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Abstract

Many geophysical inverse problems are ill-posed and have to be regularized. The most

often used solution methods for solving ill-posed problems are based on the use of quadratic

regularization that results in smooth solutions. Solutions of this type are not to be suitable

when the model parameter is piecewise continuous blocky and edges are desired in the

regularized solution. To avoid the smoothing of edges, which are very important attributes

of an image, an edge-preserving regularization (non-quadratic regularization) term has to

be employed. Total Variation (TV) regularization is one of the most effective regularization

techniques for allowing sharp edges and the existence of discontinuities in the solutions.

The edge-preserving regularization based on the TV method for geophysical inverse prob-

lems to the problem of estimating the velocity perturbation is studied. The acoustic velocity

perturbation is assumed to be piecewise continuous and blocky. The problem is based on

linearization acoustic modeling using the framework of the single-scattering Born approxi-

mation from a known constant background medium. To solve this non-linear and ill-posed

problem, an iterative scheme based on the conjugate gradient method is employed. The TV

regularization method provides us with the opportunity to recover more useful information

of velocity profiles from the measured seismic data. Though it requires more effort in imple-

menting the TV term to control the smoothing and regularization parameter, the algorithm

possesses the strong ability of marking the discontinuities and ensures their preservation

from over-smoothing.
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CHAPTER 1

Introduction

1.1 Background

Seismic data contains information regarding the geological structure and physical properties
of the subsurface. In geophysics, seismic migration is the most common and powerful tool
for imaging the subsurface structures.

Seismic migration or seismic imaging is the process of transforming the near surface infor-
mation - ground movement - recorded by seismometers into images of subsurface structures.
In a geophysical seismic experiment, seismic energy propagates from a source to the sub-
surface. As seismic waves are impelled forward within the subsurface, these waves are
reflected, diffracted or refracted at the interface between rock layers due to the variation
in rock properties, that is, seismic velocities or densities. These reflected seismic waves
from the subsurface are recorded at the surface by seismometers, allowing for conclusions
to be drawn on the structures and physical properties of the subsurface. Measuring both
the traveltimes from the source to the receiver and the amplitude at the receiver provides
information about the structural specific velocities in the subsurface.

1.1.1 Seismic migration and wave-equation modeling/migration

Seismic migration, traditionally, comprised of an imaging process, is a data-processing tech-
nique that generates an image of Earths structure from observed seismic data. But theoret-
ically, a seismic migration process can be restructured in two steps: forward modeling and
imaging. In forward modeling, seismic data are generated by propagating the waves from a

1



CHAPTER 1. INTRODUCTION 2

source to scatterer to receivers. Migration attempts to locate acoustic reflection boundaries
in the subsurface interior from the recorded seismic data at the surface, and produces an
image of the subsurface. The challenge in seismic migration is to accurately locate and
identify the positions where the wave energy is reflected and refracted.

Over the past decades, several migration techniques have been developed to perform this
task. These techniques can be differentiated by geometrical methods or by methods based
on the solution of the wave-equation, which in turn are based either on the ray and scatter-
ing theory or the wave-equation migration, which directly solves the wave-equation. Among
these methods are the Kirchhoff migration (Schneider, 1978), Finite difference (FD) migra-
tion (Claerbout, 1985; Mufti et al., 1996), Fourier finite difference migration (Ristow and
Rühl, 1994), Fourier migration (Stolt, 1978) and the phase shift migration or frequency wave
number migration (Gazdag, 1978, 1984). Regardless of the methods employed to ascertain
the solution to the wave-equation, all of these methods propagate the recorded seismic data
back either in time or space to the proper subsurface location.

The Kirchhoff Migration is based on a ray and scattering theory which uses asymptotic solu-
tions valid only for high-frequency approximation (Zhdanov, 2002). Multi-scattering effects
are ignored (Schneider, 1978). Due to high frequency approximation, the wave propagation
distances between scatterers and sources or receivers are limited to large - more than a few -
wavelengths. Therefore, the high frequency approximation and any effects of multi-arrivals
limit the accuracy of this migration.

The other method that directly solves the wave-equation is wave-equation migration (Claer-
bout, 1985; Mufti et al., 1996). Hypothetically, wave-equation migration methods are also
based on scattering theory. Depending on what wave-equation migration method is used,
assumptions are made just like in Kirchhoff, namely the various approximations to the
Greens functions. By and large, wave-equation migration is more accurate than the Kirch-
hoff Migration as there is no high-frequency approximation involved, and multi arrivals
are automatically considered. Most wave-equation migrations are based on the numeri-
cal approximation of finite difference methods. Reverse-time migration is an example that
uses the finite difference wave-equation modeling as a means of migrating seismic data in
the space-time domain. It solves the full (two-way) wave-equation, for example acoustic
or elastic waves, by extrapolation in time, allowing waves to propagate in all directions.
Though, the methods propagate the wavefields, but the propagation of source and receiver
side wavefields, must be considered in conjunction with an imaging condition. FD solu-
tions to the wave-equation are used to perform the migration as a backward time marching
scheme (McMeChan, 1983; Baysal et al., 1983). The two-way wave-equation finite dif-
ference modeling has no dip limitations, and produces all the events associated with the
wave-equation such as multiple reflections, head waves and (when the elastic wave-equation
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is used) anisotropic effects and mode conversions. Finite difference modeling is therefore an
ideal way to obtain realistic seismic data from a model.

The purpose of my study is to investigate the possibility of using non-linear inversion of
seismic waveforms on the study of known geophysical inversion algorithms, utilizing the
reverse-time migration algorithm. Particular attention is given on the use of finite-difference
modeling using the full acoustic wave-equation with constant density (Kelly et al., 1976).
How this method can be applied for non-linear inversion of seismic waveform will form the
next section of this thesis.

1.1.2 Adjoint state method

In practical applications, seismic migration based on the least-squares principle is most
widely used for determining the structural profile of the subsurface (Aster et al., 2005).
The inversion problem is methodically devised as an optimization problem that requires
minimization of the least-squares function between observed and computed data. The full
waveform inversion is, in general, a non-quadratic optimization problem. Seismic migration
can be regarded as the minimization of the cost function. The optimization of cost function
method allows for the determination of the location and the amplitude of the reflector
from seismic reflected data measured at the surface (Tarantola, 1984). The locations of
the reflectors can be obtained from seismic imaging principle (Clearbout, 1985). Seismic
imaging condition is one piece of the migration operator. The migration operator is the
first iteration of an inverse (i.e. it is the adjoint operator). This may not be true for all
methods of computing an inverse. Lailly (1983) demonstrated that the waveform and the
prestack reverse time migration share the same numerical algorithm and the prestack-stack
reverse time migration can be regarded as the first iteration. Though the optimization is a
non-linear, reverse time migration can also be the solution to the corresponding linearized
optimization problem. Theoretically, in reverse time migration, one has to solve numerically
the forward ( or from experiment it is the data recorded by a seismic reflection survey ) and
backpropagate wavefields in different method. The finite difference approximation scheme
is among many other methods for computing wavefield (Mora, 1987).

The backpropagation technique of reverse time migration, waveform inversion based on
reverse time of solution to the corresponding linearized optimization problem, introduced
by Lailly (1983) and Tarantola (1984) can be used for seismic waveform inversion. In this
method, the first step is to compute the cost function that measures the difference between
observed seismic data and computed data from the forward modeling. This residual data
set indicates how accurate the current model with respect to the original data actually is.
The backpropagated wavefield is, then, computed using the reverse-time technique. Next
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the sources forward-propagated wavefield is cross-correlated with the backward-propagated
wavefield of the data residual at each time step and summed over all the time steps to
produce the total gradient volume. Finally, at each special point, the amplitude of the
gradient is checked to be directly proportional to the velocity field change. This method has
been used for large-scale geological model in frequency domain waveform inversion (Stekl
and Pratt, 1998) Pratt et al. (1998), in the time-domain traveltime tomographic inversion
and waveform inversion (Gauthier et al., 1986; Zhou et al., 1995).

In seismic waveform inversion, in order to minimize the cost function, several forward mod-
eling and residual backpropagations are required to gradually update the velocity field. The
gradient of the cost function is related to the velocity field and can be computed by using
the Fréchet derivative, the perturbation theory or the adjoint state method. However, with
Fréchet derivatives, as the size of the problem increases, a large linear system is created
and requires excess computer memory. The adjoint state method enables us to compute
the gradient of the misfit function without computing the Fréchet derivatives (Plessix, 2006;
Symes, 2007). The result obtained by using the adjoint state method gives the same out-
put as the result obained based on the perturbation approach for acoustic wave-equation.
In the adjoint state method, a state of variables, whose physical meaning defines with the
backpropagation of waves (see Chapter 4), is defined to be the solution of a linear system
of equations.

1.2 Inverse problem and regularization

Wavefield inversion, such as velocity, density, etc., from the measured data, is, however,
much more complicated than the migration problem. This is due to complexity of the
physical quantity properties profile inside Earth with the intervals of such quantities not well
determined. Estimation of such parameters remains a fundamental problem in geophysical
research areas although there have been many efforts to address it.

The most common challenge in inverse geophysical problems is that problems are mathemat-
ically ill-posed. In other words, their solutions are not unique or highly sensitive to changes
in the data because they operate with insufficient data and most observations are subject
to noise (Jackson, 1972). In order to overcome this kind of problem, stabilization is needed.
Supplemental information must be introduced to least-squares inversion of wavefield. For
this reason, most inverse calculations involve weights and must be regularized (Tikhonov,
1963a). Least-squares inversion is the basis of many parameter estimations and data fitting
procedures. Additionally, the linear least-squares methods usually involve singular matrices
or matrices that are numerically singular and invertible. By regularizing the least-squares,
these singularities can be managed.
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The method of regularization has become an indispensable part of the inverse-problem
theory particularly for ill-posed inverse problems. This method of regularization has also
found many applications in geophysical problems: travel time tomography (Bube and Lan-
gan, 2008; Clapp et al., 2004), migration velocity analysis, high-resolution Radon transform
(Trad et al., 2002, 2003), to name a few.

However, regularization of the solution of inverse problems in geophysics depends primarily
on the choice of the regularization method used. This choice depends on the problem
under consideration in which the solution becomes correct and guarantees the stability of
the solution of the inverse problem. For example, the common regularization practiced
was based on Tikhonov’s idea (Tikhonov, 1963a,b) , which enforces spatial smoothness
uniformly on the output image. This regulation term is a quadratic regularization that
results in linear solutions computationally easily to solve for linear inverse problems. A
consideration, however, is that these regularization terms apply homogeneous smoothing
to the recovered image so consequently they will tend to blur sharp material properties
boundaries. If the desire is to preserve sharpness of edges in the given observation, then
non-quadratic regularizations function must be found (Charbonnier et al., 1997).

1.2.1 Edge-preserving regularization

Regularization of the inverse problem provides an opportunity to rediscover the origin of the
models parameter by performing a reverse operation. If the model parameter or the image
to be recovered is piecewise continuous and blocky, quadratic regularization methods tends
to strongly penalize discontinuities, smoothing the object edges and producing a blurry
image around each piecewise discontinuous edge. In order to preserve such edges, preserve
discontinuities in reconstructed profiles or piecewise function, a non-linear or non-quadratic
regularization method must be employed with strong edge-preserving properties.

The application and the performance of edge-preserving regularization has been studied in
different areas of astronomy (Geman and Yang, 1995; Molina et al., 2001), medical imagin-
ing (Charbonnier et al., 1997) and in geophysics (Farquharson and Oldenburg, 1998; Portni-
aguine and Zhdanov, 1999), spectral decomposition, edge-preserving imaging (Youzwishen
and Sacchi, 2006), velocity estimation (Valenciano et al., 2004). In essence, the quadratic
penalty term is replaced by another non-quadratic function allowing for the presence of
discontinuities. A Total Variation (TV) based edge-preserving regularization method is
among such edge-preserving regularization methods that have the ability to reconstruct or
restore images by preserving edge information of discontinuous model parameter without
over-smoothing the reconstructed images.
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1.2.2 Total variation regularization

Most regularization techniques, unlike the edge-preserving regularization (Valenciano et al.,
2004; Youzwishen and Sacchi, 2006) are based on the assumption that the model parameter
to be reconstructed is smooth and continuous. The total variation is independent of these
assumptions and it preserves the edge information in the reconstructed image. If the image
to be restored is blocky or continues piecewise, then the total variation only measures the
sum of the magnitudes of the jumps and oscillatory around the edges in the image.

The TV leads to an edge-preserving regularization functional that encourages smoothing in
the direction tangential to the edges and not in the direction orthogonal to the edges. This
preserves edge information of the discontinuous model parameter and allows for sharper
reconstruction.

The total variation regularization was first introduced by Rudin-Osher-Fetemi (ROF) for
image de-noising or de-blurring (Rudin et al., 1992). In total variation de-noising, one
attempts to remove noise from a signal or image by solving a nonlinear minimization problem
involving a total variation criterion. This method relies on the minimization of TV norm,
the L1 norm. Minimizing the TV norm of the estimated solution de-noises images subject to
constraints which relate the solution to the measured image and the estimated image. This
minimization scheme offers the best combination of noise removal and feature preservation.

Several approaches based on this idea have recently been shown to be very effective, partic-
ularly for de-noising functions with discontinuities. It has also evolved into a more general
tool for solving a variety of image restoration problems, such as for deconvolution, inpainting
(Vogel and Oman, 1995; Chan and Kang, 2006) and in medical imaging denoising (Wang
and Zhou, 2006; Christiansen et al., 2007). Recently this approach has also been used for
full waveform inversions for seismic velocity and anelastic losses in heterogeneous structures
(Askan et al., 2007).

Though the total variation regularization method is widely used for de-noising, its ap-
plication in seismic inversion has not been commonly used. However, the application of
edge-preserving regularization to the problem of estimating velocity perturbation using the
framework of modified Cauchy prior distribution based on linearizing the single-scattering
Born approximation from a known reference medium has been studied (Youzwishen and
Sacchi, 2006). Their result encourages further exploration into the same geometrical exper-
iment with different potential edge-persevering regularization term such as total variation
regularization.
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1.3 Summary of thesis work

This thesis focuses on two objectives: the application of total variation regularization in
geophysical problems using inverse theory and subsequently the adjoint state based opti-
mization algorithm for non-linear waveform inversion. Accomplishing these objectives is
organized as follows.

Chapter 2 - Review of the basic assumptions of the Born scattering method in seismic
modeling and the adjoint operators. The Born approximation method for linearizing the
Earth’s response from a source at the surface is briefly discussed and used to exemplify
the concept of migration and inversion. The derivation of the Born approximation and
assumption for seismic modeling/migration starts from the basic scattering theory, and the
inverse of scattering problem using the framework of Born approximation is reviewed.

Chapter 3 - Discussion of the application of edge-preserving regularization to the problem
based on the total variation method for estimating acoustic velocity perturbation from multi-
source, multi-receiver geometrical experiment. The optimization problem is solved by the
conjugate gradient algorithm in an iterative way. In doing, a routine based on Iterative Re-
weighted Least-Squares (IRLS) (Scales and Smith, 1994) is employed to solve the sparsely
regularized problem.

Chapter 4 - Review of the application of the adjoint state method for non-linear waveform
inversion. The method offers to compute efficiently the gradient of the cost function. The
two-way Helmholtz wave-equation in time domain is used for forward and backpropagation
of wave. Solutions to the Helmholtz wave-equation are computed using an explicit time-
marching method. An adjoint state method is used to compute the backpropagated waves of
the residual data. The image is then obtained by the cross correlation between the forward
and backward propagation waves (Claerbout, 1971).

Chapter 5 - Review of the summary of this thesis and further research.



CHAPTER 2

Linear scattering theory

2.1 Introduction

Non-linear wavefield inversion aimed at obtaining the structual image of the subsurface
geology and the estimation of the subsurface physical properties from measured data at the
surface are, in general, computationally expensive due to the highly non-linear properties
of these parameters (such as velocity and density) and the measured data. The non-linear
inversion algorithms usually require repetitive solutions of the forward problem defined by
wave propagation, which is followed by the update of the inverse problem solution. The most
common approach to overcoming the difficulties posed by the non-linearity is to linearize
the inverse problem using the Born approximation and solve the resulting linear problem
to reconstruct the model parameters. Linearization is important in geophysical problems so
that an approximate inversion method can be employed, which is computationally cheaper
than the non-linear inversion.

In this paper, we review the application of scattering problems in geophysics using the Born
approximation. The main motivation behind the development the Born approximation is
that the wavefield can be linearized and expressed linearly in terms of the acoustic velocity
perturbation. This approximation is based on the fact that scattering is weak and assumes a
small perturbation on the background acoustic potential, which are assumed to be homoge-
neous. The homogeneous backgrounds allow for analytical solutions of the forward problem
for any arbitrary geometry. Analytical solutions for the linearized inverse problem can be
solved computationally as well. However, the linearized forward scattering equation can be
derived for any arbitrary background velocity and geometry. For the aforementioned rea-
sons, the Born approximation is often employed because of its simplicity of implementation

8
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and computational advantage (Beylkin, 1985; Beylkin and Burridge, 1990).

The inverse scattering problem for an acoustic medium based on the Born approximation is
formulated by using the constant velocity background. A constant acoustic velocity medium
is probed by a point source, and the scattered field is observed along a curved receiver array
located outside the region where the medium velocity is different from the assumed back-
ground velocity. In the Born approximation, the model parameter that we want to recon-
struct is viewed as a small perturbation about an assumed background velocity model, and
the scattered wavefield is expressed linearly in terms of this perturbation. Though multiples
due to the background model are included in the scattered field, in the Born approximation
multiple scattered waves due to the velocity perturbations are neglected. In order to relate
the scattering wavefield to the acoustic velocity potential, a high frequency single scatter-
ing asymptotic approximation and an additional approximation using a generalized Radon
transform introduced by Beylkin are used (Beylkin, 1985).

In this chapter, the basic theory of scattering problems, the Born approximation and the
derivation of linearization of scattering waves, which are often utilized in the geophysics
community, are reviewed (Beylkin, 1985; Beylkin and Burridge, 1990; Youzwishen, 2001).
The objective is to apply this linearization method to the regularized least-square inversion
in Chapter 3.

2.2 Linearizing the scattering problem

In order to derive the scattering wavefield and compute the forward modelling, we first define
the wave propagation of an incident field resulting from the point source in the constant
background velocity medium. For acoustic waves in a medium with constant density, the
wave-equation is governed by the Helmholtz wave-equation

(
∇2 +

ω2

c(x)2

)
u(x,xs, ω) = −f(ω)δ(x− xs), (2.1)

where u(x,xs , ω) is the complex wavefield in the subsurface point x due to the sth excitation
source located at xs , f (ω) is the source function, ω is the angular frequency and c(x) is
the wave velocity of the background medium from which we can solve the wave propagation
problem. x is a vector that represents a coordinate (x, y, z). The energy content and the
shape of the waveform that results from such a wave-equation depends on the type of source
we chose.

For the sake of simplicity, let us rewrite the above Helmholtz wave-equation in a simpler
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form as
Lu = f, (2.2)

where L is the operator given by

L = ∇2 +
ω2

c(x)2
. (2.3)

A small perturbation in the background medium results in a small perturbation in the
wavefield. Hence the operator L can be decomposed into two parts, one results from the
constant background (unperturbed) medium and the other comes from the result of small
perturbation

L = Lo + εL1, (2.4)

where ε is a small perturbation parameter. Lo is the unperturbed operator which is equiv-
alent to

Lo = ∇2 +
ω2

co(x)2
, (2.5)

where co(x)2 is the constant background velocity field. In order to get L1, let us define α(x)
to be the acoustic velocity potential given by

α(x) =
1

c(x)2
− 1

co(x)2
. (2.6)

Equations [2.3 ] - [2.6 ] give the explicit value of L1 as

L1 =
ω2α(x)

ε
. (2.7)

Therefore, the change in the wavefield due to small perturbations in the background velocity
can be expanded into a series of terms as

u = uo + εu1 + ε2u2 + ε3u3 + .... (2.8)

which will be used to derive the single-scattering Born approximation. uo is the incident
wavefield which is obtained from the constant background medium.

Plugging equation [2.4] and [2.8] into equation [2.2], and collecting terms that are equal
powers in the perturbation ε, leads to the following recursive equation:

Louo = f for n = 0
Loun = −L1un−1 for n ≥ 1 .

(2.9)
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As we see from the above recursive equations, all of these equations are the form Lou =
a source function and can be solved using the Green’s function for the constant velocity

medium

(
∇2 +

ω2

c2
o (x)

)
G(x,xs, ω) = −δ(x− xs)

LoG(x,xs, ω) = −δ(x− xs),
(2.10)

where G(x,xs, ω) is the point source Green’s function for a source located at xs.

Making use of the above Green’s function for a point source, the solution to equation [2.9]
becomes the following recursive solution

uo = Gf for n = 0
un = −GL1un−1 for n ≥ 1 .

(2.11)

In other words, all higher order terms of the series depends on the incident wavefield. Finally,
the solution to the perturbed wavefield can be solved recursively from equation [2.11] and
then inserting the solution into equation [2.8]. Therefore, the total wavefield becomes

u = uo︸︷︷︸
incident wave

− εGL1uo︸ ︷︷ ︸
single scattered wave

+ ε2GL1GL1uo︸ ︷︷ ︸
Double scattered wave

+.... (2.12)

The total wavefield consists of the incident waves, waves scattered once due to the hetero-
geneity of the medium ( L1), waves that scattered twice due to the perturbation and all
other higher order scattered waves. In other words, the total wavefield is the sum of two
wavefields: the background and scattered wavefields. This series is called the Neumann
series or at times the Born series (Snieder and Lomax, 1996). Since our intention is to
linearize the scattering wavefield, we assume the scattering is weak. Hence we can apply the
Born approximation, valid only when the scattered field is much smaller than the incident
field. This implies that the heterogeneities are weak. As a result higher orders of scattering
wavefields can be excluded.

The Born approximation consists of truncating the multiple scattering after a single scat-
tered wave

u = uo − εGL1uo. (2.13)

The above equation is also known as Lippmann-Schwinger Equation (Zhdanov, 2002). One
of the advantages of the Born approximation is that the scattered waves −εGL1uo depend
linearly on the perturbation of the medium which we are interested in. In other words, the
scattering wave linearly depends on the acoustic velocity potential because L1 = εω2α(x).
By linearzing the wavefield, we solve the linear inverse problem instead of the non-linear
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inverse problem which is computationally expensive and, in most cases, hard to implement.
Linearized inversion methods rely on the assumption that the forward problem is linear in
the vicinity of the reference model. Therefore, the Born approximation is used to establish a
linear relation between the model perturbation and the data residuals. However, one of the
disadvantages of the Born approximation is that it ignores multiple scattering effects. When
such effects are present, one should use extreme caution using the Born approximation.

The incident wavefield in a constant background velocity can be solved directly using the
Green’s function; see equation [2.11]. Let Go(xs,x, ω) be the Green’s function for constant
background velocity.

For the point source with a spectrum f(ω) located at xs, the incident wave is expressed by

uo(xs,x, ω) = Go(xs,x, ω)f(ω). (2.14)

In the Born approximation, the scattering wave −εGL1uo at the receiver position xr is given
by

usc(xr,xs, ω) = ω2f(ω)
∫

Go(xs,x, ω)α(x)Go(xr,x, ω)dx3 (2.15)

where L1 = εω2α(x). Here, it should pointed out that the above scattering wavefield can be
applied for any arbitrary background velocity. When solved using a constant background
velocity, it is called the Born approximation. Otherwise, it will be a distored Born approx-
imation.

In three-dimensional space, the solution to the Green’s function for the homogeous function
is given by

Go(xs,x, ω) =
1

|x− xs|
exp (iω

|x− xs|
co

). (2.16)

In two-dimensions, its solution is of the form

Go(xs,x, ω) =
i

4
H1

o

(
ω
|x− xs|

co

)
, (2.17)

where H1
o is the zeroth order Hankel function of the first kind (Abramowitz and Stegun,

1972). Note that, in heterogeneous media, the Greens function cannot be solved analytically
and the forward problem must be solved numerically.

Since the Green’s function is a wave propagation, for any two arbitrary points, it established
as

Go(x,x′, ω) = A(x,x′)eiωτ(x,x′), (2.18)
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where τ is the travel time of the wave taken to propagate from x to x′ and A(x,x′) is
the amplitude of the ray that travels from x to x′. The amplitude satisfies the transport
equation

2∇τ(x,x′) ·∇A(x,x′) + A∇2τ(x,x′) = 0. (2.19)

The travel time should also satisfy the eikonal equation (Zhdanov, 2002)

|∇τ(x,x′)|2 − 1
c2(x)

= 0. (2.20)

Making use of the above facts, the scattering wave in [2.15] for each frequency is written as

usc(xr,xs, ω) = ω2f(ω)
∫

A(xs,x)eiωτ(x,xs)α(x)A(xr,x)eiωτ(x,xr)dx3. (2.21)

Let us define A(xs,x,xr) and τ(xs,x,xr) to be the new total amplitude and travel time
functions and given by:

A(xs,x,xr) = A(x,xs)A(xr,x) (2.22)

τ(xs,x,xr) = τ(xs,x) + τ(x,xr). (2.23)

Now equation [2.21] is reduced to a simple form

usc(xr,xs, ω) = ω2f(ω)
∫

A(xs,x,xs)eiωτ(xs,x,xr)α(x)dx3. (2.24)

In the time domain, the inverse Fourier transform, equation [2.24], is expressed as

usc(xr,xs, t) =
[
− ∂2

∂t2

∫
A(xs,x,xr)δ(t− τ(xs,x,xr))α(x)dx3

]
∗ f(t). (2.25)

where the symbol ∗ represents convolution. Due to the convolution, the second derivative
in time can be shifted onto the wavelet (Tarantola, 1984)

usc(xr,xs, t) =
[
−

∫
A(xs,x,xr)δ(t− τ(xs,x,xr))α(x)dx3

]
∗ ∂2f(t)

∂t2
. (2.26)

Note that the delta function in the above integeral is a zero value except at points that
satisfy

δ(t− τ(xs,x,xr)) =

{
1 for t = (xs,x,xr) = τ(xs,x) + τ(x,xr)
0 for t &= (xs,x,xr).

(2.27)
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2.2.1 Wave-equation in two-dimensions

As stated earlier, the Green’s function for any arbitrary background velocity can be ex-
pressed using the first order Hankel function given for given geometrical configurations
(source-receiver geometry) (Miller et al., 1987; Beylkin, 1985). However, here our objective
is to establish its solution in two-dimensional space using a constant acoustic velocity. Using
the far-field expression for the zeroth order Hankel function of the first kind function (Miller
et al., 1987), one finds that the Green’s function for two arbitrary points in the far field
(ωτ(x,x′) ' 1) is given by

Go(x,x′, ω) = −
(

co

8πω|x− x′|

)1/2

ei(ωτ(x,x′)+ π
4 ), (2.28)

which is equivalent to

Go(x,x′, ω) = (−iω)−1/2A(x,x′)ei(ωτ(x,x′)+ π
4 ), (2.29)

where

A(x,x′) =
(

co

8π|x− x′|

)1/2

. (2.30)

Making use of the solution to the Green’s function and the amplitude factor in two-dimensions,
the scattering potential reduces to the form

usc(xr,xs, ω) = iωf(ω)
∫

A(xs,x,xr)eiωτ(xs,x,xr)α(x)dx2, (2.31)

where A(xs,x,xr) in this case represents the new total 2D amplitude term

A(xr,x,xs) =
co

8π

(
1

|x− xs||x− xr|

)1/2

, (2.32)

where τ(xs,x,xr) is travel time functions.

In the time domain, equation[2.31] is expressed as

usc(xr,xs, t) =
[

∂

∂t

∫
A(xs,x,xr)δ(t− τ(xs,x,xr))α(x)dx2

]
∗ f(t), (2.33)

which is equivalent to

usc(xr,xs, t) =
[∫

A(xs,x,xr)δ(t− τ(xs,x,xr))α(x)dx2

]
∗ ∂f(t)

∂t
. (2.34)
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With this, we solve the propagation of waves numerically. For a detail of the calculations
see Miller et al. (1987), Beylkin (1985), and Beylkin and Burridge (1990).

Equation[2.34] is referred as the generalized Radon transform (GRT) because the inte-
gral data can be viewed as a migration weighted projection of the perturbation and these
weighted projections are curved integration surfaces (Beylkin, 1985). As a result, the scat-
tering wavefield can be used as projection of data to correlate each point in the scattered
waveform to the model parameter (acoustic potential).

2.3 Forward and adjoint modeling

The forward problem is obtained by discretizing equation [2.34], thus solving the single-
scattering approximation from the known constant reference medium. This method at-
tempts to transform the model to data form. The Green’s function computed using an
asymptotic approximation in constant background velocity. In a simple notion, the lin-
earized discrete form of the forward problem is offen expressed as

d = Gm, (2.35)

where d is the vector that represents the observed scattered wavefield usc(xr,xs, t) after
discretization of equation [2.34], G is the forward operator or demigration operator and m
is the discretize acoustic potential.

The seismic inverse scattering problem is formulated via the Generalized Radon Transform
(GRT). The GRT is often used for estimating the distorted solution of the inverse scattering
problem because it is difficult to find the true inverse solution of the forward problem to
retrieve the acoustic potential. However, to retrieve the distored invese solution, it does have
an adjoint expression. The inversion requires the intoduction of the inverse integral operator
to equation [2.31]. This adjoint partially recovers the distorted version of the acoustic
potential. Applying the weighting function to the adjoint of the GRT creates the solution to
the asymptotic inverse of the scattering problem. An analytical expression of the weighting
function for the common source-receiver geometries is then used to recover the original model
(Miller et al., 1987). The action of forward modeling and the adjoint migration operator
can be interpreted in terms of integral geometry as projection and backprojection operator
respectively (Miller et al., 1987). From Miller et.al. results it becomes clear that α(x ) can
be regarded as an approximation to the inverse problem.

An adjoint modeling, also called migration, is computed from a linearized forward propaga-
tion model using GRT. The transpose of the forward operator G propagates data observa-
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tion points back to the medium perturbations. The adjoint problem solves the approximate
acoustic potential m as

m† = GT d, (2.36)

where GT is the adjoint of the forward operator or demigration operator. m† is not the
true acoustic potential, but an approximation to the inverse problem. It is based on the
assumption that [GT G]−1 ≈ I. For a more accurate result for the original model param-
eters, one has to solve the inverse of the demigration operation should the operator be a
square matrix and its inverse exists. Then the inverse problem can be solved using a least-
squares method (note GT &= G−1). However, the adjoint solution gives the structure of the
subsurface model, where the scatterers are located.

The method is computationally cheaper than the direct inversion method for estimating
the acoustic potential, but the image is often smeared and the amplitude information is
distorted. A schematic representation in Figure 2.1 shows how the results obtained using
the inverse and adjoint operator method appear. The output obtained using the adjoint
operator method is usually only suitable for structural studies. However, based on the
frame work of the adjoint modeling, we can develop an inverse scheme to fit the seismic
data and provide a more accurate solution, which will be discussed in the next chapter.

2.4 Synthetic data example

A 2D velocity model shown in Figure 2.2 is tested to show the effectiveness of the adjoint
method in estimating the structure of the subsurface. A constant background velocity model
set to 2200 m/s is used to approximate the Green’s function. A small velocity contrast is
used as the perturbation so that its wave propagation can be linearized using the Born
scattering approximation. The perturbation region can be easily seen from the figure, a
different areas with velocity perturbation. A uniform grid spacing of )x = )z = 8 m with
a time sampling rate of )t = 1 ms are used. A Ricker wavelet of 25 Hz is chosen. For
forward modelling of wave propagation, a data set consisting of 5 shots (200 m spacing )
and 25 receivers (32 m spacing) was used at the surface.

Then, the migration image is obtained by back-propagating the observation data to the
subsurface. Imaging methods require an estimation of the reference potential. The migrated
image shows the exact location of where the scatterer are located. Though it predicts the
location of the reflector, the adjoint method (unlike the inverse problem gives) a blurry
and fuzzy image. This method, however, hardly predicts the correct amplitude of the deep
reflector, which is a common problem in most migration algorithms. But, the method gives
basic information where reflectors are located.
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Figure 2.1: A schematic representation of modeling geophysical problems. The adjoint operator,
unlike the inverse problem, gives a blurry and fuzzy image.
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Figure 2.2: (a) Velocity model. (b) Synthetic data generated by forward modeling with a
source located at 200 m at the surface. (c) The acoustic velocity potential recovered by the
adjoint operator.
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2.5 Summary

In this chapter, we reviewed the linearization wavefield based on the Born approximation
using scattering theory. The Born approximation and an asymptotic form for the incident
wavefield is used to establish the linearization of the forward problem with respect to the
model parameter, acoustic perturbation. The incident wavefield is determined by a constant
reference model, which is assumed to be known a priori. The method, however, can be
extended to variable reference model. The Born approximation is only valid for small
perturbations of the velocity from assumed background velocities. This approximation is a
single scattering approximation. Multiple scattering due to the heterogeneity of the medium
is ignored.

The forward and the adjoint problems can be easily solved by discretization of the linear
scattering waves. For an approximate solution of inverse problems, the method of GRT is
used. Linearization of the forward problem is essential in geophysical problems. In the next
chapter, we employ this method to compute the least-square inversion for estimating the
acoustic potential profiles of the medium.



CHAPTER 3

Edge-preserving Regularization

3.1 Total variation regularization

A great number of geophysical-estimation problems are mathematically ill-posed because
they operate with insufficient data (Jackson, 1972). The most common problem in waveform
inversion of seismic reflection data based on the least-squares inversion is that the solution
is not unique and computationally unstable. It is very unlikely to get an exact solution
from any numerical computation. However, the solution we get from the computation is
approximate, and it may be closer to the actual model parameter if the numerical method is
accurate. One of the reasons for inaccuracy of the solution is that the actual measurements
of geophysical quantities we acquire from the observation have noise and experimental errors.
It is very challenging to fit and predict the result with the theoretical modeling. The best
solution to this kind of problem is to be able to search and find the model and algorithm
that produces and fits best to the measurement data.

Since inverse wave propagations are often ill-posed, the method of regularization in the
least-squares optimization is indispensable. The goal of regularization is to impose addi-
tional constraints on the estimated model parameters to recover unique and stable solutions.
The idea is to make the estimation problems well-posed (where a unique solution exists and
depends continuosly on the data) by adding indirect constraints on the estimated model
(Aster et al., 2005). The regularized inverse problems is found in many applications in
geophysics problems: travel time tomography (Bube and Langan, 2008; Clapp et al., 2004),
migration velocity analysis, high-resolution Radon transform (Trad et al., 2002, 2003), spec-
tral decomposition, edge-preserving imaging (Youzwishen and Sacchi, 2006), and velocity
estimation using edge-preserving regularization (Valenciano et al., 2004).

20
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In this chapter, total variation (TV) regularization, a non-quadratic regularization method
for imposing constraints to the least-square problem, is employed. The objective of this reg-
ularization method is straightforward. If the physical quantity that is going to be estimated
is piecewise constant, has sharp edge boundaries and blocky, then this regularization term
looks to reconstruct piecewise continuous profiles by enforcing a sparseness constraint on
the model gradient without much smoothing (Youzwishen and Sacchi, 2006). Consequently
it preserves its edge and discontinuities while suppressing artifacts due to noises.

The focus of the work is on the application of edge-preserving regularization (EPR) based
on the total variation. The application of the TV is to the problem of estimating acoustic
velocity perturbations from a multi-source and receiver geophysical experiment as described
in Chapter one. This work is an extension of Youzwishen and Sacchi (2006). In the case of
Youzwishen and Sacchi (2006), the work is based on the modified Cauchy prior distribution;
here I am using total variation. The problem is linearized using the single scattering Born
approximation about a known background reference medium (Beylkin, 1985; Beylkin and
Burridge, 1990; Miller et al., 1987). The assumption is based on the fact that the velocity
model profile is small with respect to the background reference model and that it can be
modeled by blocky velocity perturbations.

3.2 The damped least-squares solution

Depending on the number of known data and unknown model parameters, say n and m

respectively, a discrete inverse problem is classified as over-determined, under-determined
and even-determined problems. If it is over-determined problem, then there exist more
known observation data than unknown model parameters (n > m). For example, fitting
more than two data points, which are not collinear or don’t lie along a line, to a straight line
is an overdetermined problem. The least-squares approach solves best fit line by minimizing
the error function of an over-determined problem. An under-determined problem has fewer
observation data points compared to the number of unknown model parameters (n < m).
For example, fitting a straight line through one datum point is an under-determined problem.
In this case, the solution to the problem is infinite and can not be solved with the least-
squares approach alone. In order to solve the problem, one has to impose a constraint; the
problem requires regularization. Depending on the nature of the problem, different kinds of
regularization can be incorporated. In the case of even-determined, the number of known
observation data points are exactly equal to the number of unknown model parameters
(n = m). For example, fitting a straight line through two data points is an even-determined
and yields a unique solution. Here, it should be pointed out that this kind of situation rarely
occur in geophysical inverse problems. Even though in such cases we have equal number
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of known data points and unknown parameters, it is still impossible to gather a perfect
noise-free data to get all the valuable information of the Earth’s subsurface properties. In
general, most geophysical problem lie in the category of ill-posed (i.e. under-determined)
problem due to aforementioned reasons.

As described from the first chapter, we focus on the solution of the discrete linear inverse
problem that arises in the multi-source and receiver seismic acoustic probe in the framework
of the Born approximation. If the data are represented by vector d and the model parameters
by vector m, (which in our case is the acoustic potential), their functional relationship is
defined by the forward modeling operator or demigration operator G as

d = Gm + n, (3.1)

where d is the measured scattered wavefield at the surface of the earth and n is the additive
uncorrelated noise. The reason for this additive noise is because experimental measurements
are usually contaminated by some random noise and are thus inaccurate.

The cost function for the ill-posed inverse problem is written in terms of the acoustic per-
turbation m, and the least-squares optimization amounts to minimizing the least-squares
norm of the residual difference

J(m) = ||Gm− d||22, (3.2)

where || · ||2 represents an L2 norm, and all quantities written in bold represent vectors.

One way to find the solution to the linear inverse problem without any regularization is to
solve the least-squares minimization

mls = (GT G)−1GT d. (3.3)

The solution is obtained from the above equation is a naive solution, because it is done
straightforward and can lead to a solution that is not useful. Second, in most geophysical
problems, the solution obtained from least-square is not unique and is ill-posed as described
previously. For this reason, in order to get a stable and unique solution, one can solve
equation [3.2] with a quadratic, Tiknovon, regularization

J(m) = ||Gm− d||22 + µ||Dm||22, (3.4)

The first term is the least-square norm and represents the data misfit portion of the cost
function. The second term represents the regularization term. µ is a positive value reg-
ularization parameter that determines the goodness of fit to the measured data and the
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amount of regularization that has to be done to the measured data. The importance of the
regularization parameter (µ) can be seen from the cost function into two ways. For example,
if the regularization parameter, (µ), is large, then it means that more weight is given to
minimizing the model norm over the misfit function. On the other hand if (µ) is small,
then the misfit is the main (importance) term in the minimization. In this case the model
norm becomes less important. Therefore, in order to come up with the best value of the
regularization parameter, one has to try simultaneously reducing the norm (stability) and
misfit to honor the observation. D is the regularization operator matrix, and in most cases
it is either first or second order derivatives. It is also referred to as the weighting matrix for
the model parameter.

In Tikhonov’s regularization approach, we look for the model parameter m that minimizes
the least-squares norm of the compound vector ||Gm − d||22 + µ||Dm||22. The least-square
minimum solution is given by

mmn = (GT G + µDT D)−1GT d, (3.5)

where GT and DT is the transpose of G and D, respectively. If D = I, where I is the identity
matrix (i.e. no first or second order derivative operator are applied), then the solution is
called the damped least-square solution (Clearbout, 1992). The term GT G in most cases
is invertible for ill-posed problems (Strang, 1986 ). The introduction of the regularization
prevents the singularity associated with inverting zero terms.

In practice, most of the regularization of inverse problems suffers from a trade-off between
the size of the regularized solution and the quantity of the fit that it provides to the given
data. Different regularization techniques differ on the basis on how they minimize this
trade-off. This can be controlled by the selection of a proper regularization parameter ( µ).

The above regularization not only tries to fit the regularized solution to the exact solution,
but it also penalizes large norms. The solution gives a smooth solution, which is desirable
for some applications. But, if the desired solution to be recovered is discontinuous and
piecewise, then one approach is to replace the regularization term, which will be done in the
next section.

3.3 Edge-preserving using total variation regularization

In this section we focus on total variation regularization method which is used to preserve
edges and does take into consideration the information that the data set is blocky and discon-
tinuous. The regularization term in equation [3.2] is replaced by a non-linear regularization
term as
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J(m) = ||Gm− d||22 + µ||
−→
+m||1, (3.6)

where ||
−→
+m||1 is the total variation of m. The operator

−→
+ is

−→
+ = x̂

∂

∂x
+ ẑ

∂

∂z
. (3.7)

In a more clear way the above equation [3.6] can be written as

J(m) = ||Gm− d||22 + µ||
√

(Dxm)2 + (Dzm)2||1 (3.8)

where Dx and Dy are the horizontal and the vertical discrete first order derivative operators
with respect to x and z respectively. µ is the regularization parameter.

3.3.1 Minimization Problem

In this section, the minimization of the cost function with a non-linear total variation reg-
ularization term will be shown. For the sake of simplicity, let us define

mx = Dxm
my = Dzm,

(3.9)

where mx and mz are the derivatives of the model parameter with respect to x and z

respectively.

In order to minimize equation [3.6], we take the derivative of the cost function with respect
to the model parameter m. When minimizing it, the total variation regularization term is
not differentiable at 0, as the derivative of ||

−→
+m||1 at 0 leads to a singularity. To avoid this

in numerical implementations a small constant value, α, is added to give

||
−→
+m||1 = ||

√
m2

x + m2
z + α2||1 =

∑

i,j

|
√

m2
x,i,j + m2

z,i,j + α2|, (3.10)

where 0 < α < 1 . This is a smoothing parameter and has a significant effect on the
solutions. The meaning and application of α will be discussed in detail in the next section.

The TV regularization method leads to the minimization of the functional

J(m) = ||Gm− d||22 + µ||
√

m2
x + m2

z + α2||1. (3.11)
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Minimizing equation [3.11] is a non-linear least-squares problem because the mifit term is
quadratic in m whereas the second term is non-quadratic in m .

The gradient of equation [3.11] with respect to m gives

∇mJ = GT(Gm− d) + µ
−→
+.

−→
+m

||
−→
+m||1

. (3.12)

Note that ||
−→
+m||1 is known as the gradient magnitude; this term provides us with the

information about the discontinuities in the image. The second term in the right hand side
of the above equation is computed using finite difference approximation. Therefore, the
second term in the right hand side of equation [3.12] is expanded as

−→
+ ·

−→
+m

||
−→
+m||1

=
mxx(m2

z + α2)− 2mxmzmxz + mzz(m2
x + α2)

(m2
x + m2

z + α2) 3
2

(3.13)

The solution of the derivatives of each term of m in the above expression obtained by finite
difference approximation are

mxx =
mi+1,j − 2mi,j + mi−1,j

)x2
(3.14)

mzz =
mi,j−1 − 2mi,j + mi,j−1

)z2
(3.15)

mxz =
mi+1,j+1 + mi−1,j−1 −mi+1,j−1 −mi−1,j+1

4)x)z
(3.16)

mx =
mi+1,j −mi,j

)x
(3.17)

mz =
mi,j−1 −mi,j

)z
(3.18)

where i and j are indexes. For a uniform grid spacing, we take )x=)z in numerical
implementations.

3.3.2 The numerical scheme

The solution to equation [3.12] can be computed using different techniques. Among them
are the steepest descent method using line search, Newton’s method (Chan et al., 1995;
Osher and Fatemi, 1992), the Prime-Dual Newton method (Vogel, 2002; Chan et al., 1998),
and the lagged diffusivity fixed point iterative method (Vogel and Oman, 1998; Chan and
Mulet, 1999). In this thesis the lagged diffusivity fixed point iterative method (Vogel and
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Oman, 1996; Shi et al., 2007) is used in conjunction with the conjugate gradient method.
One reason the lagged diffusivity method was chosen is because it is straightforward to
implement ; it does however, requires a careful choice of α to avoid numerical instabilities
for type of solutions we seek. A fixed-point lagged diffusivity iteration method has been
applied in the regressive area to employ linearization of the non-linear differential equation
(Dibos and Koepfler, 1999; Vogel and Oman, 1998; Vogel, 1997) and in total variation
discretization (Moisan, 2007).

Following Dibos and Koepfler (1999) and Vogel and Oman (1998), here we utilized the
lagged diffusivity fixed point method for solving equation [3.12]. This is a scheme where the
regularization term is lagged by one step and iterated until it converges. The idea of the
fixed-point lagged diffusivity iteration method is that it employs the linearization of a non-
linear differential term by lagging the diffusion coefficient behind one iteration. For details
see (Vogel, 2002; Chan and Mulet, 1999). This method has been used for obtaining total
variation regularization and applied to an image in such way that the non-linear differential
term in the right hand side of equation [3.12] is linearized in the form as (for details see
Appendix)

∇mJ = GT (Gm− d) + µR(m)m. (3.19)

So, we seek the solution that minimize the above equation

∇mJ = 0, (3.20)

which in turn gives the solution

[GT G + µR(m)]m = GT d. (3.21)

The above equation is a non-linear problem and can be solved iteratively method using the
method of conjugate gradients. This method is also known as the iteratively reweighted
least-squares (IRLS) method. The weighted term is R(m). First we set mk be the solution
at the kth iteration, then the solution at the k + 1 iteration is solved from the following
equation

[GT G + µR(mk)]mk+1 = GT d. (3.22)

A straightforward approach to solve the above equation is to tune the regularization pa-
rameter µ until a desired image is recovered, which is then solved iteratively. Tuning the
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parameter every time, however, is time consuming and requires a lot of effort to get the
solution that we seek.

Below is an algorithm to compute the iteratively reweighted least-square using the conjugate
gradient (CG) algorithm. The method proceeds by generating vector sequences of iterates
(i.e., successive approximations to the solution), and update the iterate solutions and residu-
als. The iteratively reweighted regularization term is embedded in an iterative-optimization
scheme of the conjugate-gradient algorithm. At each step, the lagged diffusivity term (iter-
ative reweighted term) is computed and improved, and used for the next CG minimization
until a desirable solution is obtained. The implementation of the fixed-point iterative method
of total variation regularization is done in Matlab.
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main loop
while ||J(mk+1)− J(mk)|| ≤ tolerance ( user defined )
Obtain the Total varation regularization term
R(mk)
solve the following withing CG method
[
GT G + µR(mk)

]
mk+1 = GT d

assign G←−
[
GT G + µR(mk)

]

Start CG optimization
r(0) : = b−Gm(0),

P(0) : = r(0)

i := 0

p(0) : = r(0) = b−Gm(0),

α(i) : =
rT
(i)r(i)

pT
(i)Gp(i)

,

m(i+1) : = m(i) + α(i)p(i),

r(i+1) : = r(i) − α(i)Gp(i),

if rk+1 is sufficiently small → exit

β(i+1) : =
rT
(i+1)r(i+1)

rT
(i)r(i)

,

p(i+1) : = r(i+1) + β(i+1)p(i).

i : = i + 1

end of CG
update the model paramter
end of main loop

3.4 Results and discussions

As a reference, first a simple calculation is tested to varify the validity and accuracy of the
algorithm. The result of the calculations will provide some perspective on the quality of
the result that can be obtained by modeling. A simple velocity layer medium shown in
Figure 3.2 [a] is considered. The velocity model consists of different layers with different
velocities. The vertical velocity profile is piecewise continuous, thus it contains sharp edges.
A uniform grid spacing )x = )z = 10 m with a time sampling rate )t = 1 ms are used. A
Ricker wavelet of 30 Hz is chosen. For forward modeling of the wave propagation, a data set
consisting of 3 shots and 30 receivers at the surface, (x, 0), were used. The source-receiver
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Figure 3.1: Source-receiver geometry.

geometry is depicted in Figure 3.1. The kernel G, in this scheme, is computed based on the
Born approximation of single scattering theory, as described in Chapter 2.

First, a synthetic seismic data are generated with the true model from a known reference
medium set to be 1600 m/s. This synthetic data are assumed to be the observed data. A
small noise, signal to noise ratio (SNR)=60, is added to the synthetic data. Figure 3.2 [b]
is the generated synthetic seismic data for a single shot located at (20m, 0m). The veloc-
ity inversion is then carried out using least-square data fitting with and without the total
variation regularization, Figure 3.2 [c-d]. Figure 3.2 [c] is the recovered solution using the
Tikhonov regularization. This method results in a stable and smooth solution. However, its
solution has too many pumps or wiggles and fuzzy boundaries. Using the EPR method, such
wiggles are mostly eliminated, Figure 3.2 [d]. The utilization of the total variation regular-
ization is to make sure that the inversion preserves its edges without too much smoothing.
In order to come up with such a solution, the discontinuities and sharp edges are controlled
by two parameters, one by µ and the other by α.

The parameter α, which is introduced in the total variation and ensures that the TV func-
tional is continuously differentiable, plays another role as well. It can have a great influence
on the behavior of the regularized function, which can be very nonlinear. Appropriate
choices of these parameters are very important criteria that should be carefully chosen for
a good regularized output. During the optimization of the gradient, the initial model is
set to be homogenous (set to zero) in the computations; no edges are detected in the first
iteration. In the second iteration, and so forth, the edges and the discontinuities are con-
trolled by trial and error (the choice of α). The procedure starts from two extreme points
and is refined until a solution with desirable features is obtained. If α is very large, it will
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Figure 3.2: The true layer velocity model (A), (B) synthetics data obtained from the single-
scattering Born approximation computation, shot location at 20m from origin (0 m, 0 m). (C)
reconstructed solution using least-squares damped method and solution using edge-preserving
regularization method (D). Unlike the Tikhonov regularization, the EPR solution is clean and has
no wiggles.
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dominate the TV term and, as a result, the TV regularization behaves as a quadratic form.
The regularized term loses its non-linearity property, TV ≈ ||α||1. As a result, none of the
discontinuities quantifies as edges and thus the gradient becomes more well-behaved. A full
smoothing is applied, which is not ideal if sharp edges are to be recovered. The TV term
becomes a constant independent of the model parameter m, which means that the solu-
tion to the minimization problem will be the unregularized or naive least-squares solution.
Therefore, the non-linearity behavior of the gradient is controlled by the TV term with an
appropriate choice of α. As a matter of fact the edge-preserving solutions goes to small α,
the weighting function magnifies all edges and discontinuities through the derivatives (see
Equation [3.13]), preserves sparseness of |+m|. Contrary, large α smooth out R(m) and
the output solution as well. In other words, α controls the smoothness of the solution. The
weighting function R(m) locates the presences of edges and discontinuities.

For example, Figure 3.3[b] and[c] show the results obtained using improper choice of α and
µ. These results are computed using wrong values the regularization parameters; small
deviations from the refined regularization parameters were taken. The optimization of the
algorithms for each iteratively reweighed norm was run for 200 iterations, with α = 10m,
µ = 1e−1, and producing the a relatively smooth solution and the TV method doesnt exactly
produce the edges.

One of the difficulties in this algorithm is that there is no successful heuristic way to deter-
mine the value for α through the iterations. On top this, finding the best combination of
α with µ involves a lot of effort. While keeping µ, α is chosen until large-scale edges are
marked and preserved. Next µ is adjusted until a desirable solution is obtained. In most
of these case studies, α is chosen carefully by multiplying small values (in most cases 10−2

< α < 1) with the mean of the corresponding iterated solution of the acoustic perturbation.

As for the computational cost the algorithm is very expensive as compared to the least-square
method, in which solutions are obtained by one linear inverse problem. The EPR method
requires more iterations (in most cases 5-10) of a weighted linear solution as described
in the previous section. Typically, in our model, each minimization of a newly iteratively
reweighted solution is achieved within 200-300 iterations of the conjugate gradient algorithm
depending on the type and complexity of the model.

In order to see the effectiveness of the algorithm, we compared the result obtained from the
total variation regularization technique with the one recovered using a zero order quadratic
regularization. To see the efficiency of EPR with TV on edges, we plot a certain portion
of the velocity model. Figure 3.4 depicted the acoustic velocity profiles for the true model
[a], [b] is the solution obtained with damped least-square; and [c] is the solution obtained
with TV method. Looking at these figures, it is clear to say that the EPR inversion method
produces better resolution, a more piecewise continuous solution of the original model pa-
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Figure 3.3: The true layer velocity model (A), (B) synthetics data obtained from the single-
scattering Born approximation computation, shot location at 800m from origin. (C) reconstructed
solution using least-squares damped method and solution using edge-preserving regularization
method (D). Result based on wrong choice of the regularization parameters; α and µ.
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Figure 3.4: The depth acoustic velocity perturbation profile at (300m, 0m). True depth acoustic
velocity perturbation (a), solution using damped least-squares (b) and solution using EPR based
on TV (c). The vertical indicates the normalized acoustic pertubation.
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rameter while still being able to smooth the noise. The weighting function R(m), during the
reweighted iteratively linear solution, identifies the position of the edges and discontinuities
and turns off smoothing at these positions. In Figure 3.4 [c], the total variation regular-
ization functional eliminated highly oscillatory components observed in Figure 3.4 [b] while
preserving discontinuities and levels off sharp edges piecewise constants without penalizing
discontinuities.

The next tested model is relatively complex comapared to the previous layer velocity model
(Figure 3.5 [a]). The same computational procedure is used, except for the regularized
constraint parameters and the amount of noise added to the synthetic data. In this model,
the velocity model profiles range from 2300 to 2800 m/s. A constant background velocity
model set to 2500 m/s is used to approximate the Green’s function. For forward modelling
of wave propagation, a data set consisting of 5 shots (400 m spacing) and 50 receivers (32 m
spacing ) was used at the surface. Figure 3.5 [b] is the generated synthetic seismic data for
a single shot located at (800m, 0m). The optimization of the algorithms for each iteratively
reweighed norm was run for 300 iterations, with α = 0.06m, µ = 1e−2, and producing
the edge map and restored image shown in Figure 3.5 [d]. Figure 3.6 [b-c] is the vertical
acoustic velocity profiles at (300m, 0m) . Results obtained in this case still produce much
better solutions than the damped least-square solutions ( see Figure 3.5 [c] and 3.6 [c] ) in
terms of resolution and sharpness of the edges.

For the last test image, we present a SEG salt model Figure 3.7 [a]. In this model, the
velocity model profiles range from 2400 to 2700 m/s. Here it should pointed out that the
velocity of SEG salt is adjusted in such a way that the velocity profile structure departure
from the reference medium is small enough that the Born approximation is applicable. The
idea here is to test the velocity profile of model using TV regularization as it has a wide
range of magnitude of discontinuities. However, the true velocity profile of the SEG salt
model used in most case studies is not the same as the one used in this study. A constant
background velocity model set to 2200 m/s is used to approximate the Green’s function. For
forward modelling of wave propagation, a data set consisting of 8 shots (400 m spacing ) and
108 receivers (32 m spacing) were used at the surface. The optimization of the algorithms for
each iteratively reweighed was run for 300 iterations, with α = 0.02m, µ = 1, and producing
the edge map and restored image shown in Figure 3.7 [c]. Figure 3.8 [b-c] is the vertical
acoustic velocity profiles at (10.5km, 0km). Results obtained in this case once again produce
better solutions in terms of resolution and sharpness of the edges than the damped least-
square solutions ( see Figure 3.7 [c] and 3.8 [c]). However, the total variation regularization
method is not prefect to recover all the spikes observed in the original model (Figure 3.8
[a]). In this method, it should be pointed out that smooth gradient is not estimated.

The solutions of the EPR method based on TV is smooth and almost free of noise (see
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Figure 3.5: The true layer velocity model (A), (B) synthetics data obtained from the single-
scattering Born approximation computation, shot location at 800m from origin. (C) reconstructed
solution using least-squares damped method and solution using edge-preserving regularization
method (D). Unlike the Tikhonov regularization, the EPR solution is clean and has no wiggles.
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Figure 3.6: The depth acoustic velocity perturbation profile at (560m, 0m). True depth acoustic
velocity perturbation (a), solution using damped least-squares (b) and solution using EPR based
on TV (c). The vertical indicates the normalized acoustic pertubation.
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Figure 3.7: The true layer velocity the SEG SALT model (A), (B) synthetics data obtained
from the single-scattering Born approximation computation, shot location at 4.62km from origin.
(C) reconstructed solution using least-squares damped method and solution using edge-preserving
regularization method (D). Unlike the Tikhonov regularization, the EPR solution is clean and has
no wiggles.
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Figure 3.8: The depth acoustic velocity perturbation profile at (10.5km, 0km). True depth
acoustic velocity perturbation (a), solution using damped least-squares (b) and solution using
EPR based on TV (c). The vertical indicates the normalized acoustic pertubation.
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Figure 3.7 [d]) compared to the least-squares solution in Figure 3.7 [cb]. Even though the
EPR method recovers better solutions; it doesnt produce sharp edges of the depth location
and horizontal, and it also smooths some of the features of the true velocity profile of the
original model due to insufficient number of sources and receivers used in the algorithm.
The Born approximation, however, lacks the ability to produce the correct amplitude of
the wave of the deep location. On top of that, adjusting the correct combination of the
two parameters to minimize the noise while keeping the discontinuities is very difficult.
Overall, the algorithm with reasonable choices of these parameters recover better results
and performs simultaneous turning off of the noise while keeping the edges, discontinuity,
and small details compared to the damped least-square solution.

3.5 Summary

In this chapter, the edge-preserving regularization based on the total variation method for
small scale geophysical inverse problems is studied. The method can be very useful if edges
of model or the reconstructed velocity, which in our case is the acoustic velocity perturba-
tion, is piecewise continuous and blocky. The TV regularization method provides us with the
opportunity to recover more useful information of velocity profiles from the available seismic
data. Unlike in quadratic regularization, total variation regularization, a priori knowledge
on the details to be preserved in the restored model is taken into account. Though it re-
quires more effort in implementing the TV term to control the smoothing and regularization
parameters, the algorithm possesses strong convergence properties, recovers the piecewise
constants, reduces oscillations and, more importantly, the algorithm is practically efficient.
Results obtained using TV are better compared to damped least-squares method.

The total variation method, however, has some drawbacks. For example, a very small change
in the velocity profiles in the model parameter hardly preserves fine structures. Controlling
the regularized parameters is also not easy. The two variable parameters have to be chosen
carefully to create constraints to get a desirable solution. Further improvement in the
solution may be gained by modifying the TV regularization, applying it in conjunction with
other edge-preserving functions (Chan et al., 1998), using prime-dual in combination or
other ways of discretizing the total variation term.



CHAPTER 4

Wave-equation migration using adjoint

state method

4.1 Wave-equation migration using adjoint state method

Waveform inversion based on the least-squares principle is the most common method used in
geophysical applications for determining the structure of the subsurface of Earth. The main
goal of seismic data inversion is to the Earth model that best fits the observed seismic data.
This chapter reviews the application of the adjoint state method in non-linear geophysical
inverse problems. In order to reconstruct the model parameter from measured data in
geophysical problems, the minimization of the misfit function is required. This is an inverse
problem, which may be either linear or non-linear. If non-linear, the adjoint state method
comes into play for minimizing the misfit function without computing the Fréchet derivatives
or Jacobian matrix, which can be expensive to compute because a large linear system is
created and requires excess memory as the size of the problem increases (Plessix, 2006;
Symes, 2007). The use of the adjoint state method is especially important for wave-equation
velocity analysis (waveform inversion). In this method a state of variables, whose physical
meaning will be defined later, are the solutions of a linear system of equations.

The interest of this work is to explore the potential application of the adjoint state method
in minimizing the gradient function. In addition to waveform inversions, the method is also
used for seismic migration because seismic migration is an instance of inverse problems,
because the gradient of the misfit functional is related to the migrated image. The opti-
mization algorithm allows us to determine the location and amplitude of the reflector from
the seismic data measured at the surface (Tarantola, 1984).

40
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This chapter focuses on the basic methodology and underlying geophysical principles of
seismic migration. Due to the time constraints, the waveform inversion has not been done.
The focus of the future direction is to explore and extend the application of the method
for velocity inversion. Here we restrict the method to cases of constant density and an
instance of the inverse problem for migration for simplicity only. This method, however,
can be generalized to variable density and can be extended for waveform inversion. The
reason why we chose the adjoint state method instead of the reversal time migration is due
to its importance in finding the gradient with less computational time, should one need to
perform waveform inversion.

In seismic migration, the key is to retrieve the locations and the amplitudes of the reflectors,
thereby constructing an image of the subsurface. Full (two-way) wave-equation migration
using the finite difference (FD) method is among many other techniques in determining the
structure of the subsurface of the Earth. The application of the finite difference method
in seismology has been used extensively (Moczo et al., 2007). The FD method is a general
method that transforms an ordinary partial differential equation (PDE) into a difference
equation that can be solved numerically. The FD approximation to the wave-equation
is used extensively in the seismic exploration community. One example is the Helmholtz
wave-equation, which is a hyperpolic PDE in nature. This is because the fact that envi-
ronment of interest is, generally, characterized by very complex environmental geometry
and strong anisotropic material properties. The Helmholtz wave-equation is often used to
approximately model wave propagation in inhomogeneous media.

The standard FD migration has relied on one-way wave-equations, which allow energy to
propagate in one direction (generally downward). Although the method gives a reliable
solution, this method may not give accurate migration when the structure has strong lateral
changes in velocity or steep dips. At the same time, one-way wave-equations are also
incapable of producing correct amplitudes and ignore multiple scattering along the depth
coordinate (Berkhout, 1982).

Two of the reasons for using one-way wave-equation methods are the relative ease of imple-
mentation and the computational efficiency they afford. For example the Gazdag phase shift
migration, which assumes a laterally-constant velocity model, is the simplest and cheapest
among a few to mention (Gazdag, 1978, 1984). On the other hand, the two-way wave-
equation migration, while easy to implement, is not nearly so computationally friendly
should inversion be required. Two of the advantages of two-way migration is that it has no
dip limitations and the propagation effects before and after reflection are taken into account.
For this reason, here presented is a full wave-equation or two-way wave-equations migration
in two-dimensional space using adjoint state method. An explicit time-stepping scheme is
used.
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4.2 Theory

The wave propagation is modelled by a constant-density acoustic wave-equation, the Helmholtz
wave-equation. In a 2D isotropic medium the Helmholtz equation is

(
∇2 − 1

c(x, z)2
∂2

∂t2

)
u(x, z;xs, zs, t) = −f(t)δ(x− xs)δ(z − zs), (4.1)

where u(x , z ; xs , zs , t) is the seismic wavefield at (x , z ) due to the sth excitation source
located at (xs , zs), c(x , z ) is the wave velocity and f (t) is the seismic source function. The
left hand side of the above equation, the Dirac delta function, satisfies

f(t)δ(x− xs)δ(z − zs) =

{
f(t) for x = xs and z = zs

0 for x &= xs or z &= zs.
(4.2)

In order to solve the above Helmholtz equation [4.1], we discretize and solve it using an
explicit finite difference scheme based on the 2nd order centered finite difference operator in
space and time. The discretized form of the wave-equation becomes

(
un

ix−1,iz
− 2un

ix,iz
+ un

ix+1,iz

)x2

)
+

(
un

ix,iz−1 − 2un
ix,iz

+ un
ix,iz+1

)z2

)
(4.3)

+
1

c2
ix,iz

(
un+1

ix,iz
− 2un

ix,iz
+ un−1

ix,iz

)t2

)
= −f(t)δ(xix − xs)δ(ziz − zs), (4.4)

where )t is the time step, and )x and )z are the grid spacing in the x and z direction
respectively. The value of u at n means its value at the nth time.

4.2.1 Boundary condition

The common problem in reflective or scattering of wave studies is its solution of the wave-
equation outside the domain. If its domain is unbounded, the spurious reflections arising
from the boundary will be problematic for the numerical accuracy to the solution. In order
to correct for such problems, appropriate boundary conditions can be used. In this method,
the 1st order approximation of the Engquist Majda absorbing boundary conditions are used
(Engquist and Majda, 1977). The first order absorbing boundary condition is expressed as

(
∂

∂n̂
− 1

c(x, z)
∂

∂t

)
u = 0, (4.5)
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where n̂ is the normal direction with respect to the appropriate domain boundary. For
example, the discretization of the equation [4.5] at the boundary of the domain along the x
axis and z = 0 (that means the case for iz = 1 and 2 <= ix <= nx − 1 ) is

un
ix,2 − un

ix,1

)z
− 1

cix,1

un
ix,1 − un−1

ix,1

)t
= 0. (4.6)

4.2.2 Stability Condition

Solutions of a system of linear equations, when its elements are constructed using the FD
method are highly susceptible to numerical dispersion and instability. In order to overcome
computational errors that arise from grid dispersion effects, a fine grid spacing must be used;
the numerical accuracy of the solution is controlled by number of grid point per wavelength
(Lin et al., 2008). Second order finite difference implementation of the Helmholtz operator
will require a minimum of 10-12 samples per wavelength. However, the Nyquist criteria
requires at least two grid points per wavelength to avoid an aliasing effect (Liu, 1997).

On top of that, a time step ()t ) size restriction has to be imposed for stability. Information
cannot be propagated across the grid faster than the grid velocity vg,

vg =
√
)x2 +)z2

)t
. (4.7)

In other words, to properly sample the wavefield, the size of the grid cells and the time step
have to be carefully sampled. If so, the explicit FD approximation of the solution of the
Helmholtz wave-equation is conditionally stable. In addition to that, the size of the time
step has to decrease as the size of the grid cells decreases.

Note that the implementation of FD method can be an explicit or implicit method. It is
just a different technique for numerically solving differential equations. The explicit FD
technique computes the value at time n+1 as a function of values at time n. The numerical
calculation is solved recursively from the initial time to the final simulation time. On the
other hand, the implicit FD method computes the value of the function at time n as a
function of time n + 1. In this case, the implicit method requires solving systems of linear
equations to develop calculations from time n to time n + 1. This method is widely used
in frequency-domain versions of the acoustic wave-equation. The accuracy of the numerical
solution using FD methods can be stable, unstable, conditionally stable or unconditionally
stable. The unstable FD method gives a large change in the function value for small change
of the initial conditions, hence it propagates large numerical errors and may not converge to
the solution of the partial differential equation. The conditionally stable FD method, on the
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other hand, propagates a small change in value for a small change of the initial conditions
and converges to the solution of the partial differential equation, but with numerical errors.
The Helmholtz wave-equation implemented in our case using the FD method is conditionally
stable. For a 2D model, second order finite difference method, the stability should be stable
for time steps (Kosloff and Baysal, 1982)

)t ≤ 2
πvmax

(
1
)x2

+
1
)z2

)− 1
2

, (4.8)

where vmax is the maximum velocity of the medium. Note that the grid velocity is always
greater than the maximum velocity allowed by the stability condition. For stability, the
frequency content of the source must satisfy (Kosloff and Baysal, 1982)

fmax ≤
1
2

vmin

max ()x,)z)
, (4.9)

where vmin is the minimum velocity of the medium.

4.3 Forward problem

The forward modeling is obtained by solving the explicit centered finite difference scheme
of equation [4.3] - [4.4] with the following initial boundary conditions

u(x, z;xs, zs, 0) = 0 (4.10)

∂u(x, z;xs, zs, 0)
∂t

= 0. (4.11)

The pressure field is then computed by explicit time marching scheme

un+1
ix,iz

= 2un
ix,iz

− un−1
ix,iz

+
c2
ix,iz

)t2
∇2un

ix,iz
+ f(t)δ(xix − xs)δ(ziz − zs), (4.12)

where∇2 is the Laplace operator. Once the pressure field is obtained over the model domain,
we then pick those points at which the receivers are located

dpred(xr, zr, t) = R(x, z, xr, zr)u(x, z;xs, zs, t), (4.13)

where R(x, z, xr, zr) is a matrix operator on u that contains the receiver positions (xr, zr).
All entry values except those at receiver positions are zero.
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4.4 Migration and inversion using adjoint state method

For the sake of simplicity, let us write the wave-equation in the frequency domain

A(ω,m)u(x, z;xs, zs, ω) = −f(ω)δ(x− xs)δ(z − zs), (4.14)

where A(ω,m) is the discretized Helmholtz operator of
(
∇2 + w2

c(x,z)2

)
, u(x, z;xs, zs, ω) is

a complex pressure field and m is the model parameter. The model parameter, m, is the
square of the slowness 1

c(x,z)2 .

The synthetic data at the receiver position are

dpred(xr, zr, ω) = R(x, z, xr, zr)u(x, z;xs, zs, ω), (4.15)

where R(x, z, xr, zr) is a matrix operator on u and contains the receiver positions. This
matrix is exactly the same as the matrix stated in the forward modelling problem. The
inversion then requires the minimization of the misfit or the least-square functional

J(m) =
1
2

∑

ω

∑

s,r

‖ Rs,rus(ω,m)− ds,r(ω) ‖2= 1
2
‖ Ru− d ‖2 . (4.16)

Since all the numerical calculations were done in time domain, in order to have a clear
view, the above equation is equivalent to minimizing the least-square functional in the time
domain as

J(m) =
1
2

∑

s,r

∫ T

0
(Rs,rus(t)− ds,r(t))dt, (4.17)

where ds,r are the recorded data at the receiver positions. Note that the dependencies of
spatial positions are not written explicitly. This problem is a non-linear inverse problem.
The misfit function depends on the model parameter of the complex pressure field. The idea
here is to minimize the function with respect to the model parameters. However, the model
parameter, which in our case is the inverse of the slowness, is not written explicitly. Hence
the cost function is implicitly dependent on the model parameters through the pressure
field. For this reason, we look for other means of minimizing the cost function. One is to
apply a constraint. This method is commonly used for least-squares data fitting methods.
To get the expression of ∇mJ we apply constrains. The constrained optimization problem
may be reformulated as an equivalent problem of searching for the optimum point of the
associated Lagrangian:
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L(m, us, λs) = J(us)− λs(Aus − fs), (4.18)

where λ′ss are the Lagrange multipliers or adjoint variables. In other words, we minimize the
misfit function by forcing Aus − fs = 0. Note that,A is the discretized Helmholtz operator.
The direct and adjoint state equations may now be stated as stationary point conditions
of the Lagrangian. Now let us take the derivative of L with respect to λ, m and us, and
compute for ∇mJ . The derivative of L with respect to λ and setting it to zeros gives

∇λL(m, us, λs) = 0. (4.19)

This gives the direct equations or the forward problem; equivalent to solving equation [4.1]
in time domain

Aus − fs = 0. (4.20)

In a similar way setting the derivative of L with respect to us to zero gives

∇uL(m, us, λs) = 0. (4.21)

The above equation gives the adjoint equations

A∗λs = RT (Rus − d), (4.22)

where A∗ is the adjoint operator. It propagates backward the residual wavefield between the
observed and predicted data and it assumes this residual as its source term. Bear in mind
that, for each of the s shots, the source or residual term in the right hand side is summed
over all receivers; λs is then the backpropagation of the residual field. For sufficiently
smooth background velocity, λs is simply equal to the observed back-propagated wavefield
of the shot gather because Rus = 0. This is equivalent to time reversal migration. Note
that calculation is performed for each source. In the time domain the above equation is
equivalent to solving:

(
∇2 − 1

c(x, z)2
∂2

∂t2

)
λ(x, z;xs, zs, t) =

∑

r

RT
s,r(Rs,rus(T − t)− ds,r(T − t)), (4.23)

λ(x, z;xs, zs, 0) = 0, (4.24)
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∂λ(x, z;xs, zs, 0)
∂t

= 0, (4.25)

where λ(x, z;xs, zs, t) back-propagates the residual (right hand side of equation [4.23]) into
the model domain starting from the final times (reverse in time). It is called back-propagated
field of the residual. This back-propagated wave is solved in the same procedure as the
forward problem. The following procedures determines how to solve gradients of J(m). Let
us first assume u = u(m) be the exact solution to the direct equation. The Lagrangian then
reduces to

L(m, u(m), λ(m)) = J(m) (4.26)

Using equation [4.18] and [4.26], and the chain rule, we will have the following expression

dL
dmi

=
∂J

∂mi
=

∂uT

∂mi
∇uL +

∂λT

∂mi
∇λL +

∂L
∂mi

=
∂L
∂mi

. (4.27)

Finally equations [4.18] and [4.27] give the gradient

∂J

∂m
=

〈
λs,

∂A

∂m
us

〉

x

, (4.28)

where 〈.〉x stands for the dot product in x. The above equation gives the gradient for
one source and single frequency. To get the total gradient, we sum over all sources and
frequencies

∂J

∂m
=

∑

ω

∑

s

〈
λs,

∂A

∂m
us

〉

x

. (4.29)

The gradient J is a vector. Outside the boundary conditions, we will have

∂A

∂m
= ω2. (4.30)

Finally at the discretization point x over the range of the domain, the gradient becomes

∂J

∂m
= w2Re

(
∑

ω

∑

s

λ(x, z;xs, zs, w)u(x, z;xs, zs, ω)

)
. (4.31)

In the time domain, the above equation is equivalent to
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∂J

∂m
=

∑

s

∫ T

0
λ(x, z;xs, zs, T − t)

∂2u(x, z;xs, zs, t)
∂t2

dt. (4.32)

The gradient of J(m) is then becomes

∂J

∂m
(x) =

∑

s

∫ T

0
λs(x, T − t)

∂2us(x, t)
∂t2

dt, (4.33)

The gradient is similar to a migrated image; Claerbouts imaging principle (Claerbout, 1971).
According to Lailly (1983) and Tarantola (1984), the migration corresponds to the negative
of the gradient and multiplied by a positive constant, which corresponds to migration weight
(equivalent to the diagonal of inverse of the Hessian matrix) (Pratt, 1990). The constant
multiplication can also be obtained from the perturbation theory. For details see Pratt
(1990). Equation [4.33] is summed over all shots. The quantity within the summation is
the gradient per shot. For each shot gather, the migration is obtained using the gradient in
equation [4.33] (the quantity within the summation).

Below is the extended approach if one is able to find the velocity model from the above
expression. Since the gradient of the least-squares equation is non-linear with the model
parameter, the model parameters can be optimized using the gradient descent method that
minimizes J (m) by updating the model parameter in the opposite direction of the gradient
of J (m) iteratively. By this method,

mn+1 = mn − α∇mJ(m), (4.34)

where the subscript indicates the iteration number and α is the step length. With this
methodology, one can solve the velocity model without explicitly solving the Fréchet deriva-
tive, which is very time consuming. This is one of the advantages of using the adjoint state
method. In this thesis, as stated early the inversion of velocity model has not been done.
In the future, I intend to extend and explore the non-linear inversion method further in the
frame work of the adjoint state method.

4.5 Result and discussions

The validity and accuracy of the finite difference method is tested using a simple dipping
interface with a dip angle 18.5o, upper velocity 2000 m/s and lower velocity 2500 m/s;
Figure 4.1. A shot gather technique is used in which a source is placed at a location xs = 12
m (x-axis in a 2D) and depth of zs = 12 m in a 2D space domain, see Figure 4.1. A
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Figure 4.1: The velocity model with dipping inteface used to test the accuracy of the numerical
computations. The velocity of the upper medium is 2000 m/s whereas the lower is 2500 m/s.
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Figure 4.2: Ricker wavelet used for source excitation.
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continuous equally spaced, )x = 4 m, receivers were placed along the depth z = 12 m. A
Ricker wavelet with center frequency of 30 Hz is used as an excitation source. A sampling
rate of 1 ms is used. The location of first receiver coincides with that of the source, whereas
the rest is separated from the source by nr)x, where nr is the rth receiver. Its accuracy of
the calculation is then verified by calculating the travel times of the dipping layer, T,

T 2 =
(

2zs

v1

)2

+
(

x

v1

)2

+
(

4xzssin(θ)
v1

)2

, (4.35)

where, zs is the depth of the source from the surface, θ is the dipping angle of the reflector,
v1 is the velocity in the first medium and x is the source-receiver distance for a fixed source.
Figure 4.3 shows the two travel times calculated by using the FD method of the acoustic
wave-equation and the above equation. The plot is to show the comparison of the first
arrival (P-waves) in these two methods. The top curve just above the seismogram is the
first arrival of reflected waves obtained from equation [4.35], whereas the seismogram are
synthetic reflected waves obtained from FD wave-equation. A close look at the results
at xs = 12 m and nearby, there is a discrepancy between the results obtained by FD
approximation and the one obtained by equation [4.35]. This can be attributed to the
accuracy of the numerical FD calculations (artifacts) near the boundary since the source is
close to the left wall domain. Generally there will be spurious reflections arising from the
boundary that is problematic for the numerical accuracy to the solution. However, when
the source position is changed to xs = 240 m and zs = 12 m, this effect is not seen; see
Figure 4.4. The first arrival of travel times (P-waves) obtained using equation [4.35] agrees
well with the synthetic numerical results obtained from the FD wave-equation.

Next a relative complex model is used to better understand the quality and efficiency of
the adjoint state method. The velocity model used is depicted in Figure 4.5. The velocities
from the top to bottom, looking in the middle, are 2000 m/s, 2500 m/s, 3000 m/s, 3500
m/s and 4000 m/s. This method is chosen in such a way that it has steep dip, multiple
layers and large velocity contrast so that it represents a practical geophysical model. A
uniform grid spacing )x = )z = 6 m with a time sampling rate of )t = 1 ms were used
and a Ricker wavelet of 30 Hz was chosen. For forward modelling of wave propagation, a
data set consisting of 21 shots and 155 receivers were used. The source-receiver geometry
is depicted in Figure 4.6. Each source has 155 receivers. Many receivers were used in order
to increase the data coverage of the medium (since there is a small numbers of sources).
The receivers are located between 6 m and 1854 m. The shots are located between 12 m
and 1812 m with a 90 m interval. Once again, a shot gather technique is used. For better
understanding on how each shot gather estimate the location of reflectors, data from each
synthetic shot gather was plotted; see Figure 4.7 - Figure 4.12. The reason for this is to
show the migrated images of each source as described in the theory section and the total
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Figure 4.3: Synthetics data obtained from the finite difference computation when the source is
placed at (12m, 12m) and the top curve just above the seismogram is the first arrival of reflected
waves obtained from equation [4.35] calculating the travel times of the dipping layer.
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Figure 4.4: Synthetics data obtained from the finite difference computation when the source is
placed at (250m, 12m) and the top curve just above the seismogram is the first arrival of reflected
waves obtained from equation [4.35] calculating the travel times of the dipping layer.
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Figure 4.5: The velocity model. Looking in downward in the middle, the velocities of the medium
from the top to bottom are 2000 m/s, 2500 m/s, 3000 m/s, 3500 m/s and 4000 m/s.

migrated image. These migrated images show how each source gather migration predicts
the location of the reflector.

Figures 4.7 - 4.12 show the shot gather synthetic reflected seismic data obtained from the
forward problem. In each case the first direct arrivals show a move out away from the
source location due to the non-linearity dependency of velocity. For each shot gather, the
migration is then obtained using equation [4.33]. Figures 4.13 - 4.18 show the corresponding
migrated images for each shot gather. Comparing each of the shot migration images, we
see the effects of source position in predicting the locations of the reflector. For example,
the 1st shot hardly predicts the location of the reflector from the right side of the medium
due to most of the energy of the source propagated is reflected from the reflector on the left
side of the medium. In the same way shot 11 hardly predicts the location of the reflector on
the left side of medium. Note that time stepping FD method creates some artifacts. The
numerical artifacts are especially visible in the migrated images.
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Figure 4.6: Source-receiver geometry.

The amplitude of the wave can also be improved using the normalized imaging condition
rather than the conventional cross-correlation imaging condition (Claerbout, 1971) which
does not consider the normalization of the amplitudes of downgoing waves. However, the FD
wave-equation migration method or the reverse-time migration is still potentially the most
accurate method in the sense of faithfully honoring the wave-equation. All other methods
eventually fall short of it in their approximations. However, FD migration methods have the
potential of generating unwanted artifacts, for example, internal multiples from locations of
sharp impedance contrasts.
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Figure 4.7: Synthetic shot gather for the model in Figure 4.5 for the first four consecutive shots;
shot located at (a) (12m, 0m), (b) (102m, 0m) , (c) (192m, 0m) and (d) (282m, 0m).
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Figure 4.8: Synthetic shot gather for the model in Figure 4.5 for shot located at (a) (372m, 0m),
(b) (462m, 0m) , (c) (552m, 0m) and (d) (642m, 0m) .
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Figure 4.9: Synthetic shot gather for the model in Figure 4.5 for shot located at (a) (732m, 0m),
(b) (822m, 0m) , (c) (912m, 0m) and (d) (1002, 0m) .
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Figure 4.10: Synthetic shot gather for the model in Figure 4.5 for shot located at (a) (1092, 0m),
(b) (1182, 0m) , (c) (1272, 0m) and (d) (1362, 0m) .
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Figure 4.11: Synthetic shot gather for the model in Figure 4.5 for shot located at (a) (1452, 0m),
(b) (1542, 0m) , (c) (1632, 0m) and (d) (1722, 0m).
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Figure 4.12: Synthetic shot gather for the model in Figure 4.5 for shot located at (1812, 0m).

Each shot gather migration image is then stacked to produce the final migration image.
Some of the artifacts appeared in each shot gather were suppressed in the final image. The
final migration (Figures 4.19) shows the location of the reflector; in good agreement with
the reflector in the velocity model, see Figures 4.5 and 4.19. However, the amplitude of the
deep reflections is weak. This is seen in the figure. Even though the adjoint states method
using the FD method predicts the location of the reflector; it still underestimates the am-
plitude of deep reflector. In order to boost and preserve somewhat the relative amplitude
of deep reflection, the migration weight, which is equivalent to the diagonal of inverse of
the Hessian matrix has to be taken into account (Plessix and Mulder, 2004). In our case,
the migration weight is approximated using infinite receiver coverage, but the results do not
indicate whether the amplitude is improved. The methodology presented here gives better
resolution compared to the one computed with the Born approximation using an acoustic
single-scattering if the velocity contrast in the medium is high. This is because the pertur-
bation theory assumes roughness to be small in terms of both amplitude and slope. The
Born approximation is limited to weak back-scattering features. The method given in this
chapter, two-way wave-equation migration, has potential to address multiples, transmission
loss and converted waves in other forms to some extent. However, it still requires detailed
information about the velocity profile of the medium (Wapenaar and Berkhout, 1986). Small
velocity errors can make the algorithm unstable. For this reason, two-way wave-equation
migration is not so robust as the one-way wave equation migration.
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Figure 4.13: Common shot gather migration image for the 1st shot (a), 2nd shot (b), the 3rd

shot (c) and for the 4th shot (d).
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Figure 4.14: Common shot gather migration image for the 5th shot (a), 6th shot (b), the 7th

shot (c) and for the 8th shot (d).
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Figure 4.15: Common shot gather migration image for the 9th shot (a), 10th shot (b), the 11th

shot (c) and for the 12th shot (d).
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Figure 4.16: Common shot gather migration image for the 13th shot (a), 14th shot (b), the 15th

shot (c) and for the 16th shot (d).
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Figure 4.17: Common shot gather migration image for the 17th shot (a), 18th shot (b), the 19th

shot (c) and for the 20th shot (d).
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Figure 4.18: Common shot gather migration image for the 21th shot.

0

500

1000

1500

D
e

p
th

 [
m

]

500 1000 1500
Horizontal Distance [m] 

Figure 4.19: Final migration image which is the the sum of all the migrations.
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4.6 Summary

In this chapter, a review of the two-way wave-equation migration in a constant density
medium using the finite-difference in the time-domain was presented. The FD method is
a robust numerical method applicable to structurally complex media. Due to its relative
accuracy and computational efficiency, it is the dominant method in seismic modeling and
is increasingly more important in the seismic industry and for structural modeling. The
basic formulations and properties of the FD schemes were reviewed. The explicit march-
ing or time-stepping schemes based on FD discretization of initial/boundary value problem
was used. The use of explicit time-stepping schemes unlike the implicit method makes the
numerical calculation fast. However, it requires a careful choice of step size and grid size
for stability. The method is similar to the reverse-time migration algorithm implemented
using a adjoint state method based on the FD scheme with second-order accuracy in time
and space. The second order accuracy gives solutions closer to the actual one. Migration
is applied to each shot gather, where recorded multi component data are reversed in time
order and applied at the corresponding receiver positions as sources for reverse-time ex-
trapolation. Migration based on the two-way method should be expected to produce better
lateral resolution than the one-way wave-equation migration.

The use of the adjoint state method for optimizing the gradient of the misfit has a signifi-
cant advantage should waveform inversion or model parameter estimation be required. In
estimating the model parameters from measured data that generally consist of minimizing
an error/cost functional requires the computation of the gradient. Calculating the gradient
with respect to the model parameters is not simple. The adjoint-state method is computa-
tionally more efficient than optimization using the method of Fréchet derivatives. Results
obtained using the adjoint-state method are non-linear with the model parameters. As a re-
sult, the optimization problem should be solved with a non-linear optimization method such
as a quasi-Newton, non-linear conjugate gradient technique. The objective of this thesis was
to extend the application of the method for velocity inversion. Although the non-inversion
method using the adjoint state has not been done in this thesis, the work can be extended
in the future.



CHAPTER 5

Conclusions

5.1 Conclusions

In this thesis, the basic theory of inverse problems has been reviewed. In the first two chap-
ters, the linear scattering problem has been posed as an inverse problem. The linearization
of the wavefield was based on the framework of the single-scattering Born approximation
that ignores multiple scattering due to the heterogeneity of the medium. This approximation
is only valid for small perturbation of the velocity from the assumed background velocity.

The forward and adjoint modeling problems can be computationally solved easily by dis-
cretization of the linearization of the scattering waves. For approximate solution of inverse
problems to be implemented computationally, the theory of the GRT, which relates the
scattering fields to velocity potential, is employed. This method is then employed in Chap-
ter 3 to compute least-square inversion for estimating the acoustic potential profiles of the
medium.

Many geophysical inverse problems are ill-posed and have to be regularized. The most
often used solution methods for solving ill-posed problems are based on the use of quadratic
regularization. However, this results in smooth solutions and are known not to be suitable
when the model parameter is piecewise continuous, blocky and when edges are desired in the
regularized solution. To avoid the smoothing of edges, which are very important attributes
of the image, an edge-preserving regularization (non-quadratic regularization) term has to
be employed.

The edge-preserving regularization based on the total variation method for small-scale geo-
physical inverse problems is studied. The total variation function allows discontinuities and

67



CHAPTER 5. CONCLUSIONS 68

a sharp edges class of solutions. The method can be very useful if edges of the model or
the reconstructed velocity, which in our case is the acoustic velocity perturbation, is piece-
wise, continuous and blocky. The TV regularization method provides an opportunity to
recover more useful information of velocity profiles from the available seismic data. Unlike
the quadratic regularization that results in smooth solutions, in total variation regulariza-
tion, a priori knowledge on the details to be preserved in the restored model is taken into
account. Although more effort in implementing the TV term to control the smoothing and
regularization parameter is required, the algorithm possesses strong convergence properties,
recovers the piecewise constants, reduces oscillations and, more importantly, is practically
efficient.

The total variation method, however, has some drawbacks. For example, a very small change
in the velocity profiles in the model parameter is tamed and hardly preserves fine structures.
Controlling the model parameters is also very difficult. The two variable parameters have
to be chosen carefully to create constraints to obtaining a desirable solution. Further im-
provement in the solution may be gained by modifying the TV regularization, applying it
in conjunction with other edge-preserving functions (Chan et al., 1998), using prime-dual
in combination or other ways of discretizing the total variation term.

The two-way wave-equation migration using the finite-difference in the time-domain is also
reviewed. The finite-difference method is a robust numerical method applicable to struc-
turally complex media. Due to its relative accuracy and computational efficiency, this is
the dominant method in seismic modeling and is increasingly more important in the seismic
industry and for structural modeling. The basic formulations and properties of the finite-
difference schemes were reviewed. The explicit marching or time-stepping schemes based
on finite difference discretization of initial/boundary value problem were used. The use of
explicit time-stepping schemes, unlike the implicit method, allows for faster numerical cal-
culations. However, it requires a careful choice of step size and grid size for stability. The
method is similar to the reverse-time migration algorithm although it is implemented using
an adjoint state method based on the finite difference scheme with second-order accuracy
in time and space. Migration is applied to each shot gather, where recorded multi compo-
nent data are reversed in time order and applied at the corresponding receiver positions as
sources for reverse-time extrapolation. Migration based on the two-way method should be
expected to produce better lateral resolution.

The use of the adjoint state method for optimizing the gradient of the cost function has a
significant advantage should waveform inversion or model parameter estimation be required.
In seismic waveform inversion, in order to minimize the cost function, several forward mod-
eling and residual back propagations are required to gradually update the velocity field. The
gradient of the cost functional is related to the velocity filed, and can be computed by using
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Fréchet derivative, perturbation theory or the adjoint state method. However, with Fréchet
derivatives, a large linear system is created and requires large memory machine as the size
of the problem increases. Calculating the gradient with respect to the model parameters
is not simple. The adjoint state method enables computation of the gradient of the cost
function without computing the Fréchet derivatives (Plessix, 2006; Symes, 2007).

The adjoint state method is also computationally more efficient than optimization using
the method of Frechet derivatives. Results obtained using the adjoint state method are
non-linear with the model parameters. As a result, the optimization problem should be
solved with a non-linear optimization method such as a quasi-Newton, non-linear conjugate
gradient technique.

The objective of this thesis was to extend the application of the method for velocity inversion.
However, due to the time constraints the non-inversion method using the adjoint state has
not been done. The work can be extended in the future.
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Ristow, D. and T. Rühl. “Fourier finite-difference migration.” Geophysics 59 (1994): 1882–
1893.

Rudin, L., S. Osher, and E. Fatemi. “Nonlinear total variation based noise removal algo-
rithms.” Physica D (1992): 259–268.

Scales, J. A. and M. L. Smith. Introductory Geophysical Inverse Theory. Samizdat Press,
1994.

Schneider, William A. “Integral formulation for migration in two and three dimensions.”
Geophysics 43 (1978): 49–76.

Shi, Yuying, Qianshun Chang, and Jing Xu. “Convergence of fixed point iteration for
deblurring and denoising problem.” Applied Mathematics And Computation 189 (JUN
15 2007): 1178–1185.

Snieder, R. and A. Lomax. “Wavefield smoothing and the effect of rough velocity pertur-
bations on arrival times and amplitudes.” Geophysical Journal International 125 (JUN
1996): 796–812.

Stekl, I. and R. Gerhard Pratt. “Accurate viscoelastic modeling by frequency-domain nite
differences using rotated operators.” Geophysics 63 (1998): 17791794.

Stolt, R. H. “Migration by Fourier Transform.” Geophysics 43 (1978): 23–48.

Symes, William W. “Reverse time migration with optimal checkpointing.” Geophysics 72
(2007): SM213–SM221.

Tarantola, A. “Linearized inversion of seismic-reflection data.” Geophysical Prospecting 32
(1984): 998–1015.

Tikhonov, A. N. “Regularization of incorrectly posed problems.” Doklady Akademii Nauk
SSSR 153 (1963): 49–&.



BIBLIOGRAPHY 74

Tikhonov, A. N. “Solution of incorrectly formulated problems and regularization method.”
Doklady Akademii Nauk SSSR 151 (1963): 501–&.

Trad, Daniel, Tadeusz Ulrych, and Mauricio Sacchi. “Latest views of the sparse Radon
transform.” Geophysics 68 (2003): 386–399.

Trad, Daniel O., Tadeusz J. Ulrych, and Mauricio D. Sacchi. “Accurate interpolation with
high-resolution time-variant Radon transforms.” Geophysics 67 (2002): 644–656.

Valenciano, Alejandro A., Morgan Brown, Antoine Guitton, and Mauricio D. Sacchi. “In-
terval velocity estimation using edge-preserving regularization.” SEG Technical Program
Expanded Abstracts 23 (2004): 2431–2434.

Vogel, C. R. and M. E. Oman. “Fast Numerical Methods for Total Variation Minimization
in Image Reconstruction.” (1995): 359–67.

Vogel, C. R. and M. E. Oman. “Iterative Methods for Total Variation Denoising.” SIAM
Journal on Scientific Computing 17 (1996): 227–238.

Vogel, C. R. and M. E. Oman. “Fast, robust total variation-based reconstruction of noisy,
blurred images.” IEEE Transactions On Image Processing 7 (JUN 1998): 813–824.

Vogel, Curtis R. “Nonsmooth Regularization.” (1997): 1–11.

Vogel, Curtis R. “Computational Methods for Inverse Problems.” (2002).

Wang, Yang and Haomin Zhou. “Total variation wavelet-based medical image denoising.”
Int J Biomed Imaging 89095 (2006): 1–6.

Wapenaar, C. P. A. and A. J. Berkhout. “Wave field extrapolation techniques for inho-
mogeneous media which include critical angle events. Part III: appications in modeling,
migration and inversion.” Geophysical Prospecting 34 (1986): 180–207.

Youzwishen, C. F. “Non-linear sparse and blocky constrants for seismic inverse problems.”
MSc. thesis, the University of Alberta (2001).

Youzwishen, C. F. and M. D. Sacchi. “Edge preserving imaging.” Journal Of Seismic
Exploration 15 (MAY 2006): 45–57.

Zhdanov, Michael S. “Geophysical Inverse Theory And Regularization Problems.” Methods
in Geochemistry and Geophysics 36 (2002): 406–415.

Zhou, Changxi, Wenying Cai, Yi Luo, Gerard T. Schuster, and Sia Hassanzadeh. “Acoustic
wave-equation traveltime and waveform inversion of crosshole seismic data.” Geophysics
60 (1995): 765–773.



APPENDIX A

Discretization of total variation

A.1 Discretization of total variation regularization op-

erator

In this section, the discretization of the penality functional stated in Chapter 3 will be
discussed. The linearization of the total variation is based on Vogel (Vogel, 2002). The
discretize regularization operator of the total variation penalty function in two-dimensional
is assumed of the form

J(f) =
1
2

nx∑

ix=1

nz∑

iz=1

Ψ((Dx
ix,iz

f)2 + (Dz
ix,iz

f)2))x)z, (A.1)

where f is the model parameter and

Dx
ix,iz

f =
fix,iz − fix−1,iz

)x
, (A.2)

Dz
ix,iz

f =
fix,iz − fix,iz−1

)z
, (A.3)

and Ψ(t) is of the form
Ψ(t) = 2

√
t + α2. (A.4)

The gradiant function can be computed by taking the derivative of the above equation with
respect to f . Here, the main intention is to linearize the gradient of the penality function.
To minimize, let v be a two-dimensional model parameter and use the following optimization
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technique trick,

d

dτ
J(f + τv)|τ=0 =

(
d

df
J(f + τv) · d

dτ
(f + τv)

)
|τ=0, (A.5)

d

dτ
J(f + τv)|τ=0 =

(
d

df
J(f + τv) · v

)
|τ=0, (A.6)

d

dτ
J(f + τv)|τ=0 = J ′(f) · v = 〈J ′(f), v〉 , (A.7)

where 〈., .〉 denotes the inner dot product between two functions and grad J(f) = J ′(f).

In order to linearize the discretizte of gradient of the penality function, we use the following
mathematical formalism.

d

dτ
J(f + τv)|τ=0 =

1
2

nx∑

ix=1

nz∑

iz=1

Ψ′
ix,iz

[
(Dx

ix,iz
f)(Dx

ix,iz
v) + (Dz

ix,iz
f)(Dx

ix,iz
v)

]
, (A.8)

where
Ψ′

ix,iz
= Ψ′((Dx

ix,iz
f)2 + (Dz

ix,iz
f)2). (A.9)

Here, the discretized form of f and v can be rearranged in a vector form; f be vector of
f and v be vector of v, corresponding lexicographic ordering of the two-dimensional array
components. Dx and Dz is matrix operator corresponding to grid operators and diagΨ(f) is
a nxnz x nxnz matrix whose diagonal elements are the Ψix,iz

′s. The resulting regularization
operator is then expressed as

d

dτ
J(f + τv)|τ=0 =

[
(Dxv)T diag(Ψ′(f))(Dxf) + (Dzv)T diag(Ψ′(f))(Dzf)

]
)x)z (A.10)

which is equivalent to

d

dτ
J(f + τv)|τ=0 =

〈
DT

x diag(Ψ′(f))(Dxf),v
〉

+
〈
DT

z diag(Ψ′(f))(Dzf),v
〉
. (A.11)

)x and )z are not included in the above equation since they can be absorbed in the
regularization parameter. Note that Dx = Dx and Dz = Dz. We know that

d

dτ
J(f) + τv))|τ=0 = 〈J ′(f),v)〉 , (A.12)

Making use of equations [A.11] and [A.12], the gradient is then expressed as

gradJ(f) = J ′(f) = L(f)f . (A.13)
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The discretize of the gradient of the regulrization operator, then, turns out to be

L(f) = DT
x diag(Ψ′(f))Dx + DT

z diag(Ψ′(f))Dz. (A.14)

which is equivalent to

L(f) =
[

DT
x DT

z

] [
diag(Ψ′(f)) 0

0 diag(Ψ′(f))

] [
Dx

Dz

]
. (A.15)

This represents the expression of the discretized regularization operator. The gradient of
the non-linear regularization operator is linearized.
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