ U [0, 1] and computing the parameter yi from the

following equation

yi = sgn(ui − 1

2
)Ti[(1 +

1

Ti

)|2ui−1| − 1]. (2.43)

With the model generating pdf as defined above, the cooling schedule for the

model parameter temperature is given by

Ti = T0ie
−cik

1
M , (2.44)

where Ti is the model parameter temperature for the ith model at the kth iteration

and ci is a constant that is used to attain a particular final model temperature at a

given final iteration. The initial model parameter temperature is given by T0i. The

value of ci is computed from the known values of initial and final model temperature

by the following equation

ci = k
− 1

M
fi log

T0i

Tfi

, (2.45)

where kfi is the final iteration number for the ith model parameter.

Sensitivity, reannealing and quenching

As mentioned earlier, individual model parameter temperature provides the option

to expand or contract the individual search space by changing the shape of gT (y).

Depending on the sensitivity of a model parameter to the cost function, it is desired

to have different search regimes for different model parameters. The sensitivity of

the model parameter is calculated by computing the derivative of the cost function

with respect to the model parameter in consideration. Thus the sensitivity for the

model parameter mi is given by

Si =
∂f(m)

∂mi

, (2.46)
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where f(m) is the cost function evaluated at a particular iteration k for a model

parameter mi. The sensitivity is preferably calculated when the algorithm appears

to be trapped in a local minimum and the model parameter temperature is scaled by

the sensitivity analysis so that a wider search regime is incorporated in the algorithm

with the hope that the algorithm will be able to escape the local minimum. The

process of scaling the model temperature depending on the sensitivity is referred to

as ”reannealing” which is shown in the following equation.

T r
i = Ti(

Sm

Si

), (2.47)

where T r
i is the reannealed model temperature at the iteration k, Ti is the model

temperature at the iteration k before reannealing and Sm is the largest sensitivity

among all the model parameters. Since, Sm

Si
> 1, reannealing causes the model tem-

perature to increase, resulting in an expansion of the model generating pdf gT (y)

for the model parameter under consideration.

Quenching is a process that results in an accelerated model temperature cooling

schedule. This is desired when the temperature has dropped down slowly and the

algorithm is close to the global minimum. Under this situation, a faster cooling

schedule will provide a faster convergence to the global minimum without being in

the risk of getting stuck in a local minimum. An accelerated cooling schedule is

obtained by including a quenching term to the cooling equation.

Ti = T0ie
−cik

Q
M , (2.48)

where Q is the quenching term such that 1 ≤ Q ≤ M . Though quenching provides a

faster convergence, there is no guarantee that this will provide a global convergence

unless Q = 1 (no quenching).

A toy example

I applied the VFSA algorithm to find the global minimum of a function that ex-

hibits highly multimodal character. The test function is given by the equation 2.34.

The function has a global maximum at (0,0). I redefined the function as shown in

equation 2.35. The function f(m1,m2) has a minimum at (0,0). VFSA algorithm

requires two different temperatures to be defined. For the acceptance/rejection tem-

perature, I define Ta=[100 50 10 5 1 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001].

The model parameter temperature followed the cooling schedule as defined in equa-
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tion 2.44. Since, this is a toy problem with only 2 model dimensions, I have set

the quenching term Q = 1 (no quenching). I performed 1000 iterations at each ac-

ceptance/rejection temperature. Figure 2.17 shows the VFSA optimization results.

The error plot in the Figure 2.18 shows the convergence of VFSA algorithm as it

proceeds through the iterations. Figure 2.19 shows the flowchart for VFSA algo-

rithm.

m
1

m
2

−10 0 10
−10

0

10

Figure 2.17: The VFSA optimization result for a multimodal cost function. The
black dot shows the initial model and the red dot shows the estimated model. Ini-
tial model is at (9.0,-9.0) and the estimated model is at (-0.1089,0.4066). Global
minimum is at (0,0).

Comparison with Metropolis algorithm

Very Fast Simulated Annealing algorithm provides temperature annealing control

over the individual model parameters. In addition, VFSA algorithm provides faster

cost temperature annealing schedule compared to the Metropolis algorithm. In the
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Figure 2.18: The cost function evaluated during VFSA optimization.

example below, I am showing the faster convergence achieved with respect to the

Metropolis algorithm by only regulating the model parameter temperature of the

VFSA algorithm. I have kept the cost temperature annealing schedule same for both

the algorithms. For an unbiased comparison, I am starting both the algorithms at

the same initial model (9.0,-9.0). The cost function to be optimized is given by the

equation 2.34 and 2.35. The cost temperature schedule Ta=[100 50 10 5 1 0.5 0.1

0.05 0.01 0.005 0.001 0.0005 0.0001] is maintained same for both the algorithms.

For the VFSA algorithm, the model temperature annealing schedule is given by the

equation 2.44 where the parameters ci and T0i were set to 1.8 and 20.0 respectively.

Figure 2.20 shows the cost function evaluated at each iterations as both the

algorithms converged to the optimum model. It is observed that by regulating

the model parameter temperature annealing schedule in the VFSA algorithm, the

convergence can be made faster with respect to the Metropolis algorithm.
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Figure 2.19: Flowchart for VFSA algorithm.

2.3.3 Genetic algorithm

Genetic algorithm (GA), as the name implies, is based on the analogy that the ge-

netic modifications that take place in the living species work towards making the

species more intelligent and adaptive to the changing natural surroundings. The

process of biological evolution is mimicked in genetic algorithm where a pool of pos-

sible solutions is updated every iteration so that the pool contains better candidate

models as the iterations proceed. Genetic algorithm was first proposed by Holland

(1975) and discussions on GA are found in books published as early as 1989 (Gold-

berg, 1989). Subsequently, several modifications to the classical GA approaches

were proposed (Stoffa and Sen, 1991; Sen and Stoffa, 1992). The modifications to

the classical GA involved a hybrid approach between simulated annealing and GA.

In the following discussion, I describe the salient features of genetic algorithm

namely, coding, fitness function, selection, crossover and mutation.
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Figure 2.20: Comparison of cost function evaluated for Metropolis algorithm and
VFSA algorithm. For the same starting model and same cost temperature annealing
schedule the VFSA algorithm shows faster convergence compared to the Metropolis
algorithm. Green dashed line and the solid thick black line show the cost function
evaluated for the Metropolis algorithm and the VFSA algorithm respectively.

Coding

Coding is a method to digitally represent the model space. A commonly used coding

method is the conversion of numerical model parameters to binary strings. In GA

literatures such individual binary strings representing individual model parameters

are referred to as the chromosomes. Every bit in such a binary string is referred to

as gene. Thus a gene can either be one or zero. Coding method can also involve

decimal system in which the model parameters are decimal numbers. Coding defines

the resolution and the search space of the optimization algorithm.
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Fitness function

In GA literatures, the function that defines how closely a model fits the data and

constraints is referred to as the fitness. As opposed to other optimization algorithms,

the aim of the genetic algorithm is to increase the fitness function so that the opti-

mum model is the one that has the maximum fitness. Thus the usual practice is to

use either a negative or inverse of a cost function to define the fitness function.

Selection

The model parameters are defined in terms of chromosomes. If the chromosomes

take the form of binary strings then the model parameters are defined by binary

strings. Initially the model parameters are randomly selected within a user defined

upper and lower bounds. Each random selection is then converted to chromosomes

within a user defined resolution. A pool of such possible solutions for the model is

created. Such a pool is referred to as the population pool. Once the population pool

is created the fitness criterion for each candidate of the population pool is evaluated.

The next step is selection. Selection is the procedure to update the population pool

with fitter models as the algorithm proceeds through generations (the updating

of the population pool through iterations is termed as generations). Usually the

selection is done by two procedures, (a) proportional selection and (b) tournament

selection. In proportional selection method, probability of selection is evaluated for

each individual candidate models comprising the population pool. The probability

of selection is computed on the basis of fitness values of each candidate models. The

next generation population pool is created by replicating the candidate models of

the current pool in direct proportion to their fitness probabilities. In the tournament

selection method, the models comprising the population pool are randomly paired

and their fitness values are compared. One, out of the two pairing candidate models,

is selected depending on a user defined probability value. For example, a probability

of greater than 0.4 can be set to accept a candidate model with a higher fitness value

among the two pairing models. This allows for a finite probability to populate the

next generation population pool with less fit models, thus providing the scope to

the algorithm to ”jump out” of the local minimum.
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Crossover

Crossover is an analogous operation that mimics transfer and sharing of genetic in-

formation among chromosomes. In genetic algorithm, crossover operation involves

two chromosomes in a population pool. Crossover can be single-point or multi-point.

In single-point crossover, one point is randomly selected and a pair of concatenated

binary strings representing chromosomes is also randomly selected. All binary bits

to the right of the randomly chosen point are swapped between the two chromosome

pairs. In case of multi-point crossover, several crossover points are chosen represent-

ing each of the concatenated model parameters. All the bits to the right of the chosen

crossover points but within the binary string representing a model parameter are

swapped between the pairing chromosomes. Number of crossover operations inside

a population pool is controlled by the user defined crossover probability. Crossover

operation results in a new population pool.

Mutation

Mutation mimics the process of genetic mutation where a particular gene undergoes

a change. In genetic algorithm, mutation operation is performed by randomly pick-

ing a bit from a chromosome (binary string) and changing the binary value. For

example, if the bit contained a 1, it is changed to a 0 and vice-versa. Number of

mutation operations carried out in a population pool is controlled by the mutation

probability. A higher mutation probability means greater diversity in the popula-

tion pool and hence slower convergence to the optimum point. However, greater

diversity in the population pool helps the algorithm to escape from a local min-

imum. After several generations of updating the population pool there is an

overall increase in the fitness of the candidate models in the population pool. When

the convergence is achieved as per the user defined criteria, one candidate model

is selected from the optimum population pool. The candidate model is decoded to

obtain the numerical values for the unknown model parameters. Figure 2.21 shows

a flowchart diagram for a basic genetic algorithm.
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Figure 2.21: Flowchart for Genetic algorithm

2.4 Summary

In this chapter, I reviewed the theories involved in local and global optimization

schemes. I discussed steepest-descent, linear and nonlinear conjugate gradient algo-

rithms with the help of toy examples. I discussed global optimization schemes with

particular emphasis on simulated annealing. I reviewed the theories on classical

Metropolis algorithm and showed an example where the minimum of a multimodal

cost function is obtained by the algorithm. I reviewed the theory of very fast sim-

ulated annealing (VFSA). I showed an example of VFSA minimization of a multi-

modal cost function. Both Metropolis algorithm and VFSA algorithm minimized

the same cost function starting with the same initial model. On comparison with

the Metropolis algorithm, we observe that VFSA optimization resulted in a faster
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convergence and better estimation of the model. I have also provided flowcharts for

local optimization algorithms as well as for global optimization algorithms such as

the Metropolis, the VFSA and genetic algorithms.

In the next chapter, I am proposing a new application of simulated anneal-

ing algorithm to estimate the mixed phase wavelet embedded in the seismic data.

Estimation of the phase characteristics of the wavelet is performed by suitable esti-

mation of the coefficients of an all-pass operator. This is a blind problem because

the structure of the cost function is unknown. This necessitates the use of global

optimization scheme. I have used the Metropolis algorithm to estimate the coeffi-

cients of the all-pass operators required to estimate the phase characteristics of the

embedded wavelet in the seismic data.



Chapter 3

Global optimization: Application

in blind deconvolution problem1

3.1 Introduction

The process of deconvolution requires a proper estimation of the wavelet so as to

obtain a more accurate estimate of the underlying reflectivity series. The reflectivity

series is commonly assumed to be white, even though it is a well known fact that the

reflectivity series is not white in the majority of the cases (Rosa and Ulrych, 1991;

Saggaf and Robinson, 2000; Walden and Nunn 1988). The issues with non-white

behavior of the reflectivity series are beyond the scope of this chapter. I make the

assumption that the reflectivity series is a stationary, non-Gaussian, and statistically

independent random process (Walden, 1985). Convolution of the reflectivity with

the source wavelet makes the reflectivity series lose high frequency components. De-

convolution, with the assumption that the wavelet is minimum phase, removes from

the data the wavelet amplitude signature quite effectively. However, it leaves behind

a spurious phase signature in the data. In order that the wavelet phase response

is also effectively removed, it is necessary to deconvolve the data with an optimum

mixed phase wavelet. Classical approaches such as the Wiener-Levinson predictive

deconvolution are intended to estimate the inverse minimum phase wavelet in the

data. These methods are based on second order statistical assumptions (Robinson

and Treitel, 1980; Robinson, 1967; Peacock and Treitel, 1969). In other words, by

making the assumption that the reflectivity is white, one can use the autocorre-

1Misra, S. and Sacchi, M. D., 2007, Non-minimum phase wavelet estimation by non-linear
optimization of all-pass operators, Geophysical Prospecting, 55 , 223-234.
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lation of the seismic trace as an estimator of the autocorrelation of the wavelet.

Since the autocorrelation of the wavelet does not contain any phase information,

an additional assumption about the wavelet is required. In general, the additional

assumption is that the wavelet is minimum phase. With these two assumptions of

white reflectivity and minimum phase wavelet, it is possible to recover the seismic

wavelet by measuring the autocorrelation of the trace. It is clear that if the wavelet

contains non-minimum phase components, the classical procedure outlined above

is sure to fail. Fortunately, it is possible to design wavelet estimation strategies

based on higher order statistical estimators such as the third order and fourth order

cumulants. Unlike the autocorrelation function which is a second order cumulant,

the third and fourth order cumulants do preserve the phase of the wavelet when the

reflectivity consists of a non-Gaussian white process (Lazear, 1993; Mendel, 1991).

Following Lazear (1993) and Velis and Ulrych (1996), I preferred to use the fourth

order cumulants rather than the third order cumulants. The latter is preferred due

to the fact that the third order cumulant vanishes for symmetric distributions and

also for zero-mean wavelets such as seismic wavelets. Since there is no evidence that

suggests that reflection coefficients should be modeled via a non-symmetric distri-

bution, I have preferred not to utilize the third order cumulant. The fourth order

cumulants, on the other hand, do not suffer from the aforementioned shortcoming.

Many approaches have been made to bypass the minimum phase assumption and

estimate wavelets that show mixed phase character. Such methods include, homo-

morphic deconvolution (Oppenheim et al., 1968; Ulrych, 1971; Ulrych et al., 1995),

minimum entropy deconvolution (Wiggins, 1978), fourth order cumulants matching

(Lazear, 1993), and others.

Tugnait (1987) proposed a fourth order cumulant matching technique to estimate

a mixed phase moving average wavelet. Lazear (1993) applied this technique to the

real seismic data. Velis and Ulrych (1996) applied the technique with a non-linear

optimization approach. They estimated the mixed phase wavelet from the fourth-

order cumulant of the trace by means of Very Fast Simulated Annealing (VFSA)

optimization method. They showed the dependence of the cumulant matching tech-

nique on the ratio of bandwidth to central frequency of the data.

A new global optimization method using the cumulant matching approaches to

mixed phase deconvolution is proposed here. Parameterization of the mixed phase

wavelet as a convolution of a minimum phase wavelet with an all-pass wavelet (Por-

sani and Ursin, 1998; Porsani and Ursin, 2000) can significantly simplify the problem.
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Deconvolving the seismic trace by the estimated minimum phase wavelet helps in

broadening the bandwidth of the deconvolved data. This is a desirable effect. As

pointed out earlier by Velis and Ulrych (1996), a proper estimation of the mixed

phase wavelet by cumulant matching technique is possible when the ratio of the

bandwidth to central frequency is greater than 1 and preferably close to 2. Hence,

deconvolution by the estimated minimum phase wavelet works favorably for the cu-

mulant matching technique. Optimization for the all-pass wavelet is performed by

means of the technique of Simulated Annealing (Sen and Stoffa, 1995). In blind

deconvolution problems like the one I am trying to solve, the topology of the cost

function is unknown and could have multiple minima. This prompted me to pre-

fer a global optimization approach so that the problems associated with a possible

multimodal cost function could be reduced.

3.2 Theory

With the assumptions that the reflectivity series is non-Gaussian, stationary and

a statistically independent random process, the fourth order cumulant of the trace

is equal to, within a scale factor, the fourth order moment of the wavelet (Lazear,

1993; Liang, Cai and Li, 2002; Velis and Ulrych, 1996). The next section discusses

this further. I have already mentioned that the very assumption that the reflec-

tivity is a white process is questionable as far as the true nature of the reflectivity

series is concerned (Saggaf and Robinson, 2000). However, in the present context

of the paper, this assumption is considered to be valid and the algorithm is purely

based upon the validity of the white reflectivity assumption. The estimation of

wavelet phase when the reflectivity series is coloured is not addressed here and is

considered beyond the scope of this chapter. When the wavelet is parameterized

as a convolution of a minimum phase wavelet and an all-pass wavelet, the fourth-

order cumulant of the whitened trace (deconvolved by the minimum phase wavelet)

is equal to, within a scale factor, the fourth-order moment of the all-pass wavelet.

The minimum phase wavelet estimated from the autocorrelation of the trace has

the same amplitude spectrum as that of the corresponding mixed phase wavelet.

Thus, deconvolving the trace with the minimum phase wavelet not only removes the

wavelet amplitude spectrum from the data but also increases the bandwidth. This

is a favorable result as a higher ratio of the data bandwidth to central frequency

is desired for more reliable wavelet estimation. The whitened trace now contains
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only the phase information of the wavelet. Hence, an all-pass wavelet remains to be

optimized from the whitened data.

Ignoring seismic noise, seismic data can be expressed as

dt = rt ∗ wt, (3.1)

where dt is the seismic reflection signal, rt is the reflectivity series and wt is the

mixed phase wavelet. The ’*’ indicates a convolution process between the reflec-

tivity sequence and the wavelet. As mentioned earlier, wt can be parameterized as

the convolution of a minimum phase wavelet and an all-pass wavelet (Porsani and

Ursin, 1998). Thus,

wt = w̃t ∗ ft, (3.2)

where w̃t is the minimum phase wavelet estimated from the trace and ft is the all-

pass wavelet. The Z-transform of the all-pass wavelet can be written as (Porsani

and Ursin, 1998)

F (Z) = Zp B(Z−1)

B(Z)
, (3.3)

where B(Z) = b0 + b1Z + b2Z
2 + . . . + bpZ

p and the term Zp accounts for the time

shift required to make the all-pass wavelet causal. It is important to mention here

that the time series bt = b0, b1, · · · , bp is minimum phase. This is a very simple

parameterization with bt = b0, b1, · · · , bp, and p as unknowns. For this problem, the

term Zp in the equation 3.3 is not important because it only accounts for the time

shift in the final estimation of the wavelet.

Substituting for wt in equation 3.1,

dt = rt ∗ w̃t ∗ ft. (3.4)

Using the Z-transform, the above equation can be represented as

D(Z) = R(Z)W̃ (Z)F (Z). (3.5)

Deconvolution by the minimum phase wavelet yields

D̃(Z) = R(Z)F (Z), (3.6)
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where D̃(Z) is the deconvolved trace that has been whitened by the removal of the

minimum phase wavelet. Thus, ideally the reflectivity sequence can be obtained by

deconvolving the whitened trace by an optimum all-pass wavelet.

Taking the Z-transform of both sides of equation 3.2,

W (Z) = W̃ (Z)F (Z). (3.7)

This can further be written as

|W (Z)|eiθ(Z) = |W̃ (Z)|eiθmin(Z)|F (Z)|eiθF (Z), (3.8)

where |W (Z)| is the amplitude spectrum of the mixed phase wavelet, |W̃ (Z)| is the

amplitude spectrum of the estimated minimum phase wavelet and F (Z) is the am-

plitude spectrum of the all-pass wavelet, which is equal to 1. Also, θ(Z) is the phase

of the mixed phase wavelet, θmin(Z) is the phase of the minimum phase wavelet,

and θF (Z) is the phase of the all-pass wavelet.

Since, |W (Z)| = |W̃ (Z)|,

θ(Z) = θmin(Z) + θF (Z). (3.9)

The problem of estimating the mixed phase wavelet can now be posed as a prob-

lem of estimating the optimum phase of the all-pass wavelet from the data whitened

by an estimated minimum phase wavelet. Whitening the data with an estimated

minimum phase inverse has a trade-off in terms of offering a wider bandwidth and

enhanced noise level. It is observed that the practice of whitening deconvolution,

in general, helps enhance the bandwidth in a frequency zone where the signal is

stronger than the noise. In problems of wavelet phase estimation, the accuracy of

the estimated phase depends to a large extent on the bandwidth of the data. Any

amount of enhanced bandwidth in a frequency zone where the signal is stronger

than the noise would greatly help in the phase estimation of the wavelet. Even

though prewhitening of the data does not bring in any new information into the

data, it surely helps in shaping the data in such a way that the phase estimation is

performed in a more conducive data environment (White, 2006, personal communi-

cation; White, 1988; White and Simm, 2003).
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3.3 Development of the algorithm

Phase estimation by cumulant matching technique is performed by using the Sim-

ulated Annealing (SA) algorithm. Simulated annealing has been applied quite suc-

cessfully in many geophysical inversion problems. Many variants of simulated an-

nealing technique such as the Metropolis algorithm (Metropolis et al., 1953; Kirk-

patrick et al., 1983), Heat bath algorithm (Rebbi, 1984; Creutz, 1984; Geeman and

Geeman, 1984; Rothman, 1986), Simulated annealing (Greene and Supowit, 1986),

Fast simulated annealing (Szu and Hartley, 1987), Very Fast Simulated Annealing

(Ingber, 1989), Mean field annealing (Peterson and Anderson, 1987; Peterson and

Anderson, 1988; Peterson and Soderberg, 1989) have been developed due to their

wide and successful applications.

I used the Metropolis algorithm to optimize for the model parameters bt , the

Z-transform of which forms the denominator term of the all-pass wavelet (equation

3.3). The unknowns here are the length of bt and its coefficients. The optimization

is performed by fixing p to 4. This is the minimum length of bt that can pro-

duce a combination of real and imaginary roots on the Z-plane. Also it is noted

that bt is minimum phase in character. A minimum phase sequence is obtained

by the Kolmogoroff technique (Claerbout, 1992) applied to a randomly generated

sequence. The cost function for the optimization is obtained from the Bartlett-

Brillinger-Rosenblatt formula (Lazear, 1993; Mendel, 1991). The formula is given

by the following convolutional equation

Cs
4(τ1, τ2, τ3) = Cγ

4 (τ1, τ2, τ3) ∗Mw
4 (τ1, τ2, τ3) + Cν

4 (τ1, τ2, τ3), (3.10)

where Cs
4(τ1, τ2, τ3) is the 4th order cumulant of the seismic trace, Cγ

4 (τ1, τ2, τ3) is the

4th order cumulant of a non-Gaussian, statistically independent, and identically dis-

tributed reflectivity sequence, Mw
4 (τ1, τ2, τ3) is the 4th order moment of the wavelet

and Cν
4 (τ1, τ2, τ3) is the 4th order cumulant of a Gaussian additive noise. The cumu-

lant lags are represented by τ1, τ2 and τ3. Under the assumption that there exists

an infinite number of data along with the other assumptions about the reflectivity

sequence mentioned earlier, the term Cγ
4 (τ1, τ2, τ3) reduces to an impulse at the cen-

tral lag, scaled by the kurtosis (γγ ) of the reflectivity series. The term Cν
4 (τ1, τ2, τ3)

involving the Gaussian noise reduces to zero. Hence, under the above assumptions,

equation 3.10 becomes
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Cs
4(τ1, τ2, τ3) = γγMw

4 (τ1, τ2, τ3), (3.11)

where γγ is the kurtosis of the reflectivity sequence which is a constant. The kur-

tosis is zero for a purely Gaussian reflectivity series (Lazear, 1993). Thus, the cost

function for the optimization is given by

J =
∑
τ1

∑
τ2

∑
τ3

[C̃4
s
(τ1, τ2, τ3)− M̃4

w
(τ1, τ2, τ3)]

2, (3.12)

where C̃4
s
(τ1, τ2, τ3) is the fourth-order trace cumulant (normalized by the central

lag cumulant) and M̃4
w
(τ1, τ2, τ3) is the fourth-order wavelet moment (normalized

by the central lag moment). Figure 3.1 show the flowcharts for the estimation of

the mixed phase wavelet from the whitened data.
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parameters

Kolmogoroff

All−pass wavelet

(model)
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Cost function
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Output

Model update

with
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Fourth order
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trace cumulant

(b)

Input data

Wiener−Levinson

algorithm

Minimum phase
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Whitened data

Nonlinear
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Deconvolution

Cost function

Data ACF
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Figure 3.1: Flowcharts for the algorithm. (a) Estimation of minimum phase and
mixed phase wavelets. (b) Cumulant matching and model updating with Metropolis
algorithm.
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Table 3.1: The roots of the synthetic wavelet.
No. 1 2 3 4 5 6 7 8 9
Magnitude 1

1.3
1

1.5
1

1.11
1.2 1.3 1.8 1.95 1.25 1.8

Phase 0 0 +45 +5 +60 0 180 +120 +160
(degree) -45 -5 -60 -120 -160

3.4 Synthetic data example

The proposed algorithm for estimating the mixed phase wavelet is tested by design-

ing a synthetic mixed phase wavelet and a synthetic trace. Table 3.1 shows the roots

of the Z-transform of the wavelet coefficients of the synthetic mixed phase wavelet.

A similar wavelet was used by Porsani and Ursin to test their algorithm (Porsani

and Ursin, 2000). Figure 3.2a shows the synthetic trace. The synthetic trace was

generated by convolving a Laplacian mixture distribution of reflectivity sequence

(length of the data points N = 250) with the true mixed phase wavelet. This

particular distribution of the reflectivity series was chosen so as to obtain a better

approximation of the true reflectivity distribution (Walden and Hosken, 1986). The

Laplacian mixture distribution was obtained by generating two separate Laplacian

random deviates and mixing them together by means of a mixing parameter. The

first Laplacian deviates was generated by using a Laplace parameter (σ1) equal to

0.007. The second Laplacian deviate was generated by using a Laplace parameter

(σ2) equal to 0.017. The mixing parameter in this case was chosen to be 23% of the

deviates generated by the smaller Laplace parameter. The trace does not contain any

noise component. Figure 3.2b shows the data after deconvolution with the estimated

minimum phase wavelet. The whitened data so obtained have a larger bandwidth

than the original data and contain only the phase information of the wavelet as the

amplitude information has been effectively removed by the deconvolution. Hence,

the technique of cumulant matching reduces to the matching of the fourth-order

moment of the all-pass wavelet and the fourth-order cumulant of the whitened data.

Figure 3.2c shows the true mixed phase wavelet. Figure 3.2d shows the estimated

minimum phase wavelet obtained from the data by the Wiener-Levinson algorithm.

Figure 3.2e shows the estimated mixed phase wavelet for a model length p = 4.

The correlation measure between the true wavelet and the estimated mixed phase

wavelet is 0.99.
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(a)

(b)

(c)
(d)

(e)

Figure 3.2: Synthetic data example. (a) Synthetic data. (b) Whitened data. (c)
True wavelet. (d) Minimum phase wavelet. (e) Mixed phase wavelet.
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3.5 Comparison of the results with and without

prewhitening

A comparison is called for between the estimation of the mixed phase wavelet with

the proposed algorithm and that directly obtained from the data. The cumulant

matching technique is not sensitive to phase when the data bandwidth to central fre-

quency ratio is less than 1. Hence, it is expected that cumulant matching technique

will not be able to perform well when the mixed phase wavelet is estimated from

severely bandlimited data that have the ratio of bandwidth to central frequency less

than 1. The proposed technique has the advantage of removing the wavelet ampli-

tude spectrum from the data within a frequency zone where the signal is stronger

than the noise, thus resulting in a wider bandwidth of the whitened data. This

allows the cumulant matching technique to work in a favorable domain and should

improve the results.

A mixed phase wavelet with a bandwidth to central frequency ratio of 0.5 was

chosen for the purpose of illustration. Figure 3.3a shows the synthetic trace that was

generated by convolving a bandlimited wavelet with a reflectivity series of length

N = 250. The reflectivity series has a Laplacian mixture distribution generated

by the same parameters mentioned earlier. The synthetic trace does not have

any noise component. Figure 3.3b shows the whitened data after minimum phase

deconvolution. Figure 3.3c shows the true bandlimited wavelet with the ratio of

bandwidth to central frequency equal to 0.5. Figure 3.3d shows the corresponding

minimum phase wavelet estimated from the data. Figure 3.4a shows the estimated

mixed phase wavelet for a model length p = 4. The estimation is performed over a

whitened trace that is obtained by deconvolving the trace with the estimated min-

imum phase wavelet. The correlation measure between the estimated wavelet and

the true wavelet is calculated to be 0.99. The algorithm was further applied on the

same data and a mixed phase wavelet was estimated without deconvolving with the

estimated minimum phase wavelet. Figure 3.4b shows the estimated mixed phase

wavelet obtained from the unwhitened data. The correlation measure obtained for

this estimation dropped to 0.89. In order to further substantiate the above test, I

conducted 200 Monte Carlo simulations with different realizations of the synthetic

data for different number of data points. I used a zero phase bandlimited Ricker

wavelet (central frequency = 30 Hz, time sample interval = 0.004s) in the simula-

tions. The simulations for estimations from whitened and unwhitened data were
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performed for number of data points N = 250 and N = 500. Figure 3.5a shows

the correlation measures between the estimated and the true wavelets for both pre-

whitened and unwhitened data. The dashed line represents the estimation from

unwhitened data and the solid line represents the estimation from the pre-whitened

data. Figure 3.5b shows the error bars for the normalized root-mean-square error

between the estimated and the true wavelets for 200 simulations for N = 250. Fig-

ure 3.5c shows the correlation between the estimated and the true wavelets for 200

simulations with N = 500. Figure 3.5d shows the normalized root-mean-square error

between the estimated and true wavelets for N = 500. The mean correlation is high

with low variance when estimating from pre-whitened data compared with the values

when estimating from unwhitened data. It is also observed that the normalized root-

mean-square error is low with smaller variance when estimating from pre-whitened

data. These observations corroborate the fact that the cumulant matching tech-

nique is sensitive to the ratio of the bandwidth to central frequency. The wavelet

was estimated more accurately when this ratio was improved by minimum phase

deconvolution.

3.6 Effect of noise and number of data points

The algorithm was tested on different levels of noise in the synthetic data. The data

were synthetically generated by convolving a zero phase Ricker wavelet (central

frequency = 30 Hz and sampling interval = 0.004s) with a randomly generated re-

flectivity sequence that followed a Laplacian mixture distribution. The distribution

of the data was obtained using the Laplace parameters and the mixing parameter

mentioned earlier. The test was carried out over a number of data samples N = 500.

A total number of 200 Monte Carlo simulations were performed for each noise level

defined in terms of the signal-to-noise ratio given by the following equation

SNR =
max(|d|)

σ
, (3.13)

where d is the data and σ is the standard deviation of the noise. Signal-to-noise

ratio values of SNR =[4 20 50 100] were used to test the stability of the algorithm.

Figure 3.6a shows the error bars for the correlation measure between the true

wavelet and the estimated wavelet. As anticipated, the correlation measure between

the true wavelet and the estimated wavelet shows an increase as the SNR is increased
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(a)

(b)

(c)

(d)

Figure 3.3: (a) Synthetic trace. (b) Whitened trace. (c) True bandlimited wavelet.
(d) Estimated minimum phase wavelet.
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(a) (b)

Figure 3.4: (a) Estimated mixed phase wavelet obtained from whitened data. (b)
Estimated mixed phase wavelet obtained from nonwhitened data.

(a) (b)

(c) (d)

Figure 3.5: Comparison between the estimations from pre-whitened and non-
whitened data. N = number of data points considered for estimation. The dashed
line is for the estimations from non-whitened data and the solid line is for the es-
timations from the pre-whitened data. (a) The correlation measure between the
estimated and true wavelets for N = 250. (b) The normalized root-mean-square
error between the estimated and the true wavelets for N = 250. (c) The correlation
measure between the estimated and true wavelets for N = 500. (d) The normalized
root-mean-square error between the estimated and the true wavelets for N = 500. I
have used 200 Monte Carlo simulations.



3.6 Effect of noise and number of data points 66

from 4 to 20 and then remains almost flat as the algorithm enters into a more

stable regime of SNR. Figure 3.6b shows the normalized root-mean-square (rms)

error plotted against the SNR. The normalized rms error between the true wavelet

and the estimated wavelet goes down as the SNR is increased from 4 to 20 and then

remains almost flat. There exists a trade-off between the degree of prewhitening and

the amplification of noise (White 1984; White 1988; White and Simm 2003). The

Monte Carlo simulations show that the algorithm operates in a more stable domain

when the SNR is close to 20 and above. Figure 3.7 shows the phase spectrum of

the estimated wavelet for the 200 Monte Carlo simulations. The phase spectrum

has been de-trended to remove the linear trend in the phase that has been brought

in by the constant time shift. Since the true wavelet is zero phase, the recovered

phase (after de-trending) should be close to zero for all frequencies. I considered

200 numbers of Monte Carlo simulations for a total number of data points N=500

with a signal-to-noise ratio SNR =[4 20 50 100] . The SNR was defined previously

(equation 3.13). Figure 3.7a shows the error bars for the de-trended phase spectra

for SNR = 4. Figure 3.7b shows the error bars for the de-trended phase spectra for

SNR = 20. Figure 3.7c shows the de-trended phase spectra for SNR = 50. Figure

3.7d shows the de-trended phase spectra for SNR = 100. It is observed that as the

SNR increases, the accuracy in the phase estimation also increases.

It is known that the statistical methods of wavelet estimation greatly depend

on the data volume. As discussed previously, the cost function (equation 3.12)

is obtained under the assumption (along with the assumptions on the statistical

properties of the reflectivity sequence) that there exists infinite number of data. This

makes it necessary to run the proposed algorithm on varying number of data so as

to obtain a measure of the stability of the algorithm. The following numbers of data

points N =[100, 250, 500] were considered to test the algorithm. A total number

of 200 Monte Carlo simulations were performed for a given number of data points.

The SNR was kept fixed at 40 during the whole simulations. Figure 3.8a shows

the correlation measure for different number of data points. As anticipated, the

correlation measure between the true wavelet and the estimated wavelet increased

as the number of data points increased from 100 to 250 and then to 500. Figure

3.8b shows the normalized root-mean-square (rms) error plotted against the number

of data points. The normalized root-mean-square error is calculated between the

true wavelet and the estimated wavelet. The normalized rms error decreased as

the number of data points is increased. It appears that for all practical purposes,
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Figure 3.6: Test of the stability of the algorithm with different signal-to-noise ratio.
(a) The correlation measure plotted against the SNR. (b) The normalized root-
mean-square error plotted against SNR = [4, 20, 50, 100]. I have used 200 Monte
Carlo simulations.

with a reasonable number of data points, the algorithm is capable of estimating the

wavelet with reasonable accuracy. Estimation of the wavelet from a given set of

data also depends on the wavelet being stationary. In the context of this chapter,

it is assumed that the wavelet is stationary in both the spatial and temporal axes

and the issue of non-stationarity is beyond the scope of the chapter.

3.7 Real data example

A stacked seismic section was considered for testing the algorithm. Seismic data with

77 traces and 200 time samples were windowed from the stacked section. The average

cumulant was calculated for the data window and incorporated in the cost function

(equation 3.12) for the estimation of the all-pass operator. An average minimum

phase wavelet was estimated from the data by the Wiener-Levinson algorithm. The

data were pre-whitened by minimum phase deconvolution.

Figure 3.9a shows the estimated minimum phase wavelet obtained from the data

by the Wiener-Levinson algorithm. Figure 3.9b shows the estimated mixed phase

wavelet obtained from the data with the proposed algorithm. Figure 3.10a shows

the true stacked section. Figure 3.10b shows the section after being deconvolved

with the estimated minimum phase wavelet. Figure 3.10c shows the de-phased

stacked section after subtracting the phase of the estimated all-pass operator from
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Figure 3.7: The error bars for the de-trended phase spectrum of the estimated
wavelet for different noise levels in the data defined in terms of the signal-to-noise
ratio (SNR). (a) SNR = 4. (b) SNR = 20. (c) SNR = 50. (d) SNR = 100.
Number of data points N = 500. I have used 200 Monte Carlo simulations.
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Figure 3.8: Test of the stability of the algorithm with different number of data. (a)
The correlation measure plotted against the number of data. (b) The normalized
root-mean-square (rms) error plotted against the number of data. I have used 200
Monte Carlo simulations. SNR of the data is 40.
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the minimum phase deconvolved data shown in the figure 3.10b. In order to test

the algorithm, the deconvolved data were further convolved with a 900 constant

phase rotated synthetic wavelet. The algorithm was applied to this data to check if

the phase rotated wavelet could be effectively recovered (Hargreaves, 1994). Figure

3.11a shows the extracted wavelet after a 900 phase rotation. Figure 3.11b shows

the wavelet recovered by the proposed algorithm. The algorithm does effectively

estimate the phase rotated wavelet.
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(a) (b)

Figure 3.9: (a) The estimated minimum phase wavelet from the real data. (b) The
estimated mixed phase wavelet.

3.8 Summary

Minimum phase deconvolution enhances the bandwidth of the data. Since the mixed

phase wavelet and its corresponding minimum phase wavelet have the same ampli-

tude spectrum, minimum phase deconvolution effectively removes the amplitude

spectrum of the wavelet. This leaves the data requiring only a phase correction.

The required phase correction is attainable by means of a simple and short param-

eterization of the mixed phase wavelet. This is the main advantage of the pro-

posed algorithm. The optimization algorithm matches the 4th order cumulant of

the whitened data with the 4th order moment of the all-pass operator. This cu-

mulant matching technique works well when the bandwidth to central frequency

ratio in the data is greater than 1. The technique is most suitable when this ratio

is close to 2. The proposed technique separates the minimum phase part of the

wavelet from the data by deconvolving the data with an estimated minimum phase
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(a) (b) (c)

Figure 3.10: Real data example. (a) A window of the data. (b) Minimum phase
deconvolution of the data. (c) Mixed phase deconvolution of the data. Result of the
minimum phase deconvolution is illustrated here for a comparison with the result
obtained from the mixed phase deconvolution. The average fourth-order cumulant
is calculated over 77 traces and 200 time samples.

inverse. As a result, the deconvolved data contain only the phase signature of the

mixed phase wavelet. This also allows the cumulant matching technique to work

in a favorable regime of the bandwidth to central frequency ratio. The synthetic

data examples showed that Metropolis algorithm can be used quite effectively to

estimate the all-pass wavelet and hence the mixed phase wavelet. The chapter also

presented a comparison between wavelet estimation from the whitened data and

from unwhitened and severely bandlimited data. When the data were bandlimited,

the estimated mixed phase wavelet had a relatively poor correlation with the true

wavelet. Suitable parameterization of the wavelet and subsequent whitening of the

data improved the estimation of the mixed phase wavelet. The algorithm was also

tested on real data. A test with an artificial 900 phase rotation subsequently recov-

ered the correctly phase rotated wavelet.
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Figure 3.11: (a) The true 900 constant phase rotated wavelet. (b) The recovered
wavelet.



Chapter 4

Regularizations

4.1 Introduction

Inverse problems are classified into three categories depending on whether or not

the model can be uniquely determined. An even-determined problem is one where

the measured data provide enough information to uniquely determine the model.

The cost function containing the data misfit term alone will be zero for the uniquely

determined solution. An even-determined problem is rare. In practice, the measured

data are inadequate and contain noise, thus preventing any unique solution to the

problem. When the information contained in the data are inadequate to obtain a

unique solution, the inverse problem is classified as under-determined. Likewise, if

the information contained in the data are more than what is required to obtain a

unique solution then the problem is classified as the over-determined problem.

In problems where data do not contain enough information to uniquely estimate

the solution, it is necessary to incorporate prior knowledge about the model space

so as to constrain the solution to a meaningful regime. Incorporation of a priori

knowledge to constrain the cost function for a meaningful solution is termed as

”regularization”. One simple regularization is to constrain the length of the model

parameters.

J = eTe + µmTm, (4.1)

where the data misfit e = d − Gm and the model norm is given by mTm. The

trade-off parameter is given by µ. Larger trade-off parameter makes the model norm

dominant over the data misfit term and vice-versa. Following the least-squares min-
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imization procedure for the equation 4.1, we obtain

m̃ = (GTG + µI)−1GTd, (4.2)

where m̃ represents the estimated model. The solution is known as the ”damped

least-squares solution”. The minimum norm solution imposes a constraint in the

solution space such that the solution is clustered around zero. In many instances,

this is an undesirable effect. The minimum norm constraint can be easily modified

to include the a priori knowledge about the mean of the model. The following cost

function imposes a constraint on the model space such that the solution is favored

to cluster around the known average model.

J = eTe + µ(m− m̄)T (m− m̄), (4.3)

where m̄ represent the average model.

A smooth solution can be interpreted as a simple solution. Thus, in certain

circumstances it is desired that the solution be smooth. Smoothness constraint is

imposed on the model space by penalizing larger deviation among the adjacent model

parameters. A derivative operator when acts on the model imposes smoothness in

the solution. The following equation shows inclusion of smooth regularization term

in the cost function.

J = eTe + µ(D(m− m̄))TD(m− m̄). (4.4)

Equation 4.4 is usually represented in terms of an weighting matrix Wm as shown

in the following equation.

J = eTe + µ(m− m̄)TWm(m− m̄), (4.5)

where the weighting matrix Wm = DTD. Finite difference approximations of first

and second order derivative operators are given by

D1 =




1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1
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and

D2 =




1 −2 1 0

0 1 −2 1

0 0 1 −2

0 0 0 1




.

Minimization of the cost function given by the equation 4.4 results in the estimated

model m̃ given by

m̃ = (GTG + µDT
1 D1)

−1GTd. (4.6)

Regularizaton terms described above are quadratic functions. Hence, they pose

as linear problems. However, many situations require different a priori constraints

to be imposed. Certain a priori constraints are non-quadratic and hence result

in nonlinear inverse problems. In the following sections, I discus two important

nonquadratic regularization functions to impose (a) sparseness constraint and (b)

blockyness constraint in the model space.

4.1.1 Sparseness constraint

A sparse solution is characterized by a sequence of model parameters that has many

zeros and few non-zero values (Youzwishen, 2001). Figure 4.1 shows an example of

sparse solution.

A long-tailed prior probability distribution function with zero mean is a suitable

0 50 100
−0.5

0

1

Figure 4.1: An example of sparse solution.

probability function for imposing sparseness constraint on the solution. Two types

of prior probability distribution functions, namely, the exponential and the Cauchy

distribution functions are usually used to impose sparseness constraint in the model.

The exponential probability distribution function is given by
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PE(m) =
1

2σm

e−
1

σm
|mi−<m>|, (4.7)

where, PE(m) is the probability, σ2
m is the variance of the model parameters, mi is

the ith model parameter and < m > is the mean of the model vector. The Cauchy

probability distribution is given by

PC(m) =
1

(πσm)
[

1

1 + (mi−<m>)2

σ2
m

], (4.8)

where PC(m) is the probability, σ2
m is the variance of the model parameters, mi is

the ith model parameter and < m > is the mean of the model vector.

Figure 4.2 shows the probability distribution functions for the Gaussian, ex-

ponential and Cauchy distributions. It is noticed that compared to the Gaussian

distribution, the exponential and the Cauchy distribution functions offer greater

freedom for the non-zero values to deviate from zero. Also these distributions are

more tightly centered around zero. Such long-tailed distributions around zero are

suitable distribution functions for imposition of sparseness constraint on the solu-

tion.

Let m be the model, G be the forward operator, d be the observed data and n

be the noise vector. The linear problem is represented as

d = Gm + n, (4.9)

where m = [m1,m2, ...,mM ] are the model parameters, d = [d1, d2, ..., dN ] are the

observed data, n = [n1, n2, ..., nN ] are the noise and G the forward operator relating

the model with the data.

In the Bayesian framework, the posterior probability distribution is given by

P (m|d) = K[
M∏
i=1

1

1 + m2
i σ

2
m

]e−
1

2σ2 (Gm−d)T (Gm−d), (4.10)

where K is a constant and σ is the variance of the noise.

The cost function such that the posteriori distribution is maximized is given by

J(m) = (Gm− d)T (Gm− d) + µR(m), (4.11)
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Figure 4.2: The probability distribution functions.

where µ is the trade-off parameter and the regularization term R(m) is given by

R(m) =
M∑
i=1

ln(1 +
m2

i

σ2
m

). (4.12)

The cost function J is minimized by taking the derivative with respect to the model

parameter mi and equating to zero. The solution is given by the nonlinear equation

GTGm−GTd + µQm = 0, (4.13)

where Q is given by

Q =




1

1+
m2

1
σ2

m

0 . . . 0

0 1

1+
m2

2
σ2

m

. . . 0

...
...

. . .
...

0 0 . . . 1

1+
m2

M
σ2

m




.
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Equation 4.13 is solved by the method of Iterative Re-weighted Least-Squares (IRLS)

method. The estimated model is given by

m̃ = (GTG + µQ)−1GTd. (4.14)

The solution at the kth IRLS iteration is given by

m̃k = (GTG + µQk−1)
−1GTd. (4.15)

The iteration is terminated when the following condition is met (Sacchi, 1997)

|Jk − Jk−1|
(|Jk|+ |Jk−1|)/2 ≤ ε, (4.16)

where ε represents the user defined tolerance. In the next section, an example is

discussed where sparseness is imposed on the solution by including the Cauchy reg-

ularization function in the cost function.

4.1.2 Real data example

A zero-offset seismogram without noise is modeled as

dt = wt ∗ rt, (4.17)

where dt represents the recorded data at time t, wt represents the unknown wavelet

and rt represents the unknown reflectivity. The ’*’ represents the convolution oper-

ation. The aim of inversion is to recover rt from the measured data dt.

Since, earth acts as a filter to the propagating seismic waves, the recorded data

are bandlimited. Data contain no information about the high frequency and also

the low frequency components of underlying reflectivity series. Thus, estimation of

fullband reflectivity from data modeled as convolution of reflectivity and wavelet, is

a nonunique linear inversion process. The high frequency components lost due to

the filtering effects of the wavelet belong to the null space. Hence, to estimate infor-

mation about the fullband reflectivity requires regularization of the cost function so

that a parsimonious solution honoring the data is preferred during the optimization

process. The following cost function is optimized for estimation of reflectivity from

data.
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J = ‖(w ∗ r− d)‖2 + µR(r), (4.18)

where data are represented by d, r is the reflectivity model that needs to be estimated

and w is the unknown wavelet, R(r) represents the Cauchy regularization term and

µ is the trade-off parameter. The Cauchy regularization term, R(r) is given by the

equation 4.12. The cost function (equation 4.18) is minimized with a conjugate

gradient algorithm.

The sparse inversion algorithm is tested on an inline post-stack data from a 3D

survey. It is assumed that the data have been properly de-phased by deconvolution

with an estimated wavelet. The algorithm proceeds with estimating a zero phase

wavelet for each trace and deconvolving the trace with the estimated wavelet. Figure

4.3a shows data before sparse deconvolution. It is noticed that, due to the wavelet,

data lack high frequency components. Figure 4.3b shows the data after sparse

inversion. Sparse inversion has resulted in enhancing the resolution of the data.

Figure 4.4a shows the spectrum of data before sparse spike deconvolution. Figure

4.4b shows the spectrum of data after sparse spike deconvolution. On comparison,

it is noticed that the sparse spike inversion resulted in enhancing the bandwidth of

the data by restoring the high frequency components. Figure 4.5 shows a time slice

of the seismic cube. Figure 4.5a shows the time slice of the data before applying

the high frequency restoration algorithm. Figure 4.5b shows the same time slice

after applying the high frequency restoration algorithm. It is observed that there

is marked improvement in the spatial resolution in the data by incorporating the

sparseness constraint defined in terms of a Cauchy distribution.

4.2 Blockyness constraint

Blocky constraints are imposed in inversion algorithms where the a priori informa-

tion dictates that the solution should be piecewise constant. Such situations occur

in regions where geological formations have sharp boundaries resulting in edges in

the model. Blocky constraints have the effects of sharpening the image while pre-

serving the edges consistent with the a priori information.

Blocky solution will result when the first order derivative of the solution is sparse.

For example, the inversion for impedance (I) is blocky (I =
∫

i
ridi) since the reflec-
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Figure 4.3: (a) Data without high frequency restoration. (b) Data with high fre-
quency restoration obtained by sparse spike inversion.
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Figure 4.4: (a) Average amplitude spectrum without high frequency restoration. (b)
Average amplitude spectrum with high frequency restoration.
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Figure 4.5: (a) Time slice of a seismic volume without high frequency restoration.
(b) Time slice with high frequency restoration.

tivity (ri) is sparse. Due to the property that the blocky regularization preserves

the edges in the image, such regularization is also referred to as the Edge Preserving

Regularization (EPR) function. The EPR technique has been applied successfully to

obtain blocky solutions in the inversion of gravity data (Portniaguine and Zhdanov,

1999), magnetic resonance imaging (Charbonnier et al., 1997; Barone, 1999) and

radio astronomy (Molina et al., 2001).

As mentioned earlier, a function becomes piecewise constant or blocky if its first

order derivative is sparse. In the previous section, I discussed ways to enforce sparse-

ness in the solution. The same reasoning of sparseness constraint can be extended to

blockyness constrain provided that the regularization function enforcing sparseness

operates on the first order derivative of the model parameters.

Considering the Cauchy regularization function for the sparseness constraint and

operating it on the first order derivative of the model parameters, we obtain a form

of the cost function as follows

J(m) = (Gm− d)T (Gm− d) + µxR(Dxm) + µzR(Dzm), (4.19)



4.2 Blockyness constraint 81

where G is the forward operator, m is the model, d is the data and µx and µz are

the trade-off parameters applied to the regularization terms R(Dxm) and R(Dzm)

respectively. The subscripts in the trade-off parameters denote the direction in

which the regularization terms are applied on a two dimensional model space. The

horizontal and vertical derivative operators are denoted by the matrix Dx and Dz

respectively. The elements in the derivative operator matrices Dx and Dz are given

by the following equations

(Dxm)ij =
mi+1,j −mi,j

δ
,

(Dzm)ij =
mi,j+1 −mi,j

δ
. (4.20)

The two dimensional model space encompasses a matrix of size Mx by Mz. The

indices i = 1, 2, ..., Mx and j = 1, 2, ..., Mz define the position of the derivative

operators in the derivative matrices. The regularization function operating on the

model derivative results in the enforcement of blocky solution in the inversion algo-

rithm. The Cauchy regularization function applied to the first order model param-

eter derivative is given by

R(Dxm) =
Mx∗Mz∑

i=1

φ([Dxm]i),

R(Dzm) =
Mx∗Mz∑

i=1

φ([Dzm]i). (4.21)

For a modified Cauchy prior distribution the function φ(t) is defined as

φ(t) =
t2

1 + t2
. (4.22)

In the following chapters, I am applying the edge preserving regularization (EPR)

function to estimate the subsurface earth elastic parameters (Vp, Vs and ρ) from

the amplitude variation with offset (AVO) data. I have approached the problem of

simultaneous estimation of the earth elastic parameters such as the P-wave velocity,

S-wave velocity and the density from two different perspectives, (a) estimation is

obtained from the angle-dependent reflectivity calculated from the Aki and Richards

approximation equation and (b) estimation is obtained by the waveform inversion
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of seismic data exhibiting AVO. The first approach involves linearized inversion

with nonlinear conjugate gradient (NLCG) optimization algorithm and the second

approach is based on global optimization algorithm where the blockyness in the

solution is enforced through a new technique of model preconditioning operators.

4.3 Summary

In this chapter, I discussed regularization in inverse problems. When the problem

is ill-posed, there exists no unique solution to the inverse problem. A meaningful

solution can be obtained by incorporating a priori information to the optimiza-

tion algorithm. I discussed commonly used quadratic regularization such as the

model norm and smoothing regularization. When the a priori information dic-

tates parsimony in the solution space, the sparseness regularization function is used.

Sparseness regularization function is nonquadratic which lead to nonlinear problem.

Such problems are solved iteratively. I discussed an example to recover the high

frequency components in the seismic data lost due to the bandlimited wavelet. The

example showed an iterative solution with conjugate gradient solver with the cost

function containing the data misfit term and Cauchy regularization term to enforce

sparseness in the solution. I also discussed blockyness constraint with the Cauchy

regularization function acting on the first order derivative of the model. Application

of blockyness constraint in the estimation of the earth elastic parameters from AVO

data using a linearized optimization approach is presented in the next chapter.



Chapter 5

Local Optimization: Application

to AVO Inversion

5.1 Introduction

In the last chapters, I reviewed the theory of optimization procedures as applied in

highly complex situations. By highly complex, I mean that the model dimension is

large and the model and data are related in a rather complex form. In this chapter,

I will discuss optimization procedure for inversion of petrophysical properties from

seismic data exhibiting amplitude variation with offset (AVO). I will present an op-

timization routine based upon nonlinear conjugate gradient algorithm with a cost

function that includes data misfit and edge preserving regularization function.

Inversion of prestack amplitude to derive AVO attributes is an important seis-

mic data analysis procedure. AVO attributes include petrophysical properties of

the underlying reservoir. In exploration seismic methods, most of the information

is carried by the compressional (P-) and shear (S-) waves. As opposed to the sur-

face waves, such as the Love and Rayleigh waves, the P- and the S- waves travel

in the interior of the earth and thus carry information about the deeper structures

that help in understanding the underlying reservoir characteristics. In case of com-

pressional or P-waves, the particle motion is along the direction of motion of the

propagating wave. While the wave is in motion, the particle volume changes due to

the compressional stress. In case of shear waves, the particle motion is perpendicular

to the direction of the wave propagation. P-wave velocities vary within a very wide

range because they depend on a large number of physical parameters such as pore
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pressure, fluid saturation and porosity etc. Thus, knowledge about P-wave velocity

alone is not sufficient to obtain accurate estimation about the petrophysical proper-

ties of the underlying earth structures. The S-wave velocity information is used to

substantiate the information gained from the P-wave velocities. Knowledge about

P-wave and S-wave velocities together provide information about the Poisson’s ratio.

Estimation of elastic parameters from the reflection seismic data showing variation

of amplitude with offset/angle is known as AVO/AVA inversion. Estimation of the

elastic parameters/ rock properties from the reflected and transmitted seismic waves

that carry the signatures of the angle dependent reflectivities have been studied in

great details. The earliest works in this field are attributed to Knott (1899). Wang

(1999) used the Zoeppritz equations, a set of four equations derived by Zoeppritz

(1919) to compute the amplitudes of reflected and transmitted waves, to estimate

the reflection and transmission coefficients from tomographic inversion. However,

the relationship between the rock properties and the angle dependent reflection co-

efficients as established by the Zoeppritz equations is complex and nonlinear. Such

complexity makes the inversion of elastic parameters a rather difficult task. Koefoed

(1955) predicted a relationship between the angle dependent reflection coefficients

and the elastic parameters that can be inverted to obtain the unknown elastic pa-

rameters. Subsequently, the works of Bortfeld (1961), Aki and Richards (1980),

Shuey (1985), Fatti et al. (1994), Wang (1999) resulted in several approximation

equations of the Zoeppritz equations. The underlying assumptions in obtaining the

approximations to Zoeppritz equations are (Rüger, 2002)

1. The difference between the P-, S- wave velocities and density across the re-

flecting boundary is small.

2. The angle of incidence of the impinging seismic wave is much smaller than

the critical angle.

Among all the approximations, the Aki and Richards approximation equation

for the PP reflection coefficient is most widely used. In the following section, I will

discuss Zoeppritz equations and their various approximations with special emphasis

on the Aki and Richards approximation equation. I give special attention to Aki

and Richards approximation equation because the forward model, used in the local

optimization scheme that I describe in the following sections, is based on this ap-

proximation.
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5.2 Zoeppritz equations and approximation

The reflected and transmitted P- and S-wave components of a non-normal incident

P-wave are given by the Zoeppritz equations. The derivation of Zoeppritz equations

is obtained by following the approach of Officer (1958) for a simple 2D medium

with an elastic half-space underlying an accoustic layer. Figure 5.1 shows the 2D

earth model. Following the derivation proposed by Officer (1958), I define the com-

pressional and shear wave potentials in terms of the displacement vector u(u,w) as

follows

Medium 2

P−wave

P−wave

S−wave

S−wave

P−wave

ψ1

0

ϕ1

ψ2

ϕ2

ϕ

Medium 1

Figure 5.1: A 2D earth model separating two different media. The angle of incidence
for P-wave is given by φ0, the angle of reflection for P-wave and S-wave are φ1

and ψ1 respectively. The angle of refraction for P-wave and S-wave are φ2 and ψ2

respectively.

u =
∂φP

∂x
+

∂φS

∂z
,

w =
∂φP

∂z
− ∂φS

∂z
, (5.1)
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where the compressional wave and shear wave potentials are given by φP and φS

respectively. It can be shown that the potentials defined as above satisfy the com-

pressional and shear wave equations shown below.

∂2φP

∂x2
+

∂2φP

∂z2
=

1

V 2
p

∂φP

∂t2
,

∂2φS

∂x2
+

∂2φS

∂z2
=

1

V 2
s

∂φS

∂t2
, (5.2)

where Vp and Vs are the P-wave and S-wave velocities respectively. The plane wave

solutions of the two displacement potentials namely, φ and ψ, in the cartesian coor-

dinate system of (x,z) are given by the following equations.

φ1 = A0e
i ω

Vp1
sin φ0x+i ω

Vp1
cos φ0z−iωt

+ A
i ω

Vp1
sin φ1x+i ω

Vp1
cos φ1z−iωt

1 ,

ψ1 = B1e
i ω

Vs1
sin ψ1x−i ω

Vs1
cos ψ1z−iωt

,

φ2 = A2e
i ω

Vp2
sin φ2x+i ω

Vp2
cos φ2z−iωt

,

ψ2 = B2e
i ω

Vs2
sin ψ2x−i ω

Vs2
cos ψ2z−iωt

, (5.3)

where A0, A1, B1, A2 and B2 are the wave amplitudes for the incident P-wave,

reflected P-wave, reflected S-wave, transmitted P-wave and transmitted S-wave re-

spectively. The P-wave and S-wave velocities for the medium-1 are given by Vp1 and

Vs1 respectively. The P-wave and S-wave velocities for the medium-2 are given by

Vp2 and Vs2 respectively. The P-wave incident, reflected and transmitted angles are

given by φ0, φ1 and φ2 respectively. The S-wave reflected and transmitted angles

are given by ψ1 and ψ2 respectively.

At the layer boundary z = 0, the following four boundary conditions are satisfied.

1. Tangential displacement component is continuous across the boundary [u1 =

u2].

2. Normal displacement component is continuous across the boundary [w1 = w2].

3. Normal stress component is continuous across the boundary [(Pzz)1 = (Pzz)2].
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4. Tangential stress component is continuous across the boundary [(Pxz)1 =

(Pxz)2].

Considering the first boundary condition, we obtain

∂φ1

∂x
+

∂ψ1

∂z
=

∂φ2

∂x
+

∂ψ2

∂z
. (5.4)

Differentiating the displacement potentials φ and ψ with respect to x and z and

using Snell’s law we obtain,

sin φ1

Vp1

A0 +
sin φ1

Vp1

A1 − cos ψ1

Vs1

B1 =
sin φ2

Vp2

A2 +
cos ψ2

Vs2

B2. (5.5)

This is the first Zoeppritz equation.

Similarly, by imposing the second boundary condition and using the Snell’s law

we obtain,

cos φ1

Vp1

A0 − cos φ1

Vp1

A1 − sin ψ1

Vs1

B1 =
cos φ2

Vp2

A2 − sin ψ2

Vs2

B2. (5.6)

This is the second Zoeppritz equation.

In order to impose the third boundary condition, we need to obtain an expression

for the normal stress (Pzz) in terms of the displacement potentials φ and ψ. We know

that,

Pzz = λ∆ + 2µezz, (5.7)

where λ and µ are the Lame’s constants and ∆ represents the dilatation or the

fractional change in volume. The normal strain is represented by ezz. When the

volume becomes infinitesimally small, the dilataion (∆) is given by the sum of the

three principal strain components (exx, eyy and ezz). In the xz-plane, eyy = 0. Thus,

∆ = exx + ezz,

=
∂u

∂x
+

∂w

∂z
. (5.8)

Substituting the expressions for ∆ and ezz in the expression for Pzz and rearranging

the terms,
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Pzz = (λ + 2µ)
∂w

∂z
+ λ

∂u

∂x
. (5.9)

Replacing the displacement potentials u and w by the compressional and shear wave

potentials φ and ψ respectively and taking the spatial derivatives and rearranging

the terms we obtain,

Pzz = (λ + 2µ)(
∂2φ

∂x2
+

∂2φ

∂z2
)− 2µ(

∂2φ

∂x2
+

∂2ψ

∂z∂x
). (5.10)

Substituting the expressions for the compressional wave equation and the S-wave

velocity in terms of µ and density ρ and rearranging the terms we obtain,

Pzz = ρ
∂2φ

∂t2
− 2ρV 2

s (
∂2φ

∂x2
+

∂2ψ

∂z∂x
). (5.11)

As per the third boundary condition, (Pzz)1 = (Pzz)2. Thus,

ρ1
∂2φ1

∂t2
− 2ρ1V

2
s1

(
∂2φ1

∂x2
+

∂2ψ1

∂z∂x
) = ρ2

∂2φ2

∂t2
− 2ρ2V

2
s2

(
∂2φ2

∂x2
+

∂2ψ2

∂z∂x
). (5.12)

Differentiating the compressional and shear wave potentials φ and ψ and substitut-

ing in the above equation for z = 0, after rearrangement of terms we obtain,

C1A0 + C1A1 + sin 2ψ1B1 =
ρ2

ρ1

C2A2 − ρ2

ρ1

sin 2ψ2B2, (5.13)

where C1 = (1 − 2
V 2

s1

V 2
p1

sin2 φ1) and C2 = (1 − 2
V 2

s2

V 2
p2

sin2 φ2). Using Snell’s law, we

reformat the above equation as follows.

− cos 2ψ1A0 − cos 2ψ1A1 − sin 2ψ1B1 = −ρ2

ρ1

cos 2ψ2A2 +
ρ2

ρ1

sin 2ψ2B2. (5.14)

This is the third Zoeppritz equation.

It can be shown that the shear stress component Pxz is related to the shear strain

exz by the following relation

Pxz = 2µexz,

= µ(
∂w

∂x
+

∂u

∂z
). (5.15)

Substituting the compressional- and shear- wave potentials φ and ψ in place of the

displacement potentials u and w and taking the spatial derivatives and rearranging
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the terms we obtain,

Pxz = µ(2
∂2φ

∂z∂x
+

∂ψ

∂z2
− ∂2ψ

∂x2
). (5.16)

Thus, using the fourth boundary condition (Pxz)1 = (Pxz)2, we obtain,

µ1(2
∂2φ1

∂z∂x
+

∂ψ1

∂z2
− ∂2ψ1

∂x2
) = µ2(2

∂2φ2

∂z∂x
+

∂ψ2

∂z2
− ∂2ψ2

∂x2
). (5.17)

Differentiating the wave potentials φ and ψ and rearranging the terms for z = 0, we

obtain,

− µ1

V 2
p1

sin 2φ1A0 +
µ1

V 2
p1

sin 2φ1A1 − µ1

V2
s1

C3B1 = − µ2

V 2
p2

sin 2φ2A2 − µ2

V2
s2

C4B2, (5.18)

where C3 = (cos2 ψ1 − sin2 ψ1) and C4 = (cos2 ψ2 − sin2 ψ2). Substituting the ex-

pression for the S-wave velocity in terms of µ and density ρ, we obtain,

− sin 2φ1A0 + sin 2φ1A1 −
V 2

p1

V 2
s1

cos 2ψ1B1 = −ρ2V
2
s2

V 2
p1

ρ1V 2
s1

V 2
p2

sin 2φ2A2 −
ρ2V

2
p1

ρ1V 2
s1

cos 2ψ2B2.

(5.19)

This is the fourth Zoeppritz equation. In the matrix form, for a normalized incident

P-wave amplitude A0 = 1, Zoeppritz equations can be written as

ZX = Y, (5.20)

where

Z =




cos φ1
Vp1

Vs1
sin ψ1

Vp1

Vp2
cos φ2 −Vp1

Vs2
sin ψ2

− sin φ1
Vp1

Vs1
cos ψ1

Vp1

Vp2
sin φ2

Vp1

Vs2
cos ψ2

− cos 2ψ1 − sin 2ψ1
ρ2

ρ1
cos 2ψ2 −ρ2

ρ1
sin 2ψ2

sin 2φ2 −V 2
p1

V 2
s1

cos 2ψ1
ρ2V 2

s2
V 2

p1

ρ1V 2
s1

V 2
p2

sin 2φ2
ρ2V 2

p1

ρ1V 2
s1

cos 2ψ2




,

X =




A1

B1

A2

B2




,
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Y =




cos φ1

sin φ1

cos 2ψ1

sin 2φ1




.

Due to the complex relationship between the rock elastic parameters such as

the P-wave velocity (Vp), S-wave velocity (Vs) and density (ρ), inversion of these

parameters from Zoeppritz equations is nearly impossible. In order to alleviate such

problems, approximate equations to the above set of equations for the P̀ Ṕ reflection

coefficients are suggested (Bortfeld, 1961; Aki and Richards, 1980), where incident

and reflected P-waves are represented as P̀ and Ṕ respectively. The following equa-

tion represents approximation proposed by Bortfeld (1961) for the P̀ Ṕ reflection

amplitude.

R(φ2) =
1

2
ln(

Vp2ρ2 cos φ2

Vp1ρ1 cos φ1

) + (2 +
ln(ρ2

ρ1
)

ln(
Vp2

Vp1
)− ln(

Vp2Vs1

Vp1Vs2
)
)
V 2

s1
− V 2

s2

V 2
p1

sin2 φ1. (5.21)

Bortfeld equation, though much simpler compared to the Zoeppritz equations, does

not provide direct relationship between angle or offset and the dependent P̀ Ṕ re-

flectivity. Thus it provides little help in AVO analysis. Aki and Richards (1980)

provided an approximation equation for the P̀ Ṕ reflection coefficient which found

immediate application in AVO analysis. The Aki and Richards approximation equa-

tion is given by the following equation.

R(θ) = [
1

2
(1 + tan2 θ)]

∆Vp

Vp

− [4
V 2

s

V 2
p

sin2 θ]
∆Vs

Vs

+ [
1

2
(1− 4

V 2
s

V 2
p

sin2 θ)]
∆ρ

ρ
, (5.22)

where

Vp =
Vp1+Vp2

2

Vs =
Vs1+Vs2

2

ρ = ρ1+ρ2

2

θ = φ1+φ2

2

∆Vp = Vp1 − Vp2

∆Vs = Vs1 − Vs2

∆ρ = ρ1 − ρ2.
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The approximation equations 5.21 and 5.22 are accurate enough within the range

of angles that are ordinarily achieved in seismic reflection data acquisition survey.

I am using Aki and Richards approximation equation in the forward model to

estimate the earth elastic parameters from AVO data using a nonlinear conjugate

gradient optimization approach.

5.3 Local optimization for earth elastic parame-

ters from AVO data

As discussed in the previous sections, the earth elastic parameters such as Vp, Vs

and ρ are related to the P̀ Ṕ angle dependent reflectivity through the Zoeppritz

equations. The Aki and Richards equation is used in place of the Zoeppritz equa-

tions because of their relative simplicity and acceptable accuracy within the data

acquisition aperture. I have used Aki and Richards approximation equation in the

forward model to perform the inversion for the earth elastic parameters such as the

P-wave velocity (Vp), S-wave velocity (Vs) and the density (ρ). I perform optimiza-

tion with (a) cost function containing the data misfit and (b) with a cost function

containing data misfit along with an edge preserving regularization function to en-

sure that the solution is stepwise smooth or in other words blocky, representing the

layer boundaries. The later approach helps in reducing the inherent nonuniqueness

in the problem by restricting the solution space to blocky models.

5.3.1 Model space

The unknowns in the inversion of the earth elastic parameters for different subsur-

face layers are the P-wave and S-wave velocity, density and the thickness of the

individual layers. For a zero offset seismic section, the thickness of the individual

layer is related to the P-wave velocity and the vertical travel time of the seismic

wave within the layer. For unknown layer thicknesses the vertical travel time is

also unknown. We have over-parameterized the model space (Sen and Stoffa, 1991)

by incorporating a large number of pseudo-layers such that the seismic travel time

within each of the pseudo-layer is constant. I expect that when the convergence is

achieved, the layers where there is no reflection event would coalesce together.
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In the following synthetic data example, the true model space consists of 3 layers.

By following the over-parameterization approach, the 3 layer model is represented in

terms of 29 microlayers over a half-space. Each microlayer has a constant two-way

time. Thus, the model space for inversion is represented in the matrix form as follows

Vp =




Vp1

Vp2

Vp3

...

Vpn




, Vs =




Vs1

Vs2

Vs3

...

Vsn




, ρ =




ρ1

ρ2

ρ3

...

ρn




, (5.23)

where n represents the number of predefined microlayers in the model space (in

this example, n = 30). Local optimization techniques do not require bounds in the

model space as they always converge to the nearest local minimum with respect

to the initial model. Thus a more judiciously chosen initial model is important

so that the convergence of the local optimization technique will lead to a solution

as close as possible to the global minimum. With this in mind, I have chosen an

initial model within a bound of ±15% for Vp and ρ and ±60% for Vs with respect

to the true model values. The bounds are chosen in such a way that there exists

sufficient overlapping at the layer boundaries. This way, though I include a bound

for the initial model, I do not provide the a priori information about the true layer

boundaries to the local optimization algorithm. Figure 5.2 shows the true model

with upper and lower bounds within which the initial model is selected.

5.3.2 Forward model

An inversion procedure requires a forward operator to generate synthetic data. I

have used the ray-tracing based forward operator to compute the simulated NMO

corrected seismic data. I have assumed horizontal subsurface layers of contrasting

elastic parameters to compute the forward model.

The source-receiver travel path is calculated for a stack of horizontal layers by

using the Snell’s law and ray shooting approach (Shearer, 1999). The source point

is used to shoot rays with increasing angle till the ray, after undergoing several

reflections and refractions at the layer interfaces, reaches the receiver at a given

location. The angles of incidence of the ray that reaches a receiver at a given offset
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Figure 5.2: The true model, upper and lower bounds for (a) P-wave velocity (b)
S-wave velocity and (c) density for the 3 layers. The black line indicates the true
model and the red line indicates the upper and lower bounds within which the initial
model is chosen.

is recorded. The incidence and the transmission angles of the ray is used to compute

the angle-dependent P̀ Ṕ reflection coefficients from the Aki and Richards approx-

imation equation for the stack of layers under consideration. Figure 5.3 shows the

ray-tracing method for horizontally stratified earth layers. The reflectors are posi-

tioned at the two-way travel time in the corresponding locations of the time-offset

axes. The amplitudes of the reflection are computed from the Aki and Richards

approximation equation and subsequently convolved with a known wavelet (in the

examples, I have used a Ricker wavelet with a central frequency of 15 Hz) to gener-

ate synthetic NMO corrected seismic gather. Algorithm 5.1 provides a pseudo-code

to compute ray-tracing based forward model. In the pseudo-code, total number of

subsurface layers and total number of offsets are given by nlayer and noff respec-

tively.
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Figure 5.3: The ray-tracing method for horizontally stratified earth layers. The
angles φ11 and φ21 represent the angle of incidence/reflection and angle of transmis-
sion at the first interface respectively. The angles φ12 and φ22 represent the angle of
incidence/reflection and angle of transmission at the second interface respectively.
The position of receivers are marked as g1, . . ., g(n−2), g(n−1) and gn.

I studied the local optimization problem in two different scenarios, (a) the cost

function does not contain any a priori information and (b) the cost function is sup-

plemented with the a priori information that the solution be blocky.



5.3 Local optimization for earth elastic parameters from AVO data 95

Algorithm 5.1 Pseudo-code for ray-tracing forward model

Set i ← 0; k ← 0;
while i ≤ nlayer do

while k ≤ noff do
Compute incidence and transmission angles at layer interfaces;
Compute angle dependent reflectivities from Aki-Richards equation;
Set i ← i + 1, k ← k + 1;

end while
end while
Position angle dependent reflectivities at zero-offset times;
Convolve reflectivities with a known wavelet.

5.3.3 Optimization with Nonlinear Conjugate Gradients

The earth elastic parameters (Vp, Vs and ρ) are nonlinearly related to the data

through the Aki and Richards approximation equation. The nonlinearity in the

model-data relationship stems from the fact that the unknown model parameters

are required to compute the angle-dependent reflectivities using the Snell’s law. I

approach the problem of solving the nonlinear equations with the help of nonlinear

conjugate gradient (NLCG) technique. I have followed the Polak-Ribiere approach

to update the conjugate direction. The method of NLCG is described in chapter 2.

Success of nonlinear conjugate gradient optimization depends a great deal on the

line minimization technique. I have followed the bracketing of the minimum point

followed by Brent’s parabolic approximation technique to obtain the line minimiza-

tion (Press et al., 2001) in every NLCG iteration.

In the first approach, I have minimized the data misfit term without incorpo-

rating any a priori information about the model. The following cost function was

minimized by the NLCG method.

J =

Noff∑
i=1

Nt∑
j=1

|d(xi, tj)
obs − d(xi, tj)

est|2, (5.24)

where J is the cost function for the data misfit between the observed and estimated

data at the offset xi and time tj. Data are generated by the ray tracing approach

based on Aki and Richards approximation equation. Figure 5.4 shows the true model

profiles for Vp, Vs and ρ and true data corresponding to the true model. True data

contain no noise.

Figure 5.5 shows the initial model which is required as the starting model for
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Figure 5.4: True model profiles for (a) Vp, (b) Vs, and (c) ρ. (d) True data
corresponding to the true model.

the nonlinear conjugate gradient optimization. The red lines show the upper and

lower bounds, the blue line shows the true model and the black line shows the initial

model. Data computed from the initial model is shown alongside. As observed in

the data domain, the initial model is not close to the global minimum which occurs

at the true model. Since, the data contain no noise, it is expected that at the global

minimum the data misfit should be zero.

I have performed 40 NLCG iterations. The CPU time consumed to perform

the 40 NLCG iterations was equal to 0.6717 hours. A 3.2 GHz Pentium 4 machine

was used for the computations. Figure 5.6 shows the estimated model (black line)

and the true model (blue line). Data computed for the estimated model is shown
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Figure 5.5: Initial model profiles (black line) for (a) Vp (b) Vs and (c) ρ are shown
superimposed on the true model profiles (blue lines). The red lines show the upper
and lower bounds for the individual models. (d) Synthetic data corresponding to
the initial model. Data contain no noise.

alongside. Figure 5.7 shows the convergence curve for the NLCG optimization when

the cost function contains only the data misfit term.

We observe that the NLCG optimization algorithm converged to a solution that

honors the data well. However, the estimated model is far from the true model be-

cause the estimated model does not show blocky characteristics of the true model.

This is due to the inherent nonuniqueness problem in inversion. The problem of

nonuniqueness lies in the null space belonging to the model domain. The null space

can be reduced by incorporating a priori constraints. For the inversion of earth elas-

tic parameters from the AVO data, the a priori constraints can be either smooth or
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Figure 5.6: Estimated model profiles (black line) for (a) Vp (b) Vs and (c) ρ are
shown superimposed on the true model profiles (blue lines). (d) Estimated data
corresponding to the estimated model.

blocky model solutions. Since, a reflection in the data domain signifies a contrast in

the elastic behavior of the subsurface layer, it makes better sense to assume that the

model profile be blocky, thus suggesting sparse reflectivity. I include the blocky a

priori constraint to the cost function given by the equation 5.24 and optimize for the

estimated model using NLCG optimizer scheme as discussed above. As discussed in

chapter 4, a function becomes blocky or piecewise constant if the first order deriva-

tive of the function is sparse. I am applying the Cauchy prior distribution function

on the first order derivative of the model to impose blockyness in the estimated
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Figure 5.7: The convergence curve for the NLCG optimization. The cost function
contains only the data misfit term.

model. The cost function is shown in the equation below.

J =

Noff∑
i=1

Nt∑
j=1

|d(xi, tj)
obs − d(xi, tj)

est|2 + µR(Dm), (5.25)

where the edge preserving Cauchy regularization function is given by R. As men-

tioned earlier, a model is piecewise constant when the first order derivative of the

model is sparse. Thus, by applying Cauchy prior distribution function (it is dis-

cussed in chapter 4 that a Cauchy prior distribution function imposes sparseness

on the solution) on the scaled first order derivative of the model vector, blockyness

constraint is imposed on the estimated model. The Cauchy edge preserving regu-

larization function is given as below.

R(Dm) =
∑

i

ln(1 + (
Dmi

δ
)2), (5.26)

where Dmi = (mi+1−mi) and δ is a scaling factor applied to the first order deriva-

tive operator. Thus, the edge preserving Cauchy regularization function has two
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hyperparameters namely, µ and δ. Details about the edge preserving regularization

function is described in chapter 4.

I started the NLCG optimization for both cases (with and without the blocky

constraint in the cost function) from the same initial model. Figure 5.8 shows the

true and estimated model for Vp, Vs and ρ. The blue line shows the true model

and the black line shows the estimated model. There are 40 forward model evalu-

ations. The CPU time consumed to perform the 40 NLCG iterations was equal to

0.6770 hours in a Pentium 4, 3.2 GHz machine. The estimated data corresponding

to the estimated model is shown alongside. It is observed that the incorporation

of the Cauchy edge preserving regularization term in the cost function has guided

the NLCG optimization to a blocky solution that is consistent with the a priori

information and also honors the data. Figure 5.9 shows the convergence curve for

the NLCG optimization when the cost function contains both the data misfit and

the Cauchy edge preserving regularization function.

Nonlinearity in the problem is greatly reduced when the data are NMO cor-

rected and contain no multiples. Thus, the cost function is nearly quadratic. This

argument is well substantiated by the fact that the NLCG optimizer could effectively

estimate the model that honors the data and satisfy the a priori information. In

the subsequent discussion, I will enhance the degree of nonlinearity in the problem

by including multiples in non-NMO corrected data. In the examples shown below, I

have chosen to use the reflectivity method (Fuchs and Muller, 1971) as the forward

model to generate synthetic data from a given model. Figure 5.10 shows the true

model and true data generated with the reflectivity method. Data contain no other

noise but multiples.

I have used the same upper and lower bounds as the previous example to choose

the initial model for the NLCG optimization. Figure 5.11 shows the initial model

(black line) superimposed on the true model (blue line) along with the upper and

lower bounds (red line). The data generated with the reflectivity method using the

initial model is shown alongside.

Figure 5.12 shows the estimated model after 15 NLCG iterations. The total

CPU time to perform 15 NLCG iterations with 90 unknown model parameters is 29

hours on a 3.2 GHz (Pentium 4) machine. Figure 5.13 shows the progress of NLCG

optimization at each iteration.

It is evident from the Figures 5.12 and 5.13 that when the degree of nonlinear-

ity in the problem is large, the cost function exhibits highly undulating topology.
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Figure 5.8: Estimated model profiles (black line) for (a) Vp (b) Vs and (c) ρ are
shown superimposed on the true model profiles (blue lines). (d) Estimated data
corresponding to the estimated model.

In such situations the NLCG optimization converged to the nearest local minimum

corresponding to the initial model. In the example shown, the nearest local mini-

mum is too far from the global minimum. Hence, the solution obtained with NLCG

optimizer is erroneous. In the next chapter, I am solving the highly nonlinear prob-

lem with global optimization scheme. The a priori information that the solution

be blocky is included in the second stage of the global optimization scheme. A new

hybrid global optimization algorithm is presented in the next chapter.
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Figure 5.9: The convergence curve for the NLCG optimization. The cost func-
tion contains both the data misfit and the Cauchy edge preserving regularization
function.

5.4 Summary

In this chapter, I discussed estimation of the earth elastic parameters from ampli-

tude variation with offset data. In the first part, I approached the problem with

ray-tracing based forward operator. The simulated NMO corrected data contained

no multiples. Hence the inverse problem is weakly nonlinear. I estimated the model

parameters using nonlinear conjugate gradient optimizer. The use of Cauchy regu-

larization term on the first order derivative of the model vector resulted in blocky

solution that not only honored the data but also consistent with the a priori infor-

mation. In the second part, I increased the degree of nonlinearity in the cost function

by replacing the ray-tracing based forward operator with the reflectivity method.

The cost function showed a greater degree of nonlinearity as the non-NMO corrected

data contained multiples. I showed that the nonlinear conjugate gradient algorithm

failed to recover the model as the convergence got stuck in the local minimum close

to the initial model. Estimation of model parameters in such situation requires the

global optimization techniques. In the next chapter, I show that the model param-
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Figure 5.10: The true model for (a) Vp, (b) Vs, (c) ρ considered for the NLCG
optimization with the reflectivity forward model. (d) Synthetic data generated with
the reflectivity forward model. Data contain multiples and no other noise.

eters are effectively estimated in highly complex and nonlinear problems by using

global optimization schemes.
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Figure 5.11: The initial model (a) Vp, (b) Vs, (c) ρ and (d) data corresponding
to the initial model. The true model is shown in blue line. The upper and lower
bounds are shown in red lines and the initial model is shown in black line.
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Figure 5.12: The estimated model (a) Vp, (b) Vs, (c) ρ and (d) data corresponding
to the estimated model. The true model is shown in blue line and the estimated
model in black line.
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Figure 5.13: The convergence curve for the NLCG optimization. The cost function
contains only the data misfit term.



Chapter 6

Global Optimization: Application

to AVO Inversion1

6.1 Introduction

In geophysical inverse problems, generally data and model are nonlinearly related.

A cost function that measures misfit between observed data and predicted data is

minimized to estimate the unknown model parameters. Since the operator relating

the model and data is often complex and nonlinear, the cost function is likely to

have more than one local minimum. Moreover, local minima are also caused by

the nonuniqueness of the model and incompleteness of data. In such cases, the

linearized inversion approach usually fails to reach the global minimum and hence

yields incorrect solutions. In absence of sufficient a priori information, better results

are obtained through global optimization techniques. Monte Carlo optimization is

a global optimization method that generates and accepts models that provide a

good match in the data space while satisfying the imposed a priori constraints.

Press (1968) applied Monte Carlo based inversion to estimate the subsurface elas-

tic parameters from seismological observations and physical parameters such as the

mass and moment of inertia of the Earth. Wiggins (1969) applied the Monte-Carlo

technique to estimate the upper mantle P-wave velocity from travel time and epicen-

tral distances of the earthquakes. Jin and Madariaga (1994) used the Monte Carlo

method to estimate the high frequency velocity variations for the background veloc-

ity distribution. The main criticism associated with the Monte Carlo optimization

1Misra, S. and Sacchi, M. D., 2008, Global optimization with model space preconditioning:
Application to AVO inversion, Geophysics, 73, R71-R82.
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technique is that the method is computationally very expensive. This is because

the algorithm has to apply the forward modeling operator at every random gener-

ation of the model parameters. In order to overcome this problem, various other

stochastic optimization strategies such as the genetic algorithm and the simulated

annealing have been proposed. Genetic algorithms mimic the process of evolution

with the hope that the models obtained in later generations are better candidates

compared to the previous generations (Holland, 1975). Simulated annealing simu-

lates the process of crystallization in a solid. Simulated annealing, with many of

its variants such as the Metropolis sampling (Metropolis et al., 1953; Kirkpatrick

et al., 1983), fast simulated annealing (Szu and Hartley, 1987), very fast simulated

annealing (Ingber, 1989) have been effectively used in various optimization appli-

cations. Simulated annealing has been extensively applied in geophysical inversion

problems (Sen and Stoffa, 1991; Mosegaard and Vestergaard, 1991; Vestergaard and

Mosegaard, 1991; Velis and Ulrych, 1996; Ma, 2001; Ma, 2002; Misra and Sacchi,

2007a). Recently, Varela et al. (2006) applied the simulated annealing optimization

scheme to estimate the one-dimensional subsurface layer parameters from prestack

seismic data while incorporating smoothness constraints on the cost function.

I present a hybrid optimization technique with very fast simulated annealing.

The optimization technique modifies the classical very fast simulated annealing

technique at two stages, namely, (a) the generation of model parameters and (b)

the acceptance-rejection criteria. The optimization scheme is complimented with a

model preconditioner that favors blocky models. I use an edge preserving smoothing

(EPS) operator (AlBinHassan et al., 2006) to precondition the model space. The

algorithm is applied to the inversion of P-wave velocity, S-wave velocity and density

from prestack seismic data showing amplitude variation with offset. I chose such an

application because the a priori information suggests that the estimated model be

blocky.

The chapter is broadly divided into two major sections. In the first section, I dis-

cuss the methodology involved in the optimization scheme. In the second section, I

discuss the application of the algorithm to the inversion for earth elastic parameters

from prestack amplitude variation with offset data. As a test of the feasibility of

the algorithm in real data situations, the algorithm is applied to well log simulated

data. It is observed that, within a reasonable search bound, the algorithm success-

fully estimates the well log data from the simulated seismic section.
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6.2 Global optimization with SA and VFSA

In this section, I recapitulate the global optimization techniques, namely, the sim-

ulated annealing (SA) and the very fast simulated annealing (VFSA) optimization

algorithms that I am using in the optimization of earth elastic parameters. Readers

familiar with SA and VFSA may skip this section and go directly to the section

entitled ” VFSA aided with the EPS operators”.

Simulated annealing is an optimization procedure that simulates the process of

thermodynamic annealing of solids. As the temperature of a solid is lowered, the

chaotic motions of the molecules gradually become more organized and with a very

slow cooling rate a crystal is formed at a very low temperature. This state cor-

responds to the global minimum energy state of the solid. In simulated annealing

based optimization method, an initial model is generated within a pre-defined upper

and lower bound. A forward operator is applied on the model and predicted data

are compared with the observed data on the basis of a pre-defined cost function.

The initial model is perturbed and a new model is generated. The new model is

unconditionally accepted if the cost function with respect to the previous model is

less. If the new model results in higher cost function then the new model is still

accepted with a certain probability as mentioned in the following equations

∆E = En − En−1. (6.1)

If ∆E ≤ 0, then accept. Otherwise, p = e
∆E
T and r = U [0, 1]. If p ≥ r, then accept.

Where En is the cost function for the current model, En−1 is the cost function for the

previous model, T is a parameter (referred to as the acceptance/cost temperature)

that controls the rate of acceptance or rejection of the generated models, r is a ran-

dom number generated from the uniform distribution between 0 and 1. When ∆E

is positive, the model is accepted with the probability p . This acceptance/rejection

condition is known as the Metropolis criterion.

The method of simulated annealing allows the bad moves to be accepted with

a certain finite probability. Thus, there exists a finite probability to search in the

uphill direction as well as in the downhill direction, helping the algorithm to ”jump

out” of a local minimum. This is in contrast to the local optimization schemes where

the search direction is always downhill leaving no scope for the algorithm to escape

from a local minimum.

The rate at which the acceptance temperature is lowered, often referred to as
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the cooling schedule, plays an important role in the optimization process. A faster

cooling schedule is desired so as to save computational time. However, there ex-

ists a trade-off between the rate of cooling and attainment of the global minimum.

Geeman and Geeman (1984) showed that the attainment of global minimum can be

statistically guaranteed with a cooling rate no faster than the following schedule.

Tk =
T0

ln(1 + k)
, (6.2)

where T0 is the temperature at the starting point and Tk is the temperature at the

iteration k.

Szu and Hartley (1987) proposed a faster cooling schedule with a model gener-

ating distribution that followed Cauchy distribution. The distribution function is

as follows.

Fc(∆mi) =
T

(∆m2
i + T 2)

1
2

, (6.3)

where Fc is the distribution function, T is the temperature and ∆mi is the pertur-

bation in the ith model parameter. The cooling schedule is given by

Tk =
T0

k
, (6.4)

where Tk is the acceptance temperature at the iteration k and T0 is the starting

temperature.

Ingber (1989) proposed a new variant of simulated annealing that allowed for a

cooling schedule faster than the ones already mentioned. The very fast simulated

annealing (VFSA) algorithm generates new model parameter mk+1
i for the model

dimension i and the iteration (k + 1) from the corresponding model parameter mk
i

at the previous iteration. The model is updated by the following equation.

mk+1
i = mk

i + yi[max(mi)−min(mi)], (6.5)

where max(mi) and min(mi) are the pre-defined upper and lower bounds of the

model parameter mi respectively and yi ∈ [−1, 1] generated from a distribution

function given by

yi = sgn(ri − 1

2
)Ti[(1 +

1

Ti

)|2ri−1| − 1], (6.6)
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where ri = U [0, 1]. When the generation of model parameter follows such a dis-

tribution, the global minimum is statistically obtained with the following model

parameter cooling schedule

T k
i = T 0

i e−cik
1
M , (6.7)

where T 0
i and T k

i are the temperatures for the ith dimension and the initial and

the kth iteration respectively, ci is a user defined constant that tunes the cooling

schedule for different applications and M is the dimension of the model space.

The model parameter temperature allows for different search regimes along differ-

ent model dimensions. Different model parameters might influence the cost function

in different ways. The cost function might be more sensitive to certain parameters

and less sensitive to certain other parameters in the model space. Very fast simu-

lated annealing algorithm allows different temperature cooling schedules for model

parameters. The cooling schedule can be modified by estimating the sensitivity of

the cost function to different model parameters (Ingber, 1989). Sensitivities of each

model dimension are tested by calculating the first derivative of the cost function

with respect to the model parameters.

When the model dimension is large, it may be useful to accelerate the cooling

schedule to save the computational time. This can be achieved by introducing the

quenching parameter to the cooling equation.

T k
i = T 0

i e−cik
Q
M , (6.8)

where Q is the quenching parameter and 1 ≤ Q ≤ M .

6.3 VFSA aided with the EPS operators

The purpose of edge preserving smoothing (EPS) operator is to suppress random

fluctuations in the model space while preserving the edges. In the optimization al-

gorithm, I follow the a priori knowledge that the desired model profile is blocky. I

apply the EPS operators as the model space preconditioners so that I incorporate

the blocky a priori knowledge about the model domain in the optimization scheme.

The use of EPS operators in the global optimization routine helps the optimization

algorithm in two ways, namely, (a) provides a better convergence and (b) reduces

the nonuniqueness in the inversion problem by suitably imposing blocky features
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in the model space. By applying the EPS operators on the randomly generated

model vectors, rather than relying completely on the random perturbations, I im-

pose blocky features on the model space.

The EPS operators have been utilized successfully in reducing noise in the

seismic-impedance cubes while preserving the structural and stratigraphic disconti-

nuities (AlBinHassan et al., 2006). The design of EPS operators is simple. I follow

the approach of AlBinHassan et al. (2006) to design the EPS operators. Figure

6.1a shows the design of an n-point EPS operator. The figure shows a vector of

M parameters. I have chosen n numbers of n-point windows starting from the first

element of the model vector. The standard deviation for each window belonging

to this array is calculated. The window with least standard deviation is the most

homogeneous window among all the windows in the array. The most homogeneous

window in the entire array is identified and the mean value of this window is cal-

culated. The middle point of the central window in the array is replaced by the

mean of the most homogeneous window to generate the EPS filtered output for that

array of windows. The array of windows is run over the entire length of the model

vector and the procedure is followed at each location of the array to obtain the EPS

filtered output. Figure 6.1b shows the position of the central window in the array

of windows for a 5-point EPS operator.

Figure 6.2 compares the actions of a moving average smoothing filter with that

of an EPS filter on a model vector containing a sharp edge that has been masked by

the embedded noise. Figure 6.2a shows a model vector with a sharp edge. Figure

6.2b shows the same model vector as in Figure 6.2a but embedded with random

noise. The effect of noise has masked the sharp edge. Figure 6.2c shows the action

of a moving average smoothing filter on the model vector shown in Figure 6.2b. It

is observed that the moving average smoothing filter effectively removed the high

frequency noise components from the noisy model vector. However, it failed to re-

store the sharp edge. Figure 6.2d shows the action of EPS filter on the model vector

shown in Figure 6.2b. It is noticed that the EPS filter effectively removed the high

frequency noisy components and at the same time restored the sharp edge.

Application of edge preserving smoothing (EPS) operators in the very fast

simulated annealing based optimization scheme is a two step process. In the first

step, the optimization scheme is allowed to follow the classical procedure of model

perturbation and the Metropolis acceptance and rejection criterion. The following

cost function is evaluated in the first step
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Figure 6.1: The EPS filter. (a) Running windows showing the design of an EPS
filter. (b) Location of the central window for the first running window for a 5-point
EPS filter.

J1(m) = ‖dobs − g(m)‖2, (6.9)

where J1(m) is the value of the cost function obtained for the model m, dobs rep-

resents observed data and g is the operator that nonlinearly relates data with the

model.

In the second step, the EPS operators are applied on the output model of the

classical very fast simulated annealing algorithm. The forward operator is applied

to the EPS filtered model and the cost function is evaluated. The following cost

function is evaluated in the second step.

J2(EPS(m)) = ‖dobs − g(EPS(m))‖2, (6.10)
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Figure 6.2: Application of edge preserving smoothing (EPS) filter to a model vector.
(a) The model vector with a sharp edge. (b) The model vector as (a) with additive
random noise. The sharp edge is masked by the random noise. (c) The effect of
the moving average filter on the model vector with noise. The smoothing filter
has effectively removed the high frequency fluctuations due to the random noise.
However, it failed to unmask the sharp edge. (d) The effect of the edge preserving
smoothing filter on the model vector with noise. The EPS filter has removed the
high frequency oscillations effectively. The sharp edge is well recovered by the EPS
filter.

where EPS is the EPS operator acting on the model.

The EPS filtered model is accepted or rejected depending on whether or not

there is a lowering of the cost function. If J2(EPS(m)) ≤ J1(m), the EPS filtered

model is accepted and the subsequent model perturbation and Metropolis tests are

performed on this accepted model. If the EPS filtered model is not accepted then

the subsequent model perturbations are performed on the model obtained from the

classical VFSA algorithm. The purpose of incorporating the EPS operators in the

second stage of the algorithm is to avoid unduly biasing the optimization routine

that favors blocky solutions in places where no sharp physical contrasts exist. Figure

6.3 shows the flowchart of the algorithm.
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Figure 6.3: The flowchart for the model preconditioning based very fast simulated
annealing algorithm.

6.4 Application to AVO inversion

Simultaneous estimation of the elastic parameters of the underlying earth layers

are in the forefront of active research because of their importance in oil and gas

exploration and reservoir characterization. The techniques to estimate the elastic

parameters are broadly classified into two categories (a) the linearized inversion

(Smith and Gidlow, 1987; Lörtzer and Berkhout, 1993; Buland and Omre, 2003)

techniques and (b) the nonlinear inversion techniques (Mallick, 1995, Varela et al.,

2006). The problems with linearized inversion are that they are local minimization

processes and dependent on the location of the initial model (Tarantola, 1987). In
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contrast, the global optimization techniques are independent of the initial model and

have the ability to ”jump out” of a local minimum and converge towards a global

minimum. The inversion of elastic parameters from amplitude variation with offset

(AVO) data is nonunique (Mallick, 1995). Furthermore, the model parameters are

nonlinearly related to the data which suggest that the cost function topology may be

multimodal. These conditions make the problem suitable for a global optimization

approach.

Varela et al. (2006) used the simulated annealing based optimization scheme to

simultaneously estimate the earth elastic parameters from the prestack amplitude

data. They augmented the cost function with the smoothness constraints to enforce

smooth solution in the global optimization scheme. I am introducing a model pre-

conditioning based global optimization scheme where flatness and edge preservation

in the model domain are simultaneously enforced by means of nonlinear edge pre-

serving smoothing operators. The method is applied to simultaneously estimate the

P-wave velocities, the S-wave velocities and the bulk densities for the subsurface

layers.

6.4.1 Forward operator

The inversion method requires a forward operator to generate synthetic data. I used

the reflectivity method based forward operator (Fuchs and Muller, 1971) in all the

examples shown in this chapter except for the section ”Assessment of uncertainty”

where the ray-tracing approach based forward operator is used. The reflectivity

method based forward operator generates synthetic data by computing the full-

wave response in the time-offset domain for a stack of homogeneous and isotropic

horizontal earth layers. In the ray-tracing approach based forward operator, the

amplitudes of prestack seismic data in an angle gather are calculated from the Aki-

Richards approximation of Zoeppritz equations. The ray-tracing approach involves

calculation of source-receiver travel path from the Snell’s law (Shearer, 1999) and

positioning the reflectors at the corresponding locations in the time-offset axes. The

resulting reflectivity is convolved with a known Ricker wavelet to simulate NMO

corrected seismic data. Both, the ray-tracing and reflectivity method based forward

operators have inherent nonlinearity (Misra and Sacchi, 2007b).

I used the reflectivity method based forward operator to generate synthetic data.
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The synthetic data contain multiples. In order to test the consistency of the algo-

rithm, I performed 100 numbers of Monte Carlo simulations. Since, the reflectivity

method based forward operator is computationally expensive, it is impracticable to

perform the simulations with the reflectivity method. Thus, I used the ray-tracing

approach based forward operator to generate the synthetic data and perform the

Monte Carlo simulations to test the consistency of the algorithm.

6.4.2 Model space

I have followed the over-parameterization approach (Sen and Stoffa, 1991; Varela

et al., 2006) to parameterize the model space. As a simple example, I represent

a 3-layers earth model in terms of a 30- microlayers earth model (29 microlayers

over a half-space). Each microlayer has a constant two-way travel time. The model

space in the inversion algorithm consists of the P-wave velocities (Vp), the S-wave

velocities (Vs) and the bulk density (ρ) defined in each of the microlayers of the

over-parameterization scheme. The following matrix notation is used to represent

the model space

Vp =




vp1

vp2

vp3

...

vpn




, Vs =




vs1

vs2

vs3

...

vsn




, ρ =




ρ1

ρ2

ρ3

...

ρn




, (6.11)

where n represents the number of pre-defined microlayers in the model space. The

search space is ±15% of the true model values for the P-wave velocity and the

density parameters. The search space for the S-wave velocity is ±60% of the true

values. The search bounds are selected in such a way that the search space provides

overlapping of layers at the edges. Figure 6.4 shows the true model and the upper

and lower bounds of the model parameters Vp, Vs and ρ. The black line shows the

true profile and the red line shows the upper and lower bounds of the model space.
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Figure 6.4: The upper and lower bounds of the model space. (a) The bounds for
Vp. (b) The bounds for Vs. (c) The bounds for ρ. The black line shows the true
model value and the red line shows the upper and lower bounds. The bounds are
±15% for Vp and ρ and ±60% for Vs with respect to the true model.

6.4.3 Model preconditioning-aided VFSA scheme

The following scheme is used for the very fast simulated annealing optimization for

the estimation of the earth layer elastic parameters from prestack amplitude data.

The initial cost temperature and the initial model parameter temperature are set to

relatively high values. The initial model parameter temperature is kept same for all

model dimensions. The cooling schedule for the model parameters is given by the

equation 6.7. The parameter ci is chosen in such a way that the model parameter

temperature is sufficiently low after a large number of iterations. The value of ci is

determined by the following equation

ci = R− 1
M log(

T 0
i

T f
i

), (6.12)

where T f
i is final model parameter temperature, T 0

i is the initial model parameter

temperature, R is the total number of iterations and M is the dimension of the
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model space.

The cost temperature cooling schedule is given by (Ryden and Park, 2006)

T = T 0aj, (6.13)

where T is the cost temperature after j numbers of accepted transitions. The term

a is a positive constant less than 1.

The cost function to be minimized is given by an L2-norm between the observed

and the predicted data.

J(m) =

Noff∑
i=1

Nt∑
j=1

∣∣∣d (xi, tj)
obs − d (xi, tj)

est
∣∣∣
2

. (6.14)

Where d(xi, tj)
obs and d(xi, tj)

est are the observed and estimated data respectively

for the offset xi and time sample tj . The total number of traces is given by Noff

and the total number of time samples is given by Nt. The data are estimated at

each VFSA iteration given by the following equations

d(xi, tj)
est
1 = g(m), (6.15)

d(xi, tj)
est
2 = g(EPS(m)), (6.16)

where EPS is the model preconditioning operator and g is the forward operator.

The vector m contains the unknown model parameters Vp, Vs and ρ.

6.4.4 Synthetic data example

Synthetic data are generated by using the reflectivity method based forward opera-

tor. The data contain multiples. Figure 6.5a, b and c show the true model profiles

for Vp, Vs and ρ respectively. Figure 6.5d shows the true synthetic data corre-

sponding to the true model profiles shown alongside. The model space is defined

over 30 microlayers of constant two-way time. The data space contains 10 traces.

This is a very simple example where our a priori information is that the model

profiles are blocky. Figure 6.6a, b and c show the initial random model for Vp,

Vs and ρ respectively. Figure 6.6d shows the estimated data corresponding to the

initial model. It is clear from Figure 6.6d that the initial random model is not close

to the global minimum of the cost function.
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Figure 6.5: The true model and the true synthetic data. (a) The true model for
Vp. (b) The true model for Vs. (c) The true model for ρ. (d) Synthetic data
corresponding to the true model.

Figure 6.7a, b and c show the estimated model for Vp, Vs and ρ respec-

tively. Figure 6.7d shows the estimated data corresponding to the estimated model.

The optimization scheme incorporates the edge preserving smoothing operators to

precondition the model space for blocky solutions. Three point edge preserving

smoothing operator window is selected for the three model vectors Vp, Vs and ρ.

The edge preserving smoothing operators were allowed to pass through each of the

model vectors only once during each of the very fast simulated annealing iteration.

The degree of smoothing is dependent on the length of the edge preserving smooth-

ing operators and the number of times the operators are applied on the model vector.

I chose to fix the length of the operator window to three and the number of passes to

one. This ensures that the very fast simulated annealing algorithm is not operating

in an overly preconditioned model space. The optimization process required a total

of 6000 evaluations of the forward model. I observe that there is a good match in

the data domain and the estimated model profiles are consistent with the a priori

information.
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Figure 6.6: The random initial model and the synthetic data corresponding to the
initial model. (a) The initial model for Vp. (b) The initial model for Vs . (c) The
initial model for ρ. The solid line shows the initial model and the dotted line shows
the true model. (d) The synthetic data corresponding to the initial model. The
figure shows that the starting model is not close to the global minimum of the cost
function topology.

I compare the results obtained from the model domain preconditioning oper-

ators based global optimization algorithm with results obtained by (a) global opti-

mization without model domain preconditioning and (b) global optimization with

the cost function augmented with an edge preserving regularization function. For

comparison purpose, I started the algorithms at the same initial model. The algo-

rithms encompassed the same model space. The true model and data are shown in

the Figure 6.5. Figure 6.8a, b and c show the final estimated model for Vp, Vs and

ρ respectively. The estimated model is obtained with very fast simulated annealing

optimization without the incorporation of the model domain preconditioning opera-

tors. There are 10000 numbers of forward model evaluations. Figure 6.8d shows the
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Figure 6.7: The final estimated model and the synthetic data corresponding to the
final estimated model. (a) The final estimated model for Vp. (b) The final estimated
model for Vs. (c) The final estimated model for ρ. The solid line shows the final
estimated model and the dotted line shows the true model. (d) The synthetic data
corresponding to the final estimated model. The convergence is obtained in 6000
evaluations of the forward model. Model space preconditioning by the EPS filter
successfully estimated the blocky profiles for the models.

final estimated data corresponding to the final estimated model. It is clear that the

optimization algorithm without the model space preconditioning could not yield the

desired blocky solution even though good convergence is achieved in the data do-

main. The result shows that the algorithm converged to a solution that fit the data

well but does not honor the a priori information about the model. In contrast, the

EPS operator based model space preconditioning effectively estimated the blocky

profiles in 6000 evaluations of the forward model (Figure 6.7a, b and c).

Further, I compare the results obtained from the model space preconditioning

based global optimization algorithm with the results obtained from a global opti-

mization algorithm when the cost function is augmented with an edge preserving
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Figure 6.8: The final estimated model and the synthetic data corresponding to the
final estimated model without the incorporation of model preconditioning operator.
(a) The final estimated model for Vp. (b) The final estimated model for Vs. (c) The
final estimated model for ρ. The solid line shows the final estimated model and the
dotted line shows the true model. (d) The synthetic data corresponding to the final
estimated model. There are 10000 evaluations of the forward model. As noticed, the
”blocky” a priori information is not properly honored by the optimization approach
without model space preconditioning even though the algorithm yielded good data
fit.

regularization function. The following cost function is minimized to compare the

results obtained with the application of model space preconditioning operators.

J(m) =

Noff∑
i=1

Nt∑
j=1

∣∣∣d (xi, tj)
obs − d (xi, tj)

est
∣∣∣
2

+ µR (Dm) , (6.17)

where d(xi, tj)
obs and d(xi, tj)

est are the observed and estimated data respectively

for the offset xi and time sample tj. The total number of traces and time samples

are given by Noff and Nt respectively. The edge preserving regularization (EPR)



6.4 Application to AVO inversion 124

function is given by R (Youzwishen, 2001, Valencino et al. 2004). The EPR function

acts on the scaled first derivatives of the model parameters. The derivative operator

is defined as

Dmi = (mi+1 −mi), (6.18)

where the index i encompasses the total number of model parameters. The regular-

ization term R is given by

R(Dm) =
∑

i

ln(1 + (
Dmi

δ
)2), (6.19)

where δ is a scaling factor applied to the first order derivative operator. The edge

preserving regularization function has two hyperparameters, namely, µ and δ . Fig-

ure 6.9a, b and c show the true and the estimated model. There are 10000 numbers

of forward model evaluations. Figure 6.9d shows the synthetic data corresponding

to the final estimated model. The hyperparameter δ was fixed at 0.1% of the max-

imum jump exhibited by the respective model vectors Vp, Vs and ρ. The other

hyperparameter µ was calculated such that data misfit and edge preserving regular-

ization function are properly weighted in the cost function. In the examples shown,

the numerical values used for the hyperparameter δ are 0.0004, 0.00048 and 0.00063

for Vp, Vs and ρ respectively. The numerical values for the hyperparameter µ were

fixed at 10−11 for each of the unknown model vectors. The hyperparameters are

selected on the basis of several trial runs. Comparison between the Figures 6.7 and

6.9 shows that the models are better estimated with the model space precondition-

ing approach.

Figure 6.10 shows the log-log plot of the error energy calculated during each

cost function evaluation. The dotted line shows the cost function obtained during

the very fast simulated annealing optimization when the cost function is augmented

with the edge preserving regularization function as given by the equation 6.19. The

thick dashed line shows the cost function obtained during the very fast simulated an-

nealing optimization without the incorporation of the edge preserving function and

the model preconditioning operators. The cost functions are obtained with 10000

evaluations of the forward model. The solid line shows the cost function obtained by

the model preconditioning based very fast simulated annealing optimization. The

cost function is obtained with 6000 evaluations of the forward model. It is observed

that better convergence of the cost function is obtained when blockyness is enforced
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Figure 6.9: The final estimated model and the synthetic data corresponding to the
final estimated model when the cost function is augmented with edge preserving
regularization function. (a) The final estimated model for Vp. (b) The final esti-
mated model for Vs. (c) The final estimated model for ρ. The solid line shows the
final estimated model and the dotted line shows the true model. (d) The synthetic
data corresponding to the final estimated model. There are 10000 evaluations of the
forward model.

in the solution by the model space preconditioning approach.

6.4.5 Stability of the algorithm with signal to noise ratio

The proposed algorithm is tested for stability with regard to the noise level. The

signal to noise ratio (SNR) is defined as

SNR =
max|d|

σ
, (6.20)

where d is the observed data and σ is the standard deviation of noise. The signal

to noise ratios considered for the stability test are given by SNR = [20, 10].

The reflectivity method based forward operator is used to generate the synthetic
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tion for the cases (a) preconditioned model space with EPS operators (solid line), (b)
without model space preconditioning and without application of the edge preserving
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tioning for blocky solutions provides faster convergence. The error plot for the case
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of fluctuation because the cost function is evaluated twice at a particular cost and
model parameter temperature.

data. The data contain multiples. Figure 6.11a shows the true synthetic data

with additive noise such that SNR = 20. The model search bounds are same as

the previous examples. Figure 6.11b shows the estimated data obtained after 6000

forward model evaluations with the model preconditioning based very fast simulated

annealing optimization. Figure 6.12a, b and c shows the estimated model profiles

for Vp,Vs and ρ respectively. It is noticed that the algorithm effectively estimates

the blocky model profiles consistent with data and a priori knowledge. Figure 6.13a

shows the true synthetic data with SNR = 10. Figure 6.13b shows the estimated

data after 6000 forward model evaluations with the model preconditioning based very

fast simulated annealing optimization. Figure 6.14a, b and c shows the estimated

model profiles for Vp, Vs and ρ respectively. The algorithm effectively estimates
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Figure 6.11: (a) The true synthetic data with SNR = 20. (b) The estimated data.

the blocky model profiles from noisy data consistent with the data and the a priori

information.

6.4.6 Assessment of uncertainty

The proposed algorithm is assessed for the degree of uncertainty by successively

running the algorithm with different random number generating seeds. The test

was performed on the model given by the Figure 6.5a, b and c. In assessing the

uncertainty involved in the algorithm, our aim is to observe consistency of the re-

sults when the algorithm is run with different random number generating seeds. In

order to have any statistical conclusion about the consistency of the algorithm, a

large number of Monte Carlo simulations are required to be performed. Since, the

reflectivity method based forward operator is computationally expensive, the Monte

Carlo test for consistency of the algorithm is impracticable within a reasonable time

frame. Thus, I chose to use the ray-tracing based forward model to perform 100

numbers of Monte Carlo simulations to test the uncertainty in the model space pre-

conditioning based very fast simulated annealing algorithm. The forward operator

involved calculating the angle dependent PP-reflection coefficients from the Aki-
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Figure 6.12: (a) Estimated models for Vp.(b) The estimated model for Vs. (c)The
estimated model for ρ. The solid line shows the estimated model and the dashed
line shows the true model. Blocky profiles consistent with the data and a priori in-
formation are obtained in 6000 evaluations of the forward model in the optimization
scheme.

Richards approximations of the Zoeppritz equations and convolving the reflection

amplitudes with a known Ricker wavelet. The time-offset section thus generated,

simulated the NMO corrected prestack seismic data. Synthetic data are further

contaminated with bandlimited additive noise. The signal-to-noise ratio for the

synthetic data is 15. The forward operator is nonlinear because the unknown model

parameters are required to calculate the incidence angles from the Snell’s law. The

model space encompassed ±15% bounds of the true model values for Vp and ρ and

±60% for Vs. Figure 6.15a, b and c show the plots for the mean of the estimated

model parameters for Vp, Vs and ρ respectively. The mean estimation is obtained

from 100 Monte Carlo simulations. Figure 6.16a, b and c show the estimated model

parameters obtained within ±50% of search bounds. It is observed that 46 times

out of 100 the entire model vector Vp, 46 times out of 100 the entire model vector

Vs and 49 times out of 100 the entire model vector ρ for all the 30 microlayers

are estimated within ±50% of the search bounds. It is also observed that the very
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Figure 6.13: (a) The true synthetic data with SNR = 10. (b) The estimated data.

fast simulated annealing algorithm aided by the model preconditioning operators,

consistently estimated, within reasonable accuracy, the blocky profiles for the model

parameters. In Figure 6.16, though the estimated model profiles are blocky, they

are not very close to the true profiles of Vp, Vs and ρ. This is due to the fact that

the problem of nonuniqueness also exists within the smaller model space of blocky

solutions. Though the model preconditioning operators could reduce the nonunique-

ness by preferably conditioning the model space for blocky solutions, the problem

of nonuniqueness within the preconditioned model space is evident in the figure.

6.4.7 Inversion of simulated data obtained from real well

logs

Feasibility of the algorithm in real data situation is studied by comparing the results

of model parameter estimation obtained from the well log simulated data. Due to the

unavailability of the well log data for the S-wave velocities, I synthetically generated

the S-wave velocity log data from the actual P-wave velocity log data. The S-wave
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Figure 6.14: (a) Estimated models for Vp. (b) The estimated model for Vs. (c)
The estimated model for ρ. The solid line shows the estimated model and the
dashed line shows the true model. Blocky profiles consistent with the data and a
priori information are obtained in 6000 evaluations of the forward model in the
optimization scheme.

velocity log data are generated by dividing the P-wave velocity log data values by√
2. Figure 6.17a, b and c shows the true well log data resampled at a constant

time interval. I used the P-wave velocity log to transform the log data from depth

to vertical seismic travel time. An edge preserving smoothing filter is applied on the

true well log data to reduce the high frequency oscillations while enhancing the edgy

features at the possible layer boundaries. Figure 6.18a, b and c show the well log data

after a single pass application of 5-point EPS filter. It is noticed that the application

of EPS filter has enhanced the edgy features in the log profile while reducing the

high frequency oscillations that are ordinarily not represented in the data. The

reflectivity method based forward operator is used to synthetically generate the well

log simulated data. The well log simulated data are further contaminated with

bandlimited noise. The signal-to-noise ratio for the simulated well log data is 15.

In order to test the stability of the algorithm with regard to the search bounds, I

performed the simulations in 3 different search regimes, namely, ±15%, ±25% and
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Figure 6.15: Monte Carlo simulations with 100 different random number generating
seeds. (a) Mean of 100 Monte Carlo estimations for Vp. (b) Mean of 100 Monte
Carlo estimations for Vs. (c) Mean of 100 Monte Carlo estimations for ρ. The solid
line represents the estimated profile and the dashed line represents the true profile.

±35% of the true well log data. As mentioned earlier, the optimization algorithm is

based upon an overparameterized model space. In the optimization of the well log

data, I have overparameterized the model space into 50 microlayers of equal time

interval. The total number of unknown model parameters is 150. A 3-point model

preconditioning operator is used in the global optimization scheme for the well log

simulated data. Figure 6.19 and Figure 6.20 show the results obtained for the case

when the search space is ±15% of the true well log data. Figure 6.19a shows the

true well log simulated data. Figure 6.19b shows the predicted data for the initial

random model. I observe that our initial random model is far away from the global

minimum in the cost function. Figure 6.19c shows the estimated data after 6000

evaluations of the forward model. Figure 6.20 shows the results of the optimization

in the model domain. Figure 6.20a, b and c shows the true well log and estimated

well log data for Vp , Vs and ρ respectively. The thick solid line shows the estimated

well log and the thin solid line shows the true well log data. It is noticed that the

proposed algorithm estimated the well log data within a reasonable accuracy. Figure
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Figure 6.16: Monte Carlo simulations showing estimated models within ±50% of the
search bounds. A total of 100 Monte Carlo simulations was performed. (a) Estima-
tions for Vp (46 numbers). (b) Estimations for Vs (46 numbers). (c) Estimations
for ρ (49 numbers). The outer dashed lines represent the search bounds.

6.21 and Figure 6.22 show the results obtained for the case when the search space is

±25% of the true well log data. Figure 6.21a, b and c show observed data, estimated

data for the initial model and estimated data after 6000 evaluations of the forward

model respectively. Figure 6.22a, b and c shows the true well log and estimated well

log data for Vp, Vs and ρ respectively. The thick solid line shows the estimated

well log and the thin solid line shows the true well log data. It is noticed that for

a search space of ±25%, the proposed algorithm estimated the well log data within

a reasonable accuracy. Figure 6.23 and Figure 6.24 show the results obtained for

the case when the search space is ±35% of the true well log data. Figure 6.23a,

b and c shows observed data, estimated data for the initial model and estimated

data after 6000 evaluations of the forward model respectively. Figure 6.24a, b and

c show the true well log and estimated well log data for Vp, Vs and ρ respectively.

The thick solid line shows the estimated well log and the thin solid line shows the

true well log data. It is noticed that, for a search space of ±35%, the algorithm

converged to a solution that estimated the data. However, the model estimations
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are relatively less accurate. It is a known fact that the aperture limitation adversely

affects the estimation of the density parameter from the prestack seismic data. I

observe the same effects of aperture limitation in the model preconditioning based

global optimization procedure. The estimated model shows that the P-wave and

S-wave velocities are better estimated compared to the density parameter. In real

data situation, it is important to obtain an accurate estimation of the wavelet.

Inaccuracies in the estimation of the phase and frequency content of the wavelet

will lead to less accurate estimation of the earth elastic parameters.

2 7

0.36

0.68

V
p
 (km/s)

T
im

e 
(s

)

1.0 4.5

0.36

0.68

V
s
 (km/s)

1.5 2.5

0.36

0.68

ρ (gm/cm3)

(a) (b) (c)

Figure 6.17: The well log data. (a) The well log data for Vp. (b) The well log data
for Vs. (c) The well log data for ρ. The S-wave well log is synthetically generated
from the P-wave well log.

6.5 Summary

A new method to enforce flatness and edge preservation in the model estimation

through global optimization algorithm is proposed. The method incorporates edge

preserving smoothing operators as the model preconditioners. The EPS operators

are nonlinear filters that involve a running array of windows over the entire model
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Figure 6.18: Well log data after application of EPS filter. It is observed that the
EPS filter enhanced the edgy features in the profiles while suppressing the high
frequency fluctuations that are not ordinarily represented in the data.

length. The most homogeneous window in each array is determined by computing

the variances for each window. Flatness and edge preservation are enforced in the

model domain by replacing the value of the middle point of the central window in

the array with the mean value corresponding to the most homogeneous window in

that array. The model preconditioner suitably biases the model space as per the

blocky a priori information. The inclusion of model space preconditioning opera-

tors makes the global optimization algorithm converge faster. This is because the

algorithm, instead of relying completely on the random perturbation, works in a

suitably preconditioned model domain. Also the preconditioning operators reduce

the nonuniqueness in the inversion problem by preferentially modifying the model

space for a particular suite of solutions consistent with data and a priori knowl-

edge. The modified model space is designed to be smaller than the complete suite

of solutions consistent with the data. I applied the model space preconditioning

based very fast simulated annealing algorithm to estimate the earth elastic parame-

ters from prestack seismic amplitude data showing amplitude variation with offset.

Synthetic data containing multiples were generated using the reflectivity method.

The tests with synthetic data show that the algorithm effectively estimated blocky
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Figure 6.19: (a) The true well log simulated data with bandlimited noise. (b) The
data corresponding to the initial model. (c) The estimated data obtained by the
model preconditioning based very fast simulated annealing optimization algorithm.
The model search space is ±15% of the true well log data.

solutions from data consistent with the a priori information. I have compared the

results obtained with and without the application of model preconditioning opera-

tors. I observe that the results are better and the convergence is faster when the

preconditioning operators are applied iteratively in the model domain. Further, the

algorithm is compared with the results obtained from global optimization algorithm

with a cost function augmented with an edge preserving regularization function. The

comparison showed that the model preconditioning based global optimization yields

better convergence and more accurate estimation of the model parameters. The

algorithm is tested for stability by incorporating various levels of noise in synthetic

data. The algorithm is found to be stable over a reasonable noise level. The algo-

rithm was further tested for consistency by running several Monte Carlo simulations

with different random number generating seeds. The test showed that the algorithm

estimates blocky solutions from data within reasonable accuracy. I applied the algo-

rithm to well log simulated data. I tested the stability of the algorithm over a wide

range of model search bounds. I observed that the estimated model parameters are
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Figure 6.20: The true well log data (thin line) and the estimated well log (thick line).
(a) The true and estimated models for Vp. (b) The true and estimated models for
Vs. (c) The true and estimated models for ρ. The search bound is ±15%. The
model consists of 50 microlayers of constant time. Total number of unknowns is 150.

reasonably accurate over a relatively wide search bounds. The accuracy, however,

decreased when the search bound reached ±35% of the true model. It is a known

fact that when the optimization problem involves too many unknown parameters,

reasonable search bounds be used for simulated annealing algorithms to perform

well.
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Figure 6.21: (a) The true well log simulated data with bandlimited noise. (b) The
data corresponding to the initial model. (c) The estimated data obtained by the
model preconditioning based very fast simulated annealing optimization algorithm.
The model search space is ±25% of the true well log data.
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Figure 6.22: The true well log data (thin line) and the estimated well log (thick line).
(a) The true and estimated models for Vp. (b) The true and estimated models for
Vs. (c) The true and estimated models for ρ. The search bound is ±25%. The
model consists of 50 microlayers of constant time. Total number of unknowns is 150.
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Figure 6.23: (a) The true well log simulated data with bandlimited noise. (b) The
data corresponding to the initial model. (c) The estimated data obtained by the
model preconditioning based very fast simulated annealing optimization algorithm.
The model search space is ±35% of the true well log data.
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Figure 6.24: The true well log data (thin line) and the estimated well log (thick line).
(a) The true and estimated models for Vp. (b) The true and estimated models for
Vs. (c) The true and estimated models for ρ. The search bound is ±35%. The
model consists of 50 microlayers of constant time. Total number of unknowns is 150.



Chapter 7

Global Optimization: Application

to 2D Velocity and density

Estimation via Waveform

Inversion

7.1 Introduction

In the previous chapter, I discussed estimation of the earth elastic parameters such

as the P-wave velocity, S-wave velocity and density for the layered earth structure.

The underlying assumption was that the earth elastic parameters vary only in the

vertical direction. Such an assumption results in one-dimensional earth model. We

have seen in chapter 6 that estimation of earth elastic parameters from the seismic

data showing amplitude variation with offset is a nonlinear problem with multimodel

cost function when the data contain multiples and the model is related to the data

through the reflectivity method based forward operator. Multimodality in the cost

function necessitated the use of global optimization schemes such as the simulated

annealing or genetic algorithm. However, with the microlayer parameterization ap-

proach, the model space became quite large which adversely affected the convergence

of the algorithm. Also, as noticed in the previous chapter, the a priori information

that the solution be blocky was difficult to introduce as a regularization term in the

cost function. It took a number of hit and trial approaches to find a suitable value

for the trade-off parameter for the regularization term. I developed the approach of
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preconditioning the model space so that the global optimization algorithm worked

in a model regime favorably biased according to the a priori information. In the ex-

ample shown in the previous chapter, the a priori information was that the solution

be blocky. In order to incorporate the a priori information in the global optimiza-

tion algorithm, I favorably preconditioned the model space with the application of

edge preserving smoothing operators on the model space generated during the very

fast simulated annealing iterations. The preconditioning approach is incorporated

in the algorithm as a second stage that follows the Metropolis acceptance/ rejection

criterion. The length and the number of passes of the edge preserving smoothing

operators are kept at a minimum. This approach ensures that the model space is

not unduly biased for a blocky solution. As evident from the results shown in the

previous chapter, the proposed optimization method not only made the convergence

rate faster, but also resulted in accurate blocky solutions consistent with the a priori

information (Misra and Sacchi, 2008a).

In this chapter, I discuss possible applications of global optimization in a very

large model domain. We have seen that the model preconditioning approach in the

global optimization scheme has made it possible to obtain a solution that honors

the data and shows consistency with the a priori information. I have chosen a two

dimensional velocity and density model space to test the viability of such a global

optimization algorithm. Shot gathers, encompassing the entire model space are

generated with the second-order finite difference acoustic wave equation modeling

approach. The velocity and density in the two dimensional grid are estimated from

the shot gathers via full waveform inversion. Jervis et al. (1993, 1996) proposed

estimation of two dimensional model such as the prestack migration velocity via

global optimization schemes. Their approach was based upon parameterization of

the model space by cubic B-splines nodes. Such a parameterization helped the clas-

sical global optimization algorithm by limiting the model search space to the chosen

cubic B-splines nodes. Application of model preconditioning based global optimiza-

tion has been proposed earlier to estimate the migration velocity from the shot

gathers without requiring to use cubic B-spline nodes (Misra and Sacchi, 2008b).

Herein I propose model preconditioning based global optimization algorithm where

the model consists of individual grid nodes and the model is preconditioned con-

sistent with the a priori information. The enforced a priori information in the

global optimization scheme are (a) smoothness in the model space along the lateral

direction and (b) blockyness in the model space along the vertical direction. I have
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preconditioned the model space by applying smoothing operators along the lateral

direction and edge preserving smoothing operators along the vertical direction of the

model space. I have followed the approach of introducing the model preconditioning

operators at the second stage of the algorithm as described in the previous chapter.

It is a known fact that global optimization schemes operate well when the bounds of

the model space are chosen judiciously. I have tested the proposed algorithm on a

model space with a bound of ±15% and ±25% of the true model. The results show

that the model preconditioning based global optimization scheme effectively attains

a good convergence within a reasonable time frame when the model space is very

large. The results also indicate effective incorporation of a priori information in the

model space. The examples shown in this chapter are very simple. The aim is to

make use of the a priori information and apply the global optimization algorithm

to obtain a convergence to a solution that honors the data and constraints. The real

earth situation is obviously more complex compared to the examples shown here

and the algorithm is not tested in real earth situations. However, the ability of the

proposed algorithm to obtain a good convergence within a reasonable time frame

where the model space is very large is encouraging and further research work will

lead to more successful applications of global optimization in complex real earth

situations.

7.2 Forward operator

I have used explicit second-order finite difference acoustic wave equation based for-

ward operator (Alford at al., 1974; Kelly et al., 1976) to generate synthetic data in

the form of shot gathers. In the explicit finite-difference method the motion at a

particular spatial coordinate at a future time due to a source excitation is computed

from the knowledge of the motion in the past times. The forward model involved

propagation of a Ricker wavelet with peak frequency of 25Hz and maximum fre-

quency of 55Hz. Synthetic seismograms generated by the finite-difference modeling

are further filtered with a passband of 1Hz to 40Hz. Synthetic seismograms are

sampled at every 20m interval with a minimum and maximum source-receiver offset

of 100m and 1100m respectively. I have applied muting to the direct arrivals as

they are not important in the waveform inversion. I have used 4 shot gathers with a

spacing of 300m between the adjacent source locations. The shot gathers are chosen
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in such a way that the underlying earth is properly sampled by the source-receiver

geometry.

7.3 Model space

I have followed an over-parameterization approach (Sen and Stoffa, 1991; Varela et

al., 2006) to define the model space for the 2D velocity and density optimization. I

have over-parameterized the model space in the vertical direction. As an example,

I have represented a simple 5-layer earth model in terms of 200 horizontal blocks

of constant thickness. The over-parameterization is achieved by considering a two

dimensional grid with 200 equidistant grid nodes in the vertical direction. The goal

of the optimization is to obtain a solution where the velocity values at the grid nodes

coalesce together in places that do not contribute to a reflection event and a sharp

boundary in places that correspond to a reflection event. Thus, the overall solution

is blocky with edges at the layer boundaries corresponding to a reflection event. In

the two synthetic examples, the optimization algorithm operates within a search

bound of ±15% and ±25% of the true model values respectively. It is true that the

global optimization algorithms are independent of the initial model and hence are

independent of the search bounds. However, in order to obtain convergence within

a reasonable time frame it is imperative to impose judiciously chosen search bounds.

7.4 Model preconditioning aided VFSA scheme

The algorithm of model preconditioning aided very fast simulated annealing (MP-

VFSA) has been developed and explained in detail in the previous chapter. In this

section, I will discuss detail procedures for applying the MP-VFSA algorithm in

estimating velocity and density over a two dimensional grid.

The following very fast simulated annealing scheme is used for the optimization

of velocity and density on a two dimensional grid. The initial cost temperature

and the model parameter temperature are set to relatively high values. The model

parameter temperature is kept same for all the model parameters over the grid.

The model parameter temperature cooling schedule is chosen such that the model

parameter temperature is sufficiently low after a large number of iterations.

The cost temperature cooling schedule is given by (Ryden and Park, 2006)
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T = T0a
j, (7.1)

where T0 is the initial cost temperature and T is the cost temperature at a given

iteration. The parameter j indicates the number of accepted transitions. The term

a is a positive constant less than 1. In the examples shown below, I have fixed j = 5

and a = 0.9.

The cost function to be minimized is given by an L2-norm between the observed

and predicted data. For the examples shown in the following sections, I have com-

puted 4 shot gathers with a source-receiver geometry that encompasses the entire

grid. The cost function involves computing an L2-norm based data misfit between

the observed and predicted shot gathers. As mentioned before, the shot gathers are

computed by a finite-difference acoustic wave equation solver. The cost function is

given by

J(m) =
1

Np

∑
s

Noff∑
i=1

Nt∑
j=1

‖ds(xi, tj)
obs − ds(xi, tj)

est‖2, (7.2)

where J is the cost function, s identifies the shot gather, ds(xi, tj)
obs and ds(xi, tj)

est

are the observed and predicted data for the offset xi and time sample tj for the

shot gather s. The total number of traces in a shot gather is given by Noff and the

total number of time samples in a trace is given by Nt. The term Np indicates the

number of shot gathers considered in the optimization algorithm. In the following

examples, I have used four shot gathers (Np = 4) in the optimization algorithm.

The matrix m contains two unknown models, namely, velocity and density over a

two dimensional grid, each of size 201 by 201 cells. The equations 7.3 and 7.4 show

the computation of predicted data at each MP-VFSA algorithm iteration.

ds(xi, tj)
est
1 = g(m), (7.3)

ds(xi, tj)
est
2 = g(MP (m)), (7.4)

where g and MP are the forward operator and the model preconditioning operator

respectively.

The a priori constraints I am imposing on the MP-VFSA algorithm are (a)

the model is smooth along the lateral direction and (b) the model is blocky along

the vertical direction. Hence, I am using smoothing operators along the lateral
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direction of the model space and edge preserving smoothing operators along the

vertical direction of the model space. This means that the operator MP in the

equation 7.4 consists of two different operators, namely, the smoothing operator

and the edge preserving smoothing(EPS) operator. I have used moving average

smoothing operator along the lateral direction of the model space and EPS operator,

as defined in the previous chapter, along the vertical direction of the model space.

7.5 Synthetic data example

Synthetic data are generated by solving the second-order finite difference acoustic

wave equation. Data contain multiples. Figure 7.1 shows the true velocity and den-

sity models used in generating the synthetic data. The synthetic data corresponding

to the true model are shown in Figure 7.2.

The model space is defined over two grids, each consisting of 201 by 201 cells.
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Figure 7.1: The true models. (a) Velocity model and (b) Density model. The
velocity model shows a lateral velocity gradient.

The grid nodes are separated by 10m in both lateral and vertical axes. The data

space contains 4 shot gathers. The shot locations for each gather is separated by



7.5 Synthetic data example 147

Offset (km)

T
w

o−
w

ay
 ti

m
e 

(s
)

0.1 1.1

0.0

2.0

0.1 1.1 0.1 1.1 0.1 1.1

(a) (b) (c) (d)

Figure 7.2: The true shot gathers. (a) shot location at the origin 0m (b) Shot
location at 300m from the origin (c) Shot location at 600m from the origin and (d)
Shot location at 900m from the origin.

300m with respect to the adjacent gather. The shot gathers are chosen in such a

way that the entire model grid is covered by the forward model. In the synthetic ex-

ample, I am imposing smoothness constraint in the lateral direction and blockyness

constraint in the vertical direction that is consistent with the a priori information.

Figures 7.3 and 7.4 show the initial random models generated within ±15% and

±25% bounds respectively. I have chosen a particular grid location (300m,0m) to

show the initial model as seen in the depth axis. Figure 7.5 and 7.6 show the initial

velocity and density models at the grid location (300m,0m) for search bounds of

±15% and ±25% respectively. The figures also show the true model and the respec-

tive upper and lower bounds of the model space.

Figure 7.7 and Figure 7.8 show the shot gathers corresponding to the initial

random model generated within a search bound of ±15% and ±25% respectively.

Difference between the true data and the data corresponding to the initial random

model for the bounds of ±15% and ±25% respectively are shown in Figures 7.9

and 7.10. The figures indicate that the initial models are not close to the global

minimum of the cost function.
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Figure 7.3: The initial velocity and density models. The initial model is chosen with
an upper and lower bounds of ±15% of the respective true values.

Figure 7.11 and Figure 7.12 show the estimated velocity and density values

for the model preconditioning based VFSA optimization operating within ±15%

and ±25% bounds respectively. Results of the model preconditioning based VFSA

optimization is better visualized by plotting the vertical distribution of the velocity

and density distribution at a particular lateral location. Figure 7.13 and Figure

7.14 show the estimated, initial and true model profiles for velocity and density at

the surface location 300m from the origin for the search bounds ±15% and ±25%

respectively. It is observed that the model preconditioning based VFSA algorithm

optimizes for the velocity and density models within a reasonable accuracy. Figures

7.15 and 7.16 show the estimated data for the model preconditioning based VFSA

algorithm operating within search bounds of ±15% and ±25% respectively. Figure

7.17 and Figure 7.18 show the difference between the estimated data and the true

data for the model preconditioning based VFSA algorithm operating within search

bounds of ±15% and ±25% respectively. The figures show that the model precon-

ditioning based global optimization algorithm is successful in reasonably estimating

the data.
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Figure 7.4: The initial velocity and density models. The initial model is chosen with
an upper and lower bounds of ±25% of the respective true values.

Progress of the model preconditioning based VFSA algorithm is indicated

by the evaluation of the cost function at each MP-VFSA iteration. Figure 7.19 and

Figure 7.20 show the evaluation of the cost function as the model preconditioning

based VFSA algorithm progressed through iterations operating within the search

bounds of ±15% and ±25% respectively.
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Figure 7.5: The initial velocity and density models in one dimension at the location
(300m, 0m). The initial model is chosen with an upper and lower bounds of ±15%
of the respective true values. The red line shows the true model, the blocky line
shows the upper and lower bounds of the model space and the zigzag line shows the
initial model.
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Figure 7.6: The initial velocity and density models in one dimension at the location
(300m, 0m). The initial model is chosen with an upper and lower bounds of ±25%
of the respective true values. The red line shows the true model, the blocky line
shows the upper and lower bounds of the model space and the zigzag line shows the
initial model.



7.5 Synthetic data example 152

Offset (km)

T
w

o−
w

ay
 ti

m
e 

(s
)

0.1 1.1

0.0

2.0

0.1 1.1

0.0

2.0

0.1 1.1

0.0

2.0

0.1 1.1

0.0

2.0

(a) (b) (c) (d)

Figure 7.7: Data corresponding to the initial model chosen within ±15% bounds of
the true model. (a) Shot location at the origin (0m, 0m). (b) Shot location at 300m
from the origin. (c) Shot location at 600m from the origin and (d) Shot location at
900m from the origin.
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Figure 7.8: Data corresponding to the initial model chosen within ±25% bounds of
the true model. (a) Shot location at the origin (0m,0m). (b) Shot location at 300m
from the origin. (c) Shot location at 600m from the origin and (d) Shot location at
900m from the origin.
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Figure 7.9: Difference between data corresponding to the initial model chosen within
±15% bounds of the true model and the true data. (a) Shot location at the origin
(0m, 0m). (b) Shot location at 300m from the origin. (c) Shot location at 600m
from the origin and (d) Shot location at 900m from the origin.
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Figure 7.10: Difference between data corresponding to the initial model chosen
within ±25% bounds of the true model and the true data. (a) Shot location at the
origin (0m, 0m). (b) Shot location at 300m from the origin. (c) Shot location at
600m from the origin and (d) Shot location at 900m from the origin.
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Figure 7.11: Estimated velocity and density model after 400 model preconditioning
based VFSA iterations. (a) The estimated velocity model and (b) the estimated
density model. The model search bound is ±15% of the true model values.
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Figure 7.12: Estimated velocity and density model after 400 model preconditioning
based VFSA iterations. (a) The estimated velocity model and (b) the estimated
density model. The model search bound is ±25% of the true model values.
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Figure 7.13: Estimated model (blue), true model (red) and initial model (black) for
(a) velocity (V) and (b) density (ρ). The model search bound is ±15% of the true
model values. Surface location of the vertical profile is 300m from the origin.
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Figure 7.14: Estimated model (blue), true model (red) and initial model (black) for
(a) velocity (V) and (b) density (ρ). The model search bound is ±25% of the true
model values. Surface location of the vertical profile is 300m from the origin.
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Figure 7.15: Estimated data after 400 model preconditioning based VFSA iterations.
(a) Shot location is at the origin (0m, 0m). (b) Shot location is at 300m from the
origin. (c) Shot location is at 600m from the origin. (d) Shot location is at 900m
from the origin. The search bounds are ±15% of the true models.
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Figure 7.16: Estimated data after 400 model preconditioning based VFSA iterations.
(a) Shot location is at the origin (0m,0m). (b) Shot location is at 300m from the
origin. (c) Shot location is at 600m from the origin. (d) Shot location is at 900m
from the origin. The search bounds are ±25% of the true models.
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Figure 7.17: Difference between the estimated and the true data. (a) Shot location
is at the origin (0m, 0m). (b) Shot location is at 300m from the origin. (c) Shot
location is at 600m from the origin. (d) Shot location is at 900m from the origin.
The search bounds are ±15% of the true models.
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Figure 7.18: Difference between the estimated and the true data. (a) Shot location
is at the origin (0m, 0m). (b) Shot location is at 300m from the origin. (c) Shot
location is at 600m from the origin. (d) Shot location is at 900m from the origin.
The search bounds are ±25% of the true models.
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Figure 7.19: The cost function evaluated at each model preconditioning based VFSA
optimization. The search bounds are ±15% of the true models.

The a priori information that the model space is smooth in the lateral direction

and blocky in the vertical direction is imposed in the global optimization scheme

by applying smoothing operators along the lateral direction and edge preserving

smoothing operators along the vertical direction of the model space. Smoothing

along the lateral direction is enforced by applying three-point moving average filter

in the lateral direction of the model space. The moving average operator is allowed

to pass through the lateral direction of the model only once during each VFSA

iteration. The length of the edge preserving smoothing operator is also kept fixed at

3 and the operators are allowed to pass through the vertical direction of the model

only once during the VFSA iteration. By keeping the moving average and the edge

preserving smoothing operators length to a minimum and the number of passes to

one, the model space is prevented from being overly smooth in the lateral direction

and overly blocky in the vertical direction. A total of 400 model preconditioning

based VFSA iterations were performed to obtain the results shown in the examples.
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Figure 7.20: The cost function evaluated at each model preconditioning based VFSA
optimization. The search bounds are ±25% of the true models.

7.5.1 Stability of the algorithm with SNR

Model preconditioning based VFSA algorithm is tested for stability with respect

to different noise levels. I have tested the algorithm operating within two different

search bounds, namely, ±15% and ±25% of the true models at SNR = [20, 10]. The

SNR is defined by the following equation.

SNR =
maxi,j|d(xi, tj)|

σ
, (7.5)

where SNR represents the signal-to-noise ratio, d(xi, tj) represents the observed data

at offset xi, time tj and σ is the standard deviation of noise.

Synthetic data generated by the second-order finite difference solution of the

acoustic wave equation are further contaminated with bandlimited noise such that

the SNR in two data sets are 20 and 10 respectively. The stability of the algorithm

is tested within the search bounds of ±15% and ±25% respectively. Figure 7.21

shows the true data with SNR = 20, estimated data and the data residue after

400 model preconditioning based VFSA iterations when the search bound is set to
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Figure 7.21: True data, estimated data and data residue. (a) Shot location is at the
origin (0m, 0m). (b) Shot location is at 300m from the origin. (c) Shot location is
at 600m from the origin. (d) Shot location is at 900m from the origin. True data
contain bandlimited noise such that SNR = 20. Search bound of the model space
is ±15%.
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Figure 7.22 shows the estimated model after 400 model preconditioning based

VFSA iterations. It is observed that the algorithm successfully estimates the model

within a search bound of ±15% via waveform inversion of shot gathers with SNR =

20.

Figure 7.23 shows the true data with SNR = 10, estimated data and the data
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Figure 7.22: Estimated model after 400 model preconditioning based VFSA itera-
tions. (a) Estimated velocity and (b) estimated density. True data contain ban-
dlimited noise such that SNR = 20. Search bound of the model space is ±15%.

residue after 400 model preconditioning based VFSA iterations when the search

bound is set to ±15% of the true model values. Figure 7.24 shows the estimated

model after 400 model precondition based VFSA iterations. It is observed that the

algorithm successfully estimated the model within a search bound of ±15% when

data are contaminated with noise such that SNR = 10.

Further, the algorithm is tested for stability within a search bound of ±25%

with SNR = [20, 10]. Figure 7.25 shows the true data with SNR = 20, estimated

data and the data residue after 400 model preconditioning based VFSA iterations

when the search bound is set to ±25% of the true model values. Figure 7.26 shows

the estimated model after 400 model precondition based VFSA iterations. It is ob-

served that the algorithm successfully estimated the model within a search bound
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Figure 7.23: True data, estimated data and data residue. (a) Shot location is at the
origin (0m,0m). (b) Shot location is at 300m from the origin. (c) Shot location is
at 600m from the origin. (d) Shot location is at 900m from the origin. True data
contain bandlimited noise such that SNR = 10. Search bound of the model space
is ±15%.

of ±25% with noisy data such that SNR = 20.

Figure 7.27 shows the true data with SNR = 10, estimated data and the data

residue after 400 model preconditioning based VFSA iterations when the search

bound is set to ±25% of the true model values. Figure 7.28 shows the estimated

model after 400 model preconditioning based VFSA iterations. It is observed that

the algorithm successfully estimated the model within a search bound of ±25% when

shot gathers are noisy such that SNR = 10.



7.6 Summary 169

D
ep

th
 (

m
)

0 2000

0

2000

Distance (m)
0 2000

0

2000

(a) (b)

Figure 7.24: Estimated model after 400 model preconditioning based VFSA itera-
tions. (a) Estimated velocity and (b) estimated density. True data contain ban-
dlimited noise such that SNR = 10. Search bound of the model space is ±15%.

The results of the algorithm obtained from data contaminated with various

degree of noise show that the algorithm is stable over a reasonable noise level in

the data. The algorithm operating within the search bounds of ±15% and ±25%

successfully recovered the model within reasonable accuracy in 400 model precondi-

tioning based VFSA iterations.

7.6 Summary

In the previous chapter, I applied the algorithm based on model preconditioning

and very fast simulated annealing algorithm on a one-dimensional model space to

estimate the earth elastic parameters from AVO data. I had shown that the algo-

rithm brings in the possibility of finding applications in very large dimensional model

space without being largely affected by the adverse effects caused by the large model

dimension. In this chapter, I have shown an application of model preconditioning

based global optimization in estimating the subsurface velocity and density on a two
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Figure 7.25: True data, estimated data and data residue. (a) Shot location is at the
origin (0m,0m). (b) Shot location is at 300m from the origin. (c) Shot location is
at 600m from the origin. (d) Shot location is at 900m from the origin. True data
contain bandlimited noise such that SNR = 20. Search bound of the model space
is ±25%.

dimensional grid. The estimation is obtained from shot gathers encompassing the

entire model grid. In the examples discussed above, I have used four shot gathers to

cover the entire model grid. The shot gathers are computed by solving second-order

finite difference acoustic wave equation. The shot-receiver geometry is chosen in

such a way that the four shot gathers encompassed the entire model grid. Model

preconditioning based VFSA algorithm is used to optimize for the velocity and den-

sity parameters over a grid of size 201 by 201 cells each. This is a very large model
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Figure 7.26: Estimated model after 400 model preconditioning based VFSA itera-
tions. (a) Estimated velocity and (b) estimated density. True data contain ban-
dlimited noise such that SNR = 20. Search bound of the model space is ±25%.

space for the optimization algorithm to work efficiently. I have incorporated the a

priori information, namely, smoothness along the lateral direction and blockyness

along the vertical direction of the model space in the model preconditioning based

VFSA scheme. The results show that the algorithm successfully estimates the ve-

locity and density parameters via full waveform inversion of the four shot gathers. I

have shown that the algorithm is stable over a reasonable noise level in the data. It is

a known fact that as opposed to gradient based optimization algorithms, the global

optimization algorithms provide means to escape from a local minimum. However,

for all practical applications of optimization algorithms, the cost of computation

is a primary concern. This requires that the global optimization schemes be pro-

vided with a reasonable and justified search bounds so that the computational cost

can be significantly minimized. I have shown that the model preconditioning based

VFSA algorithm successfully estimated the unknown model parameters within the

search bounds of ±15% and ±25% of the true model values. I would like to empha-

size that the examples shown in this chapter are very simple compared to the real

earth situations. However, the examples serve quite well the primary aim to show
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Figure 7.27: True data, estimated data and data residue. (a) Shot location is at the
origin (0m,0m). (b) Shot location is at 300m from the origin. (c) Shot location is
at 600m from the origin. (d) Shot location is at 900m from the origin. True data
contain bandlimited noise such that SNR = 10. Search bound of the model space
is ±25%.

the practical viability of global optimization schemes in a large dimensional model

space. Further research work in this direction would possibly make the benefits of

global optimization schemes more accessible in day-to-day optimization problems

involving complex real earth situations.
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Figure 7.28: Estimated model after 400 model preconditioning based VFSA itera-
tions. (a) Estimated velocity and (b) estimated density. True data contain ban-
dlimited noise such that SNR = 10. Search bound of the model space is ±25%.



Chapter 8

Discussion and conclusions

It is nature’s prerogative to conceal from us what we want to know. Be it the

knowledge of density of the ore body, subsurface conductivity or reservoir volume,

we have no direct access to such information. Our quest for knowledge about these

parameters is limited to acquisition of data through some experiments. However,

data do not provide any direct knowledge about what we want to know. If we want

to know the subsurface ore body density then we perform an experiment to acquire

gravity data. Likewise, we want to know about the subsurface conductivity or reser-

voir volume, we perform experiments to acquire resistivity or seismic data. In the

examples above, the model is the unknown (density, conductivity etc.), thus the end

product of inversion and data serve as the means to the end.

Inversion can be direct or indirect. Direct inversion involves estimation of the

model from the data when there exists direct analytical expressions to estimate the

model. Geophysical inversion is highly complex and hence more often than not, there

exists no direct analytical expressions to estimate the model. Thus, estimation of

model parameters is obtained through indirect means. Inversion is posed as an op-

timization problem and the solution is represented by the model that best optimizes

a user defined cost function. A cost function is defined in terms of a data misfit

term and regularization term. Data misfit term measures how closely an estimated

model fits the data. The regularization term incorporates a priori knowledge about

the model. Thus the regularization term constrains the optimization to a solution

that not only honors the data but also is consistent with what is known about the

solution a priori. The optimization problem becomes simple when there exists linear

or linearizable relationship between the model and the data. In case of a linear or

linearizable inverse problems, the cost function can be chosen to be quadratic, hence
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making it unimodal. Local optimization techniques based on gradient computation

are the most elegant means to obtain the minimum of a quadratic cost function.

However, when the data and model are related by nonlinear equations, the cost

function is no more quadratic. In such a situation, the cost function topology is

complex and likely to contain more than one minima. Gradient based optimization

techniques always proceed downhill and hence the optimization is local. Depending

on the initial model, the convergence invariably proceeds to the nearest minimum.

If the nearest minimum is not the global minimum then the obtained solution is

erroneous. On the other hand, optimization methods that are based on exhaustive

search techniques provide the means to ”jump out” of a local minimum by allowing

the optimization algorithm to climb uphill with a finite probability. Such methods

have the potential to find the global minimum and hence referred to as the global

optimization methods. Exhaustive search technique, also known as the Monte Carlo

algorithm, in spite of it’s ability to find the global minimum, is highly inefficient.

The algorithm becomes impracticably slow when the model dimension grows and

the rate of convergence suffers drastically. Methods such as the simulated annealing

and genetic algorithms were proposed to alleviate the problem of slower convergence

as observed in the Monte Carlo algorithm while preserving the benefits of exhaustive

search and possible convergence to the global minimum. Further modifications to

the classical simulated annealing were proposed in later times to achieve still faster

convergence to the global minimum. However, despite the modifications, the global

optimization algorithms continued to suffer from slow convergence as the model di-

mension grew. Such a shortcoming in global optimization algorithms is generally

referred to as the ”curse of dimensionality”. Geophysical inverse problems are highly

complex and involve a very large model space, thus limiting the scope for the ap-

plication of global optimization algorithms. Main thrust of my thesis is to develop

an approach to alleviate the issues associated with large model dimension and make

global optimization algorithms a viable means to obtain accurate solutions in highly

complex and nonlinear inverse problems in applied seismology.

My thesis can be broadly classified in two parts. In the first part, I am applying

classical simulated annealing algorithm in a blind deconvolution problem where the

optimization involves estimation of a mixed phase wavelet from seismic data. This

problem is of particular interest because the global optimization algorithm tries to

solve one equation with two unknowns. I am proposing a new approach based on

global optimization algorithm to estimate the coefficients of an all-pass operator.
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The estimated all-pass operators are such that the phase of an estimated minimum

phase wavelet can be optimally varied to obtain a mixed phase wavelet that more

accurately represented the data. The optimization is carried over by minimizing a

cost function defined as the L2-norm between the fourth-order cumulant of the data

whitened by the removal of the estimated minimum phase wavelet and the fourth-

order moment of an all-pass operator. The results show that the proposed global

optimization algorithm effectively solves a blind deconvolution problem.

In the second part of my thesis, I am proposing a new technique where the a

priori information are suitably incorporated into the global optimization algorithm

so that the problem of slower convergence due to large model dimension is mini-

mized. In this part of my thesis, I discussed important a priori constraints such

as the sparseness and blockyness constraints. I showed an example where sparse-

ness constraint is imposed in a deconvolution problem to obtain a high resolution

solution through the Iterative Re-weighted Least-Squares (IRLS) approach. In the

subsequent chapter, I am solving an AVO inversion problem by means of NonLinear

Conjugate Gradient (NLCG) method. I have divided the problem into two parts,

namely, (a) forward operator is based on Aki-Richards approximation of the Zoep-

pritz equations and (b) forward operator is based on the reflectivity method. In the

former case, the forward operator though linearized, has a degree of nonlinearity

because the model (P-wave velocity, S-wave velocity and density) formed a part of

the forward operator. The Aki-Richards equation based forward operator simulated

normal move-out corrected data with no multiples. In the latter case, the problem is

highly nonlinear. In addition to the inherent nonlinearity in the reflectivity method,

the presence of multiples and normal move-out in the data added to the nonlinear-

ity of the problem. In both the cases, I have imposed blockyness constraint on the

model space. The results show that accurate solution by means of local optimiza-

tion algorithm can be obtained when the degree of nonlinearity in the problem is

minimal. However, when the problem became highly nonlinear, the local optimiza-

tion technique failed. Through this example I showed a situation that necessitated

the use of global optimization scheme in order to obtain accurate results. In the

subsequent chapter, I am solving a nonlinear and complex AVO inversion problem

by means of global optimization algorithm. The model space comprised a large

number of thin pseudo-layers and each layer contained three unknowns, namely, P-

wave velocity, S-wave velocity and density. Such a parameterization of the model

space resulted in a large model domain for a global optimization algorithm. I have
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used Very Fast Simulated Annealing (VFSA) algorithm as the tool to achieve the

global optimization. I have incorporated blockyness constraint in the optimization

algorithm via nonlinear operators. The nonlinear operators, referred to as the Edge

Preserving Smoothing (EPS) operators, act on the model space as a second stage

to the VFSA algorithm. Incorporation of a priori information as a second stage of

the VFSA algorithm resulted in preconditioning the model space in a favorable way.

As opposed to relying on completely random perturbations, the proposed approach

helped the VFSA algorithm to operate in a favorably biased model domain. Results

indicate that the proposed algorithm provides faster convergence and solutions that

honor the data and consistent with the a priori information.

Further, I carried forward the approach of model preconditioning based global

optimization and applied the proposed algorithm on a very large dimensional prob-

lem. I optimized for velocity and density over a two dimensional grid via waveform

inversion of a number of shot gathers encompassing the entire model space. The

example, though trivial from the point of view of seismic data analysis, is highly

complex from the point of view of global optimization. The complexity of the opti-

mization problem lies in the fact that the model space is enormous. I have incorpo-

rated model preconditioning operators in both the lateral and vertical direction of

the model grid. I preconditioned the model space with a smoothing operator in the

lateral direction and edge preserving smoothing operator in the vertical direction.

As mentioned before, the model preconditioning was applied as a second stage to

the classical VFSA algorithm. The algorithm was tested on synthetically generated

data. The results show that good convergence to a solution consistent with the a pri-

ori information and data could be achieved within a reasonable number of forward

model evaluations. The problem discussed is simple but serves as a good example to

test the proposed global optimization algorithm when the model dimension becomes

very large. I have shown by the help of this example that model preconditioning

based global optimization schemes can favorably bias the model space according

to the a priori information to achieve faster convergence without jeopardizing the

benefits of exhaustive search.

Selection of very fast simulated annealing algorithm to test the model precon-

ditioning based global optimization was simply a matter of personal choice. I be-

lieve that extending the proposed approach of augmenting the global optimization

algorithm iterations with the model preconditioning operators to other global opti-

mization algorithms, such as the genetic algorithm, will be straightforward. In the
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last example, I have shown a successful application of the proposed algorithm on

a very large dimensional problem. Though the problem addressed in the example

was trivial from the point of view of seismic inversion, it’s importance can not be

undermined with regard to global optimization. I expect that further research can

lead the proposed algorithm to achieve better convergence and accurate solutions in

very large dimensional, highly complex and more realistic optimization problems.
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