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Abstract

Local time-frequency analysis, also known as spectral decomposition, allows for a more de-

tailed interpretation of time-series by providing the evolution of the frequency spectrum

through time and has proven to be a useful seismic attribute for exercises such as reservoir

characterization. This thesis explores posing the spectral decomposition problem through

sparsity promoting inversion techniques to obtain a high resolution local time-frequency

representation for a seismic trace. By requiring a high resolution local time-frequency rep-

resentation for each individual seismic trace, increased noise variability is obtained between

the local time-frequency representations of neighbouring seismic traces. To help attenuate

this noise, information from nearby seismic traces can be incorporated during the inversion

process for the spectral decomposition of an individual seismic trace. A similar strategy,

called group sparsity, can also be incorporated for the simultaneous denoising of multicom-

ponent seismic traces. A new method for the noise attenuation of seismic data is presented

as well.
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CHAPTER 1

Introduction

1.1 Background

One of the major goals of explorational geophysics is to provide an image of the subsurface
to aid in the the mapping and characterization of subsurface structures. This endeavour
has proven to be quite valuable in a number of different activities such as petroleum and
mineral exploration, hydrology, hydrothermal exploration, and monitoring CO2 sequestra-
tion. However, there are numerous methods in which one could generate an image of the
subsurface. For example, microgravity surveys measure local gravity differences, resistiv-
ity surveys measure the apparent resistivity of the subsurface by injecting current into the
ground, and seismic surveys measure acoustical energy after it has propagated through the
subsurface. The data acquired from all of these methods characterize and map the sub-
surface, but they do so in different ways as each method is sensitive to different properties
within the subsurface. Although this thesis deals with reflection seismic data, the concepts
that are explained could also be applied to any of these other data sets.

To understand the subsurface image that seismic data provides, a brief explanation of the
seismic experiment is required. The acquisition of seismic data consists of generating sources
of seismic energy that travel through the subsurface to receivers, commonly called geophones,
where they are subsequently recorded. Ideally, a source and receiver pair should occupy
the same physical location on the surface, as depicted in Figure 1.1a, making the seismic
experiment similar to a depth sounding experiment. However, this is difficult to accomplish
in application and, therefore, a lateral distance between sources and receivers is utilized.
The spatial location of the seismic recording or trace from a source-receiver pair is often
assigned as the midpoint between the source and receiver. Due to the design nature of seismic

1
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Figure 1.1: Seismic acquisition for a) ideal circumstances and b) actual circum-
stances (common midpoint gather). Red stars denote sources, blue triangles denote
receivers, blue lines with arrows denote seismic wave propagation, and the grey
dashed line denotes the common midpoint for the source-receiver pairs.

acquisition, multiple traces often have similar spatial midpoints which are subsequently
organized into common midpoint gathers as illustrated by the common midpoint gather for
pairs of source and receiver locations depicted in Figure 1.1b.

By spatially separating the source and receiver, seismic energy can propagate to the receiver
through several different methods that would not be present under the ideal conditions of
Figure 1.1a. Governed by changes in the acoustical impedance (the product of density and
propagation velocity) of the subsurface, seismic energy can not only reflect back to the
surface but can now also refract along these layer interfaces or travel along the surface via
the direct wave or through ground roll (surface waves). All of these wavefronts are evident
within an example shot gather1 illustrated in Figure 1.2. Since reflected seismic energy can
travel deeper and consequently sample more of the subsurface than other types of recorded
waves, common midpoint gathers are often processed to try enhance and maintain only this
portion of the data.

During this processing stage, reflection seismic energy is enhanced through several different
methods. Some of these methods include random noise attenuation, ground roll removal,
static corrections to help mitigate near surface effects, and multiple attenuation to leave
only seismic energy that has reflected off of one interface. Another important procedure
during the processing stage of common midpoint gathers is the normal moveout (NMO)
correction. The NMO correction removes the curvature from reflection events, which can

1For a simple one dimensional Earth model (i.e., no dip), shot and common midpoint gathers look
similar provided that the source does not vary significantly from shot to shot.
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Figure 1.2: Example of a shot gather containing different waveforms from Yilmaz
(2001) Shot Gather 25.

be seen in Figure 1.2, such that all single reflection events, also known as primaries, are
flat. At this stage, the common midpoint gathers have been processed to contain only flat
primary events which can be used for pre-stack analysis such as amplitude versus offset
analysis (AVO) or stacked together to produce a single trace for each common midpoint
gather. This stacked trace now represents the seismic trace that would have been recorded
under the ideal conditions of Figure 1.1a.

Depending upon the spatial acquisition of the seismic data, stacked data can be a two dimen-
sional line (time and space) or a three dimensional cube (time and two spatial coordinates).
This stacked data, whether it is a two dimensional line or a three dimensional data cube,
provides the image of the subsurface which can be obtained from reflection seismic experi-
ments. These images help to provide a more continuous spatial sampling of the subsurface,
unlike the sparse spatial sampling of well-logs, and aid in its geological interpretation. A real
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a)

b)

Figure 1.3: Real poststack 3D seismic data depicting a channel in a) cross section
(red circles depict paleochannel) and on a b) time slice (red line denotes location of
cross section).
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data example of a three dimensional poststack dataset is shown in Figure 1.3 demonstrating
the type of images that can be obtained from seismic data. The three dimensional poststack
data is viewed in a cross section (a slice where one spatial coordinate is held constant) and
on a time slice (a slice where the time coordinate is held constant) and depicts a paleochan-
nel. If well-logs were the only dataset available to characterize this paleochannel, multiple
wells would be required to achieve enough spatial sampling to properly locate and map its
presence. By providing a more continuous spatial sampling, poststack reflection seismic
data can help to illuminate previously unknown regions of the subsurface in a much more
efficient manner. This property significantly aids in the mapping of localized subsurface
features, such as paleochannels.

For a more thorough quantitative analysis of seismic data, the generation and analysis of
seismic attributes is often performed. Seismic attributes are simply a quantitative measure
of a seismic characteristic of interest (Chopra and Marfurt, 2005), and include measurements
such as the degree of local curvature or coherence. For the real data example in Figure 1.3,
seismic attributes could be used to help define the exact position and define subtle variations
and structures within the paleochannel. This thesis will deal specifically with generating
and studying the seismic attribute of local frequency content (Taner et al., 1979; Bodine,
1984). To aid in the understanding of the localized time-frequency analysis of a time series,
a brief introduction to the problem is provided in the following section.

1.2 Local Time-Frequency Analysis

A common practice within signal processing is to represent the time series of interest in
another domain. One of the most well known transforms to accomplish this goal is the
Fourier transform which converts a signal from the time domain into the frequency domain.
The Fourier transform achieves this transformation through representing the time series as
a summation of complex exponentials. Since a complex exponential can also be written
as a summation of the cosine and sine functions according to Euler’s formula, the group
of complex exponentials utilized by the Fourier transform is chosen to vary based upon
the frequency of the cosine and sine functions. Figure 1.4 highlights the application of the
Fourier transform on an example time series composed from a 15Hz cosine function and a
40Hz sine function. As the basis or set of functions that the Fourier transform utilizes are
complex numbers, signals within the Fourier domain can become complex as well. Therefore,
only the amplitude of the signal in the Fourier domain is displayed in Figure 1.4. The phase
of this example time series in the Fourier domain is 0 at 15Hz to represent the cosine function
and π/2 at 40Hz to represent the sine function.

This form of time-frequency analysis has found many applications in signal processing such
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Figure 1.4: The time and frequency representation of a 15Hz cosine function, a 40Hz
sine function, and their combination. (The normalized amplitude of the frequency
representation is displayed.)

as seismic data analysis. Through fast computational algorithms such as the Fast Fourier
Transform (FFT) and properties such as the convolutional property where convolutions in
time become multiplications in frequency, the Fourier transform has been found to greatly
increase the efficiency of many computational problems. In the case of seismic data analysis,
the Fourier transform has provided a powerful tool to not only work in a more efficient
manner but also analyze seismic traces in a different domain. For example, the Fourier
transform has provided an effective domain for noise attenuation through methods such as
bandpass filtering, f − k filtering, and f − x deconvolution and for the regularization and
interpolation of seismic data to produce a more consistent spatial sampling.

One of the attributes that the Fourier transform does not provide is the time locations of
specific frequencies within the signal. This problem is of little consequence for stationary
signals, such as the example signal in Figure 1.4, but if the signal is non-stationary or time-
varying it could prove beneficial to determine where specific frequencies are either present
or absent. For example, a musical score denotes particular frequencies (i.e. notes) to be
played at specific times. The non-stationary signal depicted in Figure 1.5, where the 40Hz
sine function does not persist over the entire time interval, helps to further present the
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Figure 1.5: The time and frequency representation of a 15Hz cosine function, a
truncated 40Hz sine function, and their combination. (The normalized amplitude
of the frequency representation is displayed.)

problem of utilizing the classical Fourier transform for local time-frequency analysis. Since
the Fourier transform utilizes complex exponentials and hence cosine and sine functions to
convert a time series into the frequency domain, signals such as the truncated version of
the 40Hz sine function require more coefficients to be represented in the frequency domain
even though the actual frequency content of the this signal is 40Hz. By only analyzing the
frequency domain representation of the signal, it becomes impossible to determine where
certain frequencies are present or absent in the time domain. Rather than analyzing the
signal globally with the traditional Fourier transform, local time-frequency analysis solves
this time localization of frequency content by considering only variations of the signal on a
local scale.

1.3 Thesis Overview

The organization of this thesis is as follows:

• Chapter 2 provides an overview of commonly applied local time-frequency transforms
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for seismic data. A particular emphasis is placed upon the Continuous Wavelet Trans-
form (CWT) since it represents one of the most general local time-frequency trans-
forms. In fact, most other local time-frequency transforms can, in some degree, be
explained by the CWT. The advantages of using complex wavelets for the CWT is
also discussed within this chapter.

• Chapter 3 explains how local time-frequency analysis, or spectral decomposition, can
be posed as an inverse problem to produce a high resolution local time-frequency
representation. Through utilizing a data representation strategy that is based upon
the CWT, the `1 norm is chosen as a regularization function to enforce sparsity upon
the obtained local time-frequency model. The `1 norm regularized inverse problem is
solved using the Fast Iterative Soft Thresholding Algorithm (FISTA).

• Chapter 4 highlights the application of the high resolution spectral decomposition
method developed in Chapter 3 on the real seismic data set shown in Figure 1.3. The
frequency behaviours of the paleochannels within this dataset is discussed as well as
an efficient viewing strategy for spectrally decomposed data based upon RGB image
blending is presented.

• Chapter 5 presents a method to deal the variable trace to trace noise that becomes
more prevalent when viewing constant frequency sections obtained from high resolu-
tion spectral decomposition. This method incorporates the prediction filtering con-
cepts of f −x deconvolution as a preconditioner to the spectral decomposition inverse
problem and allows for the recovery of a smoother, high resolution local time-frequency
representation.

• Chapter 6 deals with the denoising of the reconstructed signal from local time-frequency
analysis. Through posing the sparse spectral decomposition problem through inver-
sion, random noise can be attenuated for the signal in the time domain. These results
can become more powerful with the incorporation of group sparsity constraints rather
than sparsity constraints if a multi-component signal is considered.

• Chapter 7 introduces a relatively new noise attenuation filter called the Non-Local
Means (NLM) algorithm to be applied with seismic data. Although its original for-
mulation can be computationally costly, it has the ability to preserve certain features
within the data which other more commonly utilized filters for seismic data cannot.

• Chapter 8 provides a summary of the work within this thesis.



CHAPTER 2

Common Local Time-Frequency Analysis

Methods

2.1 Introduction

The frequency content of a time series, such as a seismic signal, is commonly found using the
Fourier transform. However, the frequency information obtained from this method relates
to the entire time series and contains no information about local variations. Knowledge of
how the frequency content of a signal varies in time can be significant, as highlighted by
the common example of a musical score which denotes particular frequencies (i.e. notes)
to be played at specific times. These local variations of frequency content in a signal can
be acquired through local time-frequency analysis, also known as spectral decomposition,
which decomposes a one dimensional signal (time) into a two dimensional space (time and
frequency). Resolving how the frequency content of a signal changes with time has been
studied in a large range of fields such as geophysics, quantum mechanics, engineering, sound
analysis and speech recognition, radar, and musicography (Gardner and Magnasco, 2006).

In an effort to create the optimal time-frequency representation of a seismic signal, the
geophysics community has employed several methods for spectral decomposition. Unlike in-
stantaneous attributes such as the instantaneous frequency (Taner et al., 1979; Cohen, 1993),
spectral decomposition attempts to describe the complete frequency spectrum at each time
sample rather than generate a scalar parameter. This type of local time-frequency analysis
allows for a greater wealth of information to be studied and aid in exercises such as reser-
voir characterization (Partyka et al., 1999). Methods for local time-frequency analysis that

9
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have been employed on seismic signals generally fall under two categories, those based upon
the Short Time Fourier Transform (STFT) or those based upon the Continuous Wavelet
Transform (CWT).

The STFT generates a localized time-frequency representation of a time series by applying
the Fourier transform within a sliding window. However, the length of the sliding window
has a strong effect on the resolution of the time-frequency representation; a small window
is well resolved in time but poorly resolved in frequency, whereas, a larger window is poorly
resolved in time but well resolved in frequency. To help minimize the tradeoff between time-
frequency resolution and the effects of applying the Fourier transform within a window,
several other transforms similar to the STFT have been created such as the S transform
(Stockwell et al., 1996; Pinnegar and Mansinha, 2003), and the Wigner-Ville distribution
(Steeghs and Drijkoningen, 2001).

The other general category of spectral decomposition methods that have been commonly
employed on seismic signals are those based upon the CWT (Chakraborty and Okaya, 1995;
Sinha et al., 2005). The CWT operates by generating a representation of the seismic signal
in terms of a wavelet family or group of pre-selected wavelets. For local time-frequency
analysis, the wavelet family or group of pre-selected wavelets will vary based upon the
frequency content of each individual wavelet. Other methods generally based upon the
CWT that have been used with seismic signals include the sine curve fitting method of
Hardy et al. (2003), the wavelet matching algorithm of Bradford and Wu (2007), and spectral
decomposition using matching pursuit (Castagna et al., 2003; Wang, 2007) or other inversion
methods (Portniaguine and Castagna, 2004; Bonar and Sacchi, 2010). In this chapter, the
most commonly applied local time-frequency methods for seismic data will be reviewed with
a particular emphasis on the CWT.

2.2 Instantaneous Frequency

A common method to discern information about the local frequency content of a time series
is through the analysis of its analytic signal. The analytic signal, x̃(t), of a real-valued time
series, x(t), is simply a mathematical manipulation which enables the real-valued time series
to be rewritten as a signal of complex numbers that have an amplitude, A(t), and a phase,
θ(t). The imaginary component of this analytic signal is defined by the Hilbert transform,
H[x(t)], which is a π/2 phase shift of the original time series,

x̃(t) = x(t) + iH[x(t)] = A(t)eiθ(t). (2.1)
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The computation of this analytic signal, x̃(t), can easily be accomplished in the Fourier
domain from the original real-valued time series, x(t) (Bendat and Piersol, 2000),

X̃(f) =


2X(f) if f > 0

X(f) if f = 0

0 if f < 0

, (2.2)

where X̃(f) and X(f) denote x̃(t) and x(t) in the Fourier domain. Essentially, only half of
the Fourier frequency content is maintained from the original real-valued signal to create the
analytic signal. Due to the symmetries present within the Fourier domain for real-valued
time series, the discarding of negative frequencies results in no loss of information since
the original real-valued time series is simply the real component of the analytic signal. A
detailed explanation of the meaning of the complex analytic signal as well as a physical
illustration with a seismic trace is provided by Barnes (1998).

Once the analytic signal is obtained, a variety of instantaneous or time localized attributes
can be calculated (Cohen, 1993). For instance, the instantaneous amplitude, A(t), and the
instantaneous phase, θ(t), can be obtained directly from forming the analytic signal. The

Figure 2.1: a) A synthetic time series composed from a 45Hz central frequency
Ricker wavelet, a 90◦ phase rotated 25Hz central frequency Ricker wavelet, and a
15Hz central frequency Ricker wavelet of negative amplitude and b) the associated
amplitude spectrum for each event.
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instantaneous frequency, which represents the average frequency at a particular time (Cohen
and Lee, 1989), is obtained by taking the derivative of the instantaneous phase with respect
to time,

finst(t) =
1

2π
dθ(t)

dt
. (2.3)

The normalization factor in Equation 2.3 is simply the conversion factor between angular
frequency ω and frequency f . A thorough analysis of the significance of the instantaneous
frequency and related instantaneous attributes to seismic data is detailed in Taner et al.
(1979).

Figure 2.2: Instantaneous attributes from the synthetic time series in Figure 2.1.
a) The instantaneous amplitude (black dotted line) with the synthetic time series
(blue) and the imaginary component of the analytic signal (red). b) The unwrapped
instantaneous phase. c) The instantaneous frequency.
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To illustrate the application of the various local time-frequency analysis methods the syn-
thetic time series in Figure 2.1 was created. This time series is composed from a 45Hz
central frequency Ricker wavelet located around 0.1s, a 90◦ phase rotated 25Hz central fre-
quency Ricker wavelet located around 0.2s, and a 15Hz central frequency Ricker wavelet
with negative amplitude located around 0.4s. The instantaneous amplitude, phase, and
frequency of this synthetic time series is displayed in Figure 2.2. Typically, the phase of a
complex number is constrained to be its principal value or constrained to the region (−π, π].
However, this would produce a discontinuous function for the instantaneous phase, and thus
instantaneous frequency. To avoid this problem and produce a continuous function, the in-
stantaneous phase is unwrapped or adjusted to move outside the region (−π, π] when large
jumps of 2π are encountered. As expected, the instantaneous frequency that is derived from
the unwrapped instantaneous phase becomes larger with fast changes in the instantaneous
phase and vice versa. Although it adequately localizes and recovers the mean frequency at
each event, the instantaneous frequency does not provide any information about the spread
of frequency content or its relative intensity (Cohen and Lee, 1989) which can be potentially
useful in the analysis of time series.

2.3 Short Time Fourier Transform

Probably the most well-known and intuitive local time-frequency transform is the Short
Time Fourier Transform (STFT). Originally proposed in Gabor (1946), the STFT localizes
the frequency content of a time-series by performing the Fourier transform within small
sliding windows according to,

FSTFT (t, ω) =
∫ ∞
−∞

x(τ)hSTFT (t− τ)e−iωτdτ, (2.4)

where FSTFT is the local time-frequency representation obtained from the STFT, hSTFT (t)
is a real-valued and symmetric windowing function, and e−iωt is the Fourier kernel. Essen-
tially, the STFT computes the Fourier transform of a portion of the time series around a
particular time sample to localize the frequency content and then repeats the process for
all time samples. Therefore, the selection of the windowing function becomes crucial to the
applicability of this method. To avoid ringing effects caused by the Gibbs phenomenon,
optimal window choices for the STFT tend to favour tapered windowing functions such as
Hamming or Hann windows. In fact, the Gaussian function has been proven to provide
the most optimal windowing function to minimize the uncertainty in the resolution of local
time-frequency analysis based upon the STFT (Mallat, 2008).

The time-frequency resolution of the STFT not only depends upon the type of windowing



CHAPTER 2. COMMON LOCAL TIME-FREQUENCY ANALYSIS METHODS 14

Figure 2.3: The amplitude of the local time-frequency representation of the example
time series in Figure 2.1 obtained from a) STFT with a 60ms window, b) STFT
with a 200ms window, c) STFT with a 360ms window, d) Wigner-Ville with τ set to
be half of the total signal length, e) S-transform, and f) CWT with complex Ricker
wavelets (scale has been converted to frequency).
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Figure 2.4: The phase of the local time-frequency representation of the example
time series in Figure 2.1 obtained from a) STFT with a 60ms window, b) STFT
with a 200ms window, c) STFT with a 360ms window, d) Wigner-Ville with τ set
to be half of the total signal length, e) S-transform, and f) CWT with complex
Ricker wavelets (scale has been converted to frequency). The colourbar for all plots
is defined as blue = −π, green = 0, and red = π.
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function implemented but also the windowing functions length in time. This property is
displayed in Figure 2.3 a), b), and c) where three different length Gaussian functions are
employed to compute the STFT of the synthetic time series in Figure 2.1. By increasing the
time length of the window, increased resolution is obtained in the frequency dimension at the
expense of the resolution in the time dimension. This trade-off property between time and
frequency resolution has often been compared to the Heisenberg uncertainty principle (i.e.
Mallat (2008)). The phase of the STFT local time-frequency representation also becomes
more difficult to interpret than the phase of the standard Fourier transform. Not only can
the STFT phase be referenced to zero time or the center of each sliding window, it is also
influenced by the length of the windowing function as evidenced by Figure 2.4 a), b), and
c).

2.4 Wigner-Ville Distribution

The Wigner-Ville distribution for time-frequency analysis within signal processing was orig-
inally introduced in Ville (1948), although it was originally studied by Wigner (1932), is
defined by,

FWV (t, ω) =
∫ ∞
−∞

x̃(t+ τ/2)x̃H(t− τ/2)e−iτωdτ, (2.5)

where FWV is the local time-frequency representation obtained from the Wigner-Ville dis-
tribution and [ ]H denotes the Hermitian or complex conjugate transpose. Since the ana-
lytic signal is used twice during the creation of the local time-frequency representation, the
Wigner-Ville distribution is often called a quadratic or bilinear representation. By utilizing
the time reversed analytic signal, x̃H(t − τ/2), as the windowing function, the Wigner-
Ville distribution can be considered as a special case of the STFT where the windowing
effects have been minimized (Steeghs and Drijkoningen, 2001). However, despite its higher
time-frequency resolution, the application of the Wigner-Ville distribution is limited by the
existence of interference or cross-product terms (Mallat, 2008). These properties are high-
lighted in Figure 2.3 d) where the superior time-frequency resolution is contaminated with
extraneous events caused by cross-product terms around 0.15s and 0.3s. The influence of
these interference terms can be reduced by smoothing during the generation of the Wigner-
Ville distribution, but this occurs at the expense of time-frequency resolution, see Wu and
Liu (2009) and Steeghs and Drijkoningen (2001) for example. Another interesting property
of the Wigner-Ville distribution is that its local time-frequency representation contains only
real-values as evidenced by a constant zero phase in Figure 2.4.
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Figure 2.5: Frequency dependent Gaussian windows utilized by the S-transform.

2.5 S-transform

Proposed by Stockwell et al. (1996), the S-transform can be considered a special version
of the STFT utilizing a Gaussian window. By scaling the Gaussian windowing function
differently for each frequency, it attempts to combat the inherent time resolution versus
frequency resolution trade-off problem that is inherent with the STFT. This frequency scaled
Gaussian windowing function, defined by,

hS(t) =
|f |√
2π
e−t

2f2/2, (2.6)

enables smaller time windows when analyzing higher frequencies to help with time localiza-
tion and longer time windows for lower frequencies to help with frequency localization as
depicted in Figure 2.5. The formal definition of the S-transform is given by,

FS(t, f) =
∫ ∞
−∞

x(τ)
|f |√
2π
e−(t−τ)2f2/2e−iωτdτ, (2.7)

where the windowing function g(t) has been written out explicitly and FS represents the local
time-frequency representation obtained from the S-transform. Essentially, the S-transform’s
goal is to try and incorporate the positive properties of long and short time windows from
the STFT together and eliminate the extra requirement of setting a window length for local
time-frequency analysis. Figure 2.3 e) demonstrates the variable time-frequency resolution
of the S-transform with low frequencies having a similar resolution to long time windows
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of the STFT (Figure 2.3 c) and high frequencies having a similar resolution to short time
windows of the STFT (Figure 2.3 a). Like the STFT, the phase of the local time-frequency
representation obtained from the S-transform could be referenced to zero time or the center
of each particular windowing function. The actual phase obtained from the S-transform
becomes a mixture of the phases that would have been obtained from varying length windows
of the STFT (Figure 2.4 e). In an effort to improve the resolution obtained from the S-
transform, various scaling modifications to the windowing function have been attempted,
i.e., Pinnegar and Mansinha (2003).

2.6 Continuous Wavelet Transfrom

Originating from Morlet et al. (1982) and Goupillaud et al. (1984), the Continuous Wavelet
Transform (CWT) became popular within the signal processing community when its connec-
tions to discrete signal processing were established through the work of Daubechies (1988)
and Mallat (1989). Unlike the STFT which applies the Fourier transform in small windows
to achieve a local time-frequency representation, the CWT fits time-frequency atoms to the
time series of interest. These time-frequency atoms often resemble tiny waves that grow and
decay in short periods of time which has lead to their name “wavelets” (Chakraborty and
Okaya, 1995). By choosing a specific wavelet which is often called the mother wavelet, the
CWT generates the dictionary or group of daughter wavelets, D, to be fit to the time series
through scaled dilations and translations of the mother wavelet,

D =
[
ψτ,k(t) =

1√
k
ψ

(
t− τ
k

)]
, (2.8)

where k corresponds to the scale of the daughter wavelet. To be considered as a possible
mother wavelet, a function must satisfy the admissibility condition (Daubechies, 1992),∫ ∞

−∞

|Ψ(ω)|2

|ω|
dω <∞, (2.9)

where Ψ represents the mother wavelet, ψ, in the Fourier domain. As a result of satisfying
the admissibility condition, the mother wavelet for a CWT also satisfies the conditions,∫ ∞

−∞
ψ(t)dt = 0, (2.10a)

∫ ∞
−∞
|ψ(t)|2dt <∞, (2.10b)
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or in other words the mother wavelet has zero mean and a finite energy. There are many
different functions that can be classified as wavelets, such as the Morlet wavelet, but for the
purposes of this thesis only the Ricker wavelet was utilized to demonstrate the application
of the CWT. The Ricker wavelet, also known as the Mexican hat wavelet, is simply the
second derivative of the Gaussian function and can be uniquely defined by its central, or
peak, frequency, fc, in either the time or Fourier domain according to (Sheriff, 2002),

w(t) =
(
1− 2π2fc

2t2
)
e−π

2fc
2t2 , (2.11a)

and,

w(f) =
2√
π

f2

fc
3 e
−f2/fc

2
. (2.11b)

When implemented as the mother wavelet for the wavelet dictionary of the CWT, the Ricker
wavelet’s central frequency corresponds to its scale, k.

Once a suitable function is chosen as the mother wavelet for a CWT, a scalogram or time-
scale (t− k) map (Sinha et al., 2005) is generated via,

FCWT (t, k) =
∫ ∞
−∞

x(t)
1√
k
ψH(

τ − t
k

)dτ, (2.12)

where FCWT represents the local time-frequency representation obtained from the CWT.
Although the scalogram is a local-time frequency representation, since different scales of the
wavelet have different frequency contents, it cannot be directly compared to other local time-
frequency analysis methods such as the STFT because its measure of frequency is not the
traditional frequency obtained from the Fourier transform. However, the Fourier spectrum
of each of the scaled or daughter wavelets can be computed and consequently provide a
mapping of FCWT (t, k) to FCWT (t, f). Figure 2.6 displays the results of mapping the time-
scale map obtained from the CWT utilizing complex Ricker wavelets of the synthetic time
series of Figure 2.1 to a local time-frequency representation. Despite not being exactly
equivalent, the scale definition of the central frequency of Ricker wavelets generates a time-
scale map that is almost identical to its mapped local time-frequency representation.

If the time-scale map in Figure 2.6 was generated using a dictionary of real-valued Ricker
wavelets instead of complex Ricker wavelets, the time-scale map in Figure 2.7 a) would be
obtained. Even though a localization of frequency content with time is still achieved, polarity
effects overprint the frequency content for specific events. This is most evident in the second
event of the synthetic time-series where the amplitude of the frequency content mirrors that
of the time-series, changing from a negative polarity to a positive polarity. Intuitively,
the frequency content at the central zero crossing of this event should be nonzero, which
is not observed in the time-scale map of Figure 2.7 a). To combat this issue, a complex
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Figure 2.6: The amplitude of the a) time-scale map and b) time-frequency map
obtained from the CWT using complex Ricker wavelets of the synthetic time-series
in Figure 2.1. The scale of a complex Ricker wavelet is defined by its central
frequency.
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Figure 2.7: The time-scale map of the synthetic time series in Figure 2.1 obtained
from the CWT using a) real Ricker wavelets and b) complex Ricker wavelets.



CHAPTER 2. COMMON LOCAL TIME-FREQUENCY ANALYSIS METHODS 22

or analytic Ricker wavelet dictionary was created via Equation 2.2. The incorporation of
complex Ricker wavelets for the wavelet dictionary forces the resultant time-scale map to
be complex as well, providing an amplitude and phase for each coefficient of the time-scale
representation (Mallat, 2008). The amplitude of the complex time-scale map, Figure 2.7 b),
does not suffer from the polarity overprint as it relates to the envelope of the time-scale map
obtained using the real-valued Ricker wavelet dictionary, while also having the added benefit
of being associated with phase information. Essentially, the inclusion of complex wavelets in
the wavelet dictionary implicitly adds a dramatic increase in the number of wavelets within
the dictionary as each scale of the wavelet is no longer restricted to a particular phase.

In comparison to the other local time-frequency methods discussed, the amplitude of the
local time-frequency representation obtained from mapping the scalogram of the CWT using
complex Ricker wavelets is most similar to that of the S-transform as both methods exhibit
a lack of interference terms and variable time-frequency resolution. In particular, the CWT
utilizing complex Ricker wavelets provides higher time resolution at the cost of a more
compact frequency resolution when compared to the S-transform, as exhibited in Figure
2.3. The phase of the local time-frequency representation obtained from the CWT with
complex wavelets, Figure 2.4 f), is also easier to interpret than the other discussed local
time-frequency methods. For the CWT, the phase simply represents the phase of the wavelet
required to represent the time-series at that particular time sample.

The utilization of a complex Ricker wavelet dictionary not only enables phase to be asso-
ciated with the time-scale map generated from the CWT but also enables the analysis of
complex signals. Figure 2.8 depicts a complex signal composed of the example time-series
from Figure 2.1 as the real component of the complex signal and three Ricker wavelets
of various phases and central frequencies, which are unrelated to the example time-series,
as the imaginary component and the amplitude of its local-time frequency representation
obtained by the CWT. Since the signal to be analyzed is no longer contained to the real
number domain, the entire frequency range (i.e., both positive and negative frequencies)
must be displayed to fully visualize the local time-frequency representation of the complex
signal. This is due to the lack of symmetries in the Fourier domain that complex signals
have in comparison to real-valued time-series1. However, if the complex Ricker wavelet dic-
tionary is computed to contain only positive frequencies, as suggested by Equation 2.2, it
becomes impossible to solve for the negative frequencies of the signal if it is complex and
symmetries cannot be used. To combat this issue, the complex Ricker wavelet dictionary
must be expanded to incorporate wavelets which maintain only their negative frequencies.
Figures 2.9 and 2.10 illustrate a complex Ricker wavelet containing only positive frequencies
or only negative frequencies. The effect of maintaining the negative frequencies of a signal

1Real-valued signals in the Fourier domain have their real component defined by an even function and
their imaginary component defined by an odd function.
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Figure 2.8: Local time-frequency analysis of a complex signal. a) The complex signal
in which the real component (blue) is the example time-series in Figure 2.1 and the
imaginary component (red) is composed of three phase shifted Ricker wavelets of
different central frequencies. b) The amplitude of the time-scale map obtained from
the CWT with complex Ricker wavelets.
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Figure 2.9: A complex Ricker wavelet containing a) positive frequencies and b)
negative frequencies.

Figure 2.10: The amplitude of the Fourier spectrum for a) Figure 2.9 a) and b)
Figure 2.9 b).
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is that the imaginary component becomes a −π/2 phase shift of the real component, unlike
a +π/2 phase shift associated with only maintaining the positive frequencies. The ability to
apply spectral decomposition to complex signals may be useful in studying problems such
as the motion of the Chandler Wobble through time (motion in the North-South direction
could potentially become the real component of the signal while motion in the East-West
direction could become the imaginary component) or two-component seismic data where
the complex signal is composed by placing one of the components onto the imaginary axis.
It should be noted that the ability to analyze complex signals is not unique to the CWT as
other local time-frequency methods such as STFT and S-transform are capable as well.

2.7 Summary and Discussion

In this chapter, a review of commonly applied local time-frequency transforms that have
been utilized for seismic data was provided. Unlike the global frequency analysis of a
time-series which can be achieved through the Fourier transform, several methods for lo-
cal time-frequency analysis have arisen due to the inherent uncertainty of knowing exactly
which frequencies occur at particular time samples of this non-unique process. With the
exception of the instantaneous frequency which generates a scalar parameter, all of the
discussed local time-frequency analysis, or spectral decomposition, methods generate a fre-
quency spectrum at each time sample and thus map a one-dimensional signal in time into a
two-dimensional space of time and frequency. To accomplish this goal, the STFT applies the
Fourier transform in small sliding windows, the Wigner-Ville distribution utilizes the time
reversed analytic signal as a special windowing function, the S-transform applies the Fourier
transform in frequency scaled windows, and the CWT utilizes time-frequency atoms called
wavelets to be fit to the time-series. However, the resulting local time-frequency representa-
tion generated from each of these techniques varies. The STFT is quite sensitive to the size
and choice of the windowing function producing a resolution trade-off between time and fre-
quency. The Wigner-Ville distribution perhaps provides the highest resolution of both time
and frequency but suffers from interference terms which generates time-frequency anomalies
where there were no events in the time-series. The S-transform and the CWT utilizing
complex Ricker wavelets both generate a local time-frequency representation with varying
resolution where low frequencies are well resolved at the expense of time resolution and
high frequencies are less resolved to promote higher time resolution. In direct comparison,
the S-transform provides a higher frequency resolution whereas, the CWT utilizing complex
Ricker wavelets provides a higher time resolution. It should be noted that the CWT actu-
ally produces a time-scale map, or scalogram, that can be mapped to a local time-frequency
representation. However, for the case of complex Ricker wavelets, the scalogram is quite
similar to the actual local time-frequency representation.
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For all of the local time-frequency methods discussed, with the exception of the instan-
taneous frequency, the localization of the frequency content of a time-series with time is
accomplished by studying the time-series within windows, either explicitly like the STFT or
implicitly like the wavelets of the CWT. Thus, at some level all of these local time-frequency
methods are connected. For instance, the STFT could be considered a special case of the
CWT where the wavelets are defined by the product of the Fourier kernel, e−iωt, and the
windowing function, g(t) (note that these particular wavelets may not satisfy the admissibil-
ity condition). In fact, the S-transform was originally explained in terms of the CWT. For
this reason, an alternative approach to creating the optimal time-frequency representation
of a time-series is studied in the next chapter. Rather than defining a new approach to
solve for the time-frequency map, the local time-frequency analysis problem is posed as an
inverse problem.



CHAPTER 3

High-Resolution Local Time-Frequency

Inversion

3.1 Introduction

In an effort to obtain the optimal local time-frequency representation of a time-series, not
only have various methods been developed, as discussed in Chapter 2, but also different
techniques have been implemented to try and optimize the local time-frequency represen-
tations that are produced from these methods. One such optimization technique which
operates after the local time-frequency representation has been created is the reassignment
method (Kodera et al., 1976; Auger and Flandrin, 1995; Pedersen et al., 2003; Gardner
and Magnasco, 2006). The reassignment method creates a modified version of the local
time-frequency representation, regardless of the method by which it was obtained, by re-
locating values away from where they are computed to help produce a better localization
of the signal components (Wu and Liu, 2009). Another technique to optimize the local
time-frequency representation is to pose the local time-frequency analysis problem as a data
representation problem that can be solved through inversion. The advantage of posing the
local time-frequency analysis problem through inversion is that it generates a solution which
satisfies certain conditions rather than altering a local time-frequency representation after
it has been obtained. It is this optimization method which will be discussed within this
chapter.

Through posing the spectral decomposition or local time-frequency analysis problem as an
inverse problem, regularization can be incorporated to impose additional constraints on

27
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the estimated local time-frequency representation for the recovery of a unique and stable
solution. This is an advantageous characteristic due to the non-uniqueness of the local time-
frequency analysis problem which allows for different local time-frequency representations
to theoretically represent the signal of interest. The ill-posed nature of this problem is a
major contributor to the many methods that have been developed for local time-frequency
analysis. The goal of regularization is to make estimation problems well-posed (where a
unique solution exists and depends continuosly on the data) by adding indirect constraints
on the estimated model (Aster et al., 2005). The act of solving problems through regularized
inversion has been commonly applied throughout geophysics for problems such as travel time
tomography (Bube and Langan, 2008; Clapp et al., 2004), high-resolution Radon transforms
(Sacchi and Ulrych, 1995; Trad et al., 2003), AVO inversion (Buland and Omre, 2003;
Alemie and Sacchi, 2011), migration (Kuehl and Sacchi, 2003; Kaplan et al., 2010), and
full waveform inversion (Plessix and Cao, 2011; Anagaw and Sacchi, 2011). Specifically for
the problem of spectral decomposition or local time-frequency analysis, local time-frequency
representations of a compact nature are desired to help emphasize small frequency changes
within the signal.

A compact or high resolution local time-frequency representation essentially requires the
local time-frequency distribution to be sparse or contain relatively few significant (i.e., non-
zero) values. Several functions such as the Cauchy and Huber norms (Sacchi and Ulrych,
1995; Sacchi, 1997) can be utilized as regularization terms for robust or sparsity constrained
inversion, however, this chapter will only specifically study sparsity constrained inversion
based upon the `1 norm. Although sparsity constrained inversion has been a topic of study
in the past (Taylor et al., 1979), a renewed vigor of its study has been undertaken with the
introduction of compressive sensing (Candes et al., 2006; Candes and Tao, 2006; Donoho,
2006a). The compressive sensing theory asserts that the recovery of certain signals and
images from far fewer samples or measurements than traditional methods utilize is possible
based upon the principles of sparsity and incoherence (Candes and Wakin, 2008). Despite
not posing the spectral decomposition problem in terms of compressive sensing, the recent
study of efficient algorithms to solve sparsity constrained inversion problems have become
extremely helpful for high resolution transforms.

Before sparsity constrained inversion is presented within this chapter, a data representation
method for spectral decomposition which essentially provides a more physical meaning to
the CWT is introduced. This data representation method provides an operator for mapping
a time-series to a local time-frequency representation and a local time-frequency represen-
tation to a time-series. The implementation of this operator into an inversion problem is
then demonstrated through the common damped least squares inversion problem. Finally,
a high resolution spectral decomposition method is defined based upon `1 norm (sparsity)
constrained inversion.
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3.2 Spectral Decomposition Through Inversion

Before a model can be employed to represent a data set, a method must be defined which
predicts the data to be observed from a specific model. This mapping from model to data
is often called the forward operator and for spectral decomposition relates to how a local
time-frequency representation can model a time-series. Working from a seismic data point
of view, a forward problem for spectral decomposition is described from the work of Bonar
and Sacchi (2010).

A seismic trace is often represented using a convolutional model which states that the seismic
trace s(t) is composed from the convolution of a wavelet w(t) and a reflectivity series r(t)
with additive noise n(t) (Robinson and Treitel, 1980),

s(t) = w(t) ∗ r(t) + n(t). (3.1)

Based upon this representation, a multi-wavelet convolutional model is defined to allow for
the utilization of multiple wavelets to describe the seismic trace,

s(t) =
K∑
k

[w(t, k) ∗ r(t, k)] + n(t). (3.2)

The index k defines the particular wavelet w(t, k) within the set of K wavelets and its as-
sociated coefficient series r(t, k). Fundamentally, the defined multi-wavelet convolutional
model generates s(t) from the summation of K wavelet specific seismic traces s(t, k), since
the argument of the summation operator in Equation 3.2 is simply the convolutional model
stated in Equation 3.1. Using this analogy, the coefficient series for each w(t, k) can be
considered as a wavelet-dependent reflectivity series. Although not physically realistic since
a seismic source does not generate multiple wavelets, this method allows for an alternative
representation of the seismic trace in terms of a set, or dictionary, of wavelets and their cor-
responding wavelet-dependent reflectivity series. The advantage of using multiple wavelets
to represent the seismic trace is that the associated wavelet-dependent reflectivity series
highlight areas within s(t) which can be represented from its wavelet, w(t, k). If the dictio-
nary of wavelets is chosen to change only in a certain property, such as frequency content,
the set of wavelet-dependent reflectivity series will highlight how this property changes in
s(t). Thus, the set of wavelet-dependent reflectivity series for a dictionary of frequency
varying wavelets can be considered as a local time-frequency representation.

Equation 3.2 describes the forward problem of how a seismic trace is composed from a
dictionary of wavelets and their corresponding wavelet-dependent reflectivity series. In
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terms of linear algebra, this forward problem could also be written as,

s =
(

W1 W2 . . . WK

)


r0

r1

...
rK

+ n = Dm + n, (3.3)

where Wk denotes the convolutional matrix for w(t, k), D denotes the wavelet dictionary,
and m denotes the collection of wavelet-dependent reflectivity series. If noise is not consid-
ered, the local time-frequency representation or collection of wavelet-dependent reflectivity
series can be obtained directly from taking the inverse of D,

m = D−1s. (3.4)

However, this method of solving for the local time-frequency representation may not be
attainable since D might not be invertible. To help avoid this problem, Equation 3.3 can
be multiplied by the Hermitian transpose or adjoint of D and, if noise is not considered, the
solution for the local time-frequency representation becomes,

m = (DHD)−1DHs. (3.5)

By multiplying Equation 3.3 by the adjoint of D, the inverse of DHD is more likely to
exist since its dimensions are ensured to be square. Obtaining the local time-frequency
representation in this manner is equivalent to minimizing the cost function J ,

J = ||s−Dm||22, (3.6)

where || · ||22 defines the `2 norm,
∑
k

xk
2, and is called the minimum norm solution. The

cost function defined in Equation 3.6 simply measures the error between the observed data
s and the predicted data Dm through the `2 norm.

Solving for the minimum norm solution of the spectral decomposition problem requires the
definition of the adjoint operator DH . Specifically, this means that a mapping from the
data into the projected model space m̂,

m̂ = DHs, (3.7)

is required. Since the adjoint operation of convolution is known to be cross-correlation
(Claerbout, 1992), the operation described by DH simply becomes the cross-correlation of
each wavelet w(t, k) in the wavelet dictionary with the seismic trace s(t). To ensure the



CHAPTER 3. HIGH-RESOLUTION LOCAL TIME-FREQUENCY INVERSION 31

operator DH is truly the adjoint operation of D, it must pass the dot product test (Claer-
bout, 1992). Essentially, D and DH represent the discrete operators for the forward and
inverse CWT, however, when they are implemented in an inversion process the solution for
the local time-frequency representation can be constrained to exhibit certain characteris-
tics. Like the CWT, local time-frequency representations generated through inversion with
these operators are actually time-scale maps but, as discussed in Chapter 2, if the wavelet
dictionary is chosen as a set of complex Ricker wavelets the resultant time-scale map can
serve as an adequate proxy for the local time-frequency representation.

3.3 Damped Least Squares Inversion

The proposed method for spectral decomposition defines an inherently underdetermined
problem as a one dimensional seismic trace is generating a two dimensional local time-
frequency representation. With many more unknown variables (model) than known vari-
ables (data), an infinite number of local time-frequency representations could theoretically
characterize the seismic trace. The minimum norm solution selects a specific solution for the
local time-frequency representation that minimizes the error between the predicted and ob-
served data, but it may be unstable in the presence of noise since the inverse of DHD might
be poorly conditioned (has a determinant close to zero). This means that small changes in
the observed data, whether noise related or not, could potentially create large changes in
the local time-frequency representation. Through adding an additional constraint on the
desired local time-frequency representation, the inversion problem becomes more well-posed
with small changes in the observed data correlating to small changes in the resulting local
time-frequency representation. The act of adding additional constraints on the solution of
the inversion problem is known as regularization (Aster et al., 2005) and is accomplished by
incorporating an additional term to the cost function J ,

J = ||s−Dm||22 + λR(m). (3.8)

The strength of the regularization term, R(m), in comparison to the data misfit term
is balanced through the trade-off parameter λ. Although many different choices for the
regularization term exist, its selection is based upon certain assumptions about the desired
model. A common choice for R(m) is the `2 norm of the model parameters which minimizes
their amplitude. Constraining the model to have a minimum amplitude in the `2 norm sense
generates a smooth solution and prevents small variations within the data from having
large effects on the model. Thus, the incorporation of the `2 norm of the model as the
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regularization term alters the cost function J to become,

J = ||s−Dm||22 + λ||m||22. (3.9)

The minimization1 of the cost function in Equation 3.9 results in a closed form solution
known as the damped least squares solution (Claerbout, 1992),

m = (DHD + λI)−1DHs, (3.10)

where I represents the identity matrix of equivalent dimensions to DHD. The addition of
the `2 norm of the model parameters for the regularization term effectively adds a constant
value along the diagonal of DHD to ensure its determinant is non-zero and stabilizes the
inversion process. The selection of the trade-off parameter can be chosen through the χ2

test if the noise level is known or heuristically, such as utilizing an L-curve, if the noise level
is unknown as is often the case with real data (Hansen, 1998). Specifically, a larger value
for λ puts greater emphasis on the regularization term, generates a smoother model, and
assumes a greater amount of noise within the data while a smaller value for λ puts greater
emphasis on the data misfit term and assumes a smaller amount of noise within the data.
The trade-off parameter, therefore, controls the degree of fit between the predicted data and
observed data through constraining the model solution and should be set such that the noise
is not being fit within the model and that the predicted data adequately fits the observed
data.

Although the damped least squares solution can be computed directly from the closed form
solution given by Equation 3.10, it may not always be optimal for large scale problems
since computational difficulties can arise if the inversion matrix becomes too large (Olden-
burg et al., 1993). Alternatively iterative methods, such as the conjugate gradient method
(Hestenes and Stiefel, 1952), can be employed to solve the damped least squares solution
indirectly. The advantage of solving for the damped least squares solution iteratively is that
the matrices for the forward and adjoint operator are not always required to be stored in
memory. Instead these methods only require the result of applying the forward and adjoint
operators. To increase the computational efficiency of applying forward and adjoint opera-
tors of the proposed spectral decomposition method, they can be computed in the Fourier
domain with the aid of the Fast Fourier Transform (FFT) where convolution and cross-
correlation simply become multiplications and multiplications by the complex conjugate,
respectively.

1The minimization of a function is accomplished by taking its derivative and setting it equal to zero.
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3.4 Sparse Inversion

Although the damped least squares solution generates a stable solution in the presence of
noise, it does not generate a high resolution or sparse local time-frequency representation.
Ideally, the regularization term for sparsity constrained inversion should be a direct measure
of sparsity. This can be accomplished with the `0 norm which measures the number of
non-zero elements within a function. Unfortunately, the only known method to solve the
regularized inversion problem with the `0 norm is combinatorial and NP hard (Donoho,
2006b) leading it to be computationally inefficient. Therefore, other regularization terms
such as the Cauchy and Huber norms (Sacchi, 1997) are often utilized to produce models
which mimic the solution that would have been obtained with the `0 norm (i.e., the sparsest
solution). Through the recent studies of compressive sensing (Candes and Tao, 2006),
increased attention has been devoted to sparsity constrained inversion where the `0 norm
has often been approximated by the `1 norm,

∑
k

|xk|, which under certain conditions has

been found to also produce the sparsest solution (Donoho, 2006b). The sparse optimization
problem involving the `1 norm is known as Basis Pursuit (Chen et al., 1998) and can be
posed through the minimization of the cost function,

J =
1
2
||s−Dm||22 + λ||m||1. (3.11)

When minimized, the following solution for the local time-frequency representation is achieved,

m =
(
DHD + λQ

)−1
DHs, (3.12)

where the matrix Q is a diagonal matrix whose elements are the reciprocal of the absolute
value of m. In other words, Qjj = 1

|mj | and is zero everywhere else. However, the direct
presence of m in Q causes the solution given by Equation 3.11 to become non-linear since
the model itself is required in the inversion. This property is a result of the non-quadratic
nature of the `1 norm which does not allow a closed form solution, such as the damped least
squares solution, and makes `1 norm constrained inversion more computationally expensive
than `2 norm constrained inversion. Since a closed form solution does not exist, iterative
algorithms must be employed to minimize the cost function of Equation 3.11.

One method for iteratively solving for the solution of `1 norm regularized inversion is the
Iteratively Reweighted Least Squares (IRLS) method (Daubechies et al., 2010). In essence,
the IRLS method assumes a starting model, such as a model full of zeros, and solves for the
constrained model solution via,

mi+1 =
(
DHD + λQi

)−1
DHs, (3.13)
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where the index i represents the iteration number. For large scale problems, the right hand
side of Equation 3.13 can be solved through methods such as conjugate gradients. The IRLS
method can also be used with other regularization terms such as the Cauchy and Huber
norms and has often been utilized for inverse problems within geophysics (Sacchi, 1997;
Trad et al., 2003). Particularly, the IRLS method with a pseudo `0 norm,

∑
k

|mk|2
|mk|2+ε2 , has

been applied for sparsity constrained spectral decomposition on seismic data which utilizes
the operators described in Section 3.2 (Portniaguine and Castagna, 2004).

For the purposes of this thesis, another iterative solver which minimizes Equation 3.11 was
utilized to help introduce different sparse solving methods involving the `1 norm within
the geophysics community. The Fast Iterative Soft Thresholding Algorithm (FISTA) (Beck
and Teboulle, 2009) is an adaptation of the Iterative Soft Thresholding Algorithm (ISTA)
(Daubechies et al., 2004) which is a proximal gradient descent method. The gradient descent
method, also known as the Landweber iteration method (Landweber, 1951), iteratively solves
the minimization of cost functions through moving negatively along their gradient via,

mi+1 = mi −
1
α
∇J (mi) , (3.14)

which for the case of Equation 3.6 becomes,

mi+1 = mi +
1
α
DH (s−Dmi) . (3.15)

The parameter α in Equations 3.14 and 3.15 controls the iteration step length and thus the
convergence rate. Through moving negatively along the gradient of the cost function, the
gradient descent method iteratively estimates models which become closer to the minimum
of the actual cost function as illustrated by Figure 3.1. The gradient descent method can
also be equivalently posed through the proximal regularization of the cost function at mi−1

according to (Beck and Teboulle, 2009),

mi = min
{
J (mi−1) + 〈m−mi−1,∇J (mi−1)〉+

α

2
||m−mi−1||22

}
. (3.16)

Effectively, a non-negative function of m is added to the cost function to create a new cost
function whose values are always greater than the original cost function except at the point
mi−1 where the original and new cost functions are equal. The goal is that this new cost
function is much simpler to minimize than the original cost function, which is often the
case if the original cost function is non-linear. Through continually minimizing these new
cost functions, mi iteratively moves closer to the minimum of the original cost function. If
the constant terms within the minimization of Equation 3.16 are ignored, it can be more
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Figure 3.1: An example of the gradient descent method. The coloured contour lines
represent the cost function for a model x that has two variables, x1 and x2. The
initial estimate of the solution is marked by the open black circle and the dotted
line represents the path of the gradient descent algorithm towards the minimum of
the cost function.

elegantly rewritten as,

mi = min
{
α

2
||m− [mi−1 −

1
α
∇J (mi−1)]||22

}
. (3.17)

Since the `1 norm for the cost function in Equation 3.11 is separable, its minimization is
not affected by the minimization of the data misfit term. Therefore, the minimization of a
slightly easier cost function,

J = ||s−m||22 + λ||m||1, (3.18)

is studied to serve as an analogy for minimizing Equation 3.11 (Selesnick, 2009). For this
particular example, it is assumed that s and m have the same dimensions. Taking the
derivative of Equation 3.18 and setting it equal to zero results in the expression,

s = m +
λ

2
sgn(m), (3.19)

where the function sgn(·) produces +1 for positive numbers and −1 for negative numbers.
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The solution for m from Equation 3.19 is defined by,

m = Tλ/2 (s) , (3.20)

where Tλ(·) is the soft thresholding function which is also known as the shrinkage thresh-
olding function. For a complex number Aeiθ, the soft thresholding function is defined as,

Tλ
(
Aeiθ

)
=

(A− λ) eiθ if A > λ

0 if A ≤ λ
. (3.21)

Through this analogy, the minimization of Equation 3.11 becomes,

m = Tλ/2
(
∇
(
||s−Dm||22

))
. (3.22)

Since ∇
(
||s−Dm||22

)
, or essentially the minimization of the cost function in Equation 3.6,

can be accomplished through the gradient descent method, the iterative solution for the
minimization of Equation 3.11 provided by ISTA becomes,

mi+1 = Tλ/2α
(
mi +

1
α
DH (s−Dmi)

)
, (3.23)

or simply the soft threshold of each gradient step. Since ISTA does not require the explicit
matrices for D and DH , just their application, the utilization of operators as discussed in
Section 3.3 can be incorporated into the implementation of this algorithm. To ensure the
convergence of this algorithm the parameter α must be constrained to be equal to or greater
than the maximum eigenvalue of DHD. However, since the explicit matrices for D and DH

are not required to be defined, the estimation of α can become difficult. To help combat this
problem, the power iteration method (Golub and Loan, 1996) can be utilized to estimate
the largest eigenvalue of DHD.

Despite the simplicity of this first order method2, ISTA has generally been recognized as a
slow method with a sub-linear global rate of convergence (Beck and Teboulle, 2009). The
simplicity of applying this algorithm has lead to several alterations to help increase its
global rate of convergence such as the TWIST (Two step Iterative Shrinkage Thresholding)
(Bioucas-Dias and Figueiredo, 2007) and FISTA (Fast Iterative Shrinkage Thresholding
Algorithm) (Beck and Teboulle, 2009) algorithms. As per Beck and Teboulle (2009), FISTA
globally converges at a faster rate than the ISTA and TWIST algorithms and is shown to
experimentally take significantly fewer iterations to reach an acceptable level of accuracy.
FISTA accomplishes this task by utilizing a carefully chosen update to mi before mi+1 is

2First order methods are optimization methods that are based on function values and gradient evalua-
tions (Beck and Teboulle, 2009).
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computed. This update, yi, is a particular combination of the previous two iterations given
by,

yi = mi +
(
ξi − 1
ξi+1

)
(mi −mi−1), (3.24)

where ξi is an update parameter determined by,

ξi+1 =
1 +

√
1 + 4ξi2

2
. (3.25)

By incorporating yi rather than mi to solve for mi+1, FISTA alters ISTA to become,

mi+1 = Tλ/2α
(
yi +

1
α
DH (s−Dyi)

)
. (3.26)

This clever update, yi, enables FISTA to improve the rate of convergence of ISTA from
approximately O(1/i) to approximately O(1/i2) without sacrificing the simplicity of calcu-
lating one gradient step per iteration.

3.5 Discussion

Although the two regularization terms that have been discussed in this chapter attempt to
measure the same property, the amplitude of the model parameters, the resultant solutions
are quite different. This effect is demonstrated in Figures 3.2 and 3.3 where the proposed
inverse spectral decomposition method based upon the multi-wavelet convolutional model
was applied to the synthetic time-series depicted in Figure 2.1. Similar to the application
of the CWT in Chapter 2, the wavelet dictionary was chosen to be composed of complex
Ricker wavelets which are uniquely defined by their central frequency and the resulting local
time-frequency representation obtained is actually a time-scale map. However, as shown in
Figure 2.6, the time-scale map obtained with a complex Ricker wavelet dictionary serves
as an adequate proxy to its mapped local time-frequency representation. By imposing the
`1 norm as the regularization term, the amplitude of the obtained local time-frequency
representation was more efficiently localized, or compacted, around the actual events of the
time-series than the local time-frequency representation obtained with the `2 norm. The
stronger localization of the local time-frequency representation did not strongly influence
the phase around these areas, however, a difference is seen in areas where the signal should
not have a strong influence on the local time-frequency representation. This difference arises
from the sparse model that is created through the use of the `1 norm as the regularization
term, since values of zero amplitude are assigned a zero phase. Likewise, the regularization
with the `2 norm generates a phase for the entire local time-frequency representation since
its model contains mostly non-zero coefficients which are associated with a phase, no matter
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Figure 3.2: The amplitude of the local time-frequency representation obtained
through inversion using a) the `2 norm and b) the `1 norm as the regularization
term.
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Figure 3.3: The phase of the local time-frequency representation obtained through
inversion using a) the `2 norm and b) the `1 norm as the regularization term.
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how minutely small they are.

The reason for the large difference in the solution from `2 norm and `1 norm regularization
can be explained through Figure 3.4. Since the `2 norm utilizes the square of the model
parameters, its minimization has the effect of penalizing larger values of the model more
than smaller values and thus creates a smooth solution to help avoid large amplitudes.
Conversely, the `1 norm utilizes the absolute value of the model parameters and tends
to promote larger values and fewer smaller values in the model than the `2 norm when
minimized. This behaviour of the `1 norm causes its solution to become more sparse since
a larger coefficient value for a single model parameter has the ability to represent a larger
proportion of the signal. These properties can be explicitly seen in Figure 3.4 where the
dashed line representing the absolute value, or `1 norm, lies above the solid line representing
the squared value, or `2 norm, for small values (x < 1) to create a stronger penalty of small
values for the `1 norm and below the solid line for large values (x > 1) to create a stronger
penalty of large values for the `2 norm.

It should be noted that the direct generation of a sparse local time-frequency representation
using the operators in Section 3.2 can also be accomplished using the Matching Pursuit
algorithm. Matching Pursuit is a greedy algorithm introduced by Mallat and Zhang (1993)

Figure 3.4: A representation of the `2, x2, and `1, |x|, norm. When minimized, the
`1 norm will support fewer small coefficients compared to the `2 norm causing it to
appear more sparse.
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that was originally proposed for fitting time-frequency atoms, or wavelets, to a time-series.
This heuristic or empirical method generates a model to fit the data by selecting the single
best time-frequency atom which represents the signal. Once this atom is subtracted from the
signal, Matching Pursuit then selects the single best time-frequency atom which represents
the residual (the part of the signal not represented by the model). Through iteratively
continuing this approach, the newly constructed model will eventually fit the original signal.
By populating the model one coefficient at a time, Matching Pursuit builds the model
by fitting the most major elements of the signal first. This has the effect of making the
model look sparse, although sparsity is not a specific goal of Matching Pursuit algorithm.
Matching Pursuit’s generation of a sparse model is in direct contrast to Basis Pursuit, or
the minimization of the cost function in Equation 3.11, whose specific goal is to generate
a sparse model based upon the minimization of the `1 norm. The difference between the
goals of Matching Pursuit and Basis Pursuit means that Basis Pursuit can theoretically
yield representations that are more sparse since it globally optimizes the model during each
iteration rather than Matching Pursuit’s local optimization (Mallat, 2008) . However, the
Matching Pursuit method has shown the ability to generate sparse local time-frequency
representations for seismic data (Chakraborty and Okaya, 1995; Castagna et al., 2003).

3.6 Summary

This chapter poses the spectral decomposition problem as an inverse problem through uti-
lizing a multi-wavelet convolutional model. The forward problem, which maps the model
(local time-frequency representation) to the data (time-series), requires the summation of
each wavelet within a wavelet dictionary after it has been convolved with its respective
wavelet-dependent reflectivity series. If the wavelet dictionary is chosen strategically, such a
dictionary of complex Ricker wavelets which are uniquely defined by their central frequency,
the set of wavelet-dependent reflectivity series can represent a local time-frequency repre-
sentation. For the adjoint problem or the mapping from the data to the model, the adjoint
operator is defined as the cross-correlation of each wavelet with the data. By defining the
spectral decomposition problem in this manner, the forward and adjoint operators simply
become the inverse and forward operators for the CWT, respectively.

To create a high resolution local time-frequency representation, the inverse spectral decom-
position problem is regularized by the `1 norm. Garnering increased popularity through the
introduction of compressive sensing, `1 norm regularized inversion constrains the solution
or local time-frequency representation to be sparse and thus at a higher resolution. This
is in direct contrast to the more common and less computationally expensive `2 norm reg-
ularized inversion which generates a smooth solution by deterring large amplitudes within
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the model. To solve the `1 norm regularized inversion problem, iterative techniques such
as Iteratively Reweighted Least Squares (IRLS) or the Fast Iterative Soft Thresholding Al-
gorithm (FISTA) are required since the solution to the problem is non-linear. Since IRLS
has already been applied within the geophysics community, FISTA was utilized within this
thesis to solve all `1 regularized inverse problems to help introduce a new sparse solver. One
particular advantage with the utilization of FISTA in comparison with IRLS is the reduced
number of estimated parameters (trade-off parameter and number of iterations vs. trade-off
parameter, number of iterations to update Q, and number of iterations for conjugate gra-
dients). The application of this strategy to generate a high resolution local time-frequency
representation on seismic data is described in the next chapter.



CHAPTER 4

Spectral Decomposition of Seismic Data

4.1 Introduction

Local time-frequency analysis has proven to be a powerful interpretational tool for seismic
data. By generating the complete frequency spectrum at each time sample rather than
just generating a scalar parameter with the instantaneous frequency, spectral decomposi-
tion has provided a greater wealth of information to be studied and analyzed for exercises
such as reservoir characterization (Partyka et al., 1999). Of particular interest, spectral
decomposition has been utilized for thin bed analysis (Partyka et al., 1999; Marfurt and
Kirlin, 2001), the identification of subsurface structures such as paleochannels (Giroldi and
Alegria, 2005; Liu and Marfurt, 2007) and reefs (Li and Zheng, 2008), for measuring seismic
attenuation (Reine et al., 2009), and as a possible indicator for hydrocarbon presence based
upon low frequency shadows (Castagna et al., 2003) or high frequency signatures (Li et al.,
2011) depending upon the local geology. Localized time-frequency representations have also
contributed to more detailed interpretations when used in conjunction with AVO analysis
(Odebeatu et al., 2006) and more recently, the phase residues from spectral decomposition
have been utilized to determine the location of stratigraphic discontinuities (de Matos et al.,
2011). Spectral decomposition has also found applications in other areas of geophysics such
as global seismology (Vasudevan and Cook, 2001), potential field data such as gravity or
magnetic data1 (Hornby et al., 1999; Martelet et al., 2001), and ground penetrating radar

1Note that local time-frequency analysis changes to local space-wavenumber analysis for potential field
data.

43
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(Bradford and Wu, 2007; Bradford, 2007).

Utilizing the real data set in Figure 1.3, the application of the inverse spectral decomposition
method described in Chapter 3 is demonstrated. Through studying the local time-frequency
representation of a cross section of this data set, the different frequency behaviour of the
two large paleochannels can be seen. A comparison of `2 norm regularized inversion and `1
norm regularized inversion of this cross section is also conducted to highlight the advantages
and disadvantages of both techniques. The local time-frequency representation of a time
slice through these paleochannels further corroborates these findings. Visualization of a
smaller paleochannel on a time slice is also enhanced through the high resolution spectral
decomposition method. Finally, a technique to help deal with viewing the large data volume
that is created through local time-frequency analysis is presented.

4.2 Cross Section Analysis

An example cross section shown in Figure 4.1 through the example real 3D data set displays
two large paleochannels located at approximately 0.540s around 2.25km and 0.425s around
0.5km and 1.5km. As spectral decomposition adds another dimension, frequency, to the data
set, local time-frequency representations become position-time-frequency cubes for a seismic

Figure 4.1: An example cross section through the a real 3D data set displaying
paleochannels around 0.425s and 0.540s.
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Figure 4.2: Local time-frequency representation from the seismic trace located at
2.2km on the cross section in Figure 4.1 (left) using `2 norm regularized inversion
(center) and `1 norm regularized inversion (right).

cross section. Therefore, to visualize the spectrally decomposed data, slices of constant time,
position, or frequency must be taken. Figure 4.2 depicts the local time-frequency represen-
tation of this seismic cross section for both `2 norm and `1 norm regularized inversion by
maintaining the position dimension to be constant at 2.2km. Further comparison of `2 norm
and `1 norm regularized inversion is provided through two constant frequency2 slices of the
local time-frequency representation depicted in Figures 4.3 and 4.4. As with the synthetic
time-series example in Chapter 3, the amplitude of the local time-frequency representation
contains a much higher resolution in the `1 norm solution which allows for greater variability
between different frequency slices when compared to the `2 norm solution. Although the `2
norm solution is not as sparse or compact as the `1 norm solution, its global phase image is
more complete since almost none of the coefficients in the local time-frequency representa-
tion are zero. This means that phase information can be calculated across the entire local
time-frequency representation because phase information is not sensitive to the magnitude
of the coefficient. In fact, the localized phase information of the `1 norm solution for the
local time-frequency representation can be exactly found with the more global phase infor-
mation of the `2 norm solution’s local time-frequency representation. The advantages and
disadvantages for both the `1 norm regularized inversion solution and `2 norm regularized

2Note, as in previous chapters, this frequency actually corresponds to the central frequency of a complex
Ricker wavelet.
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Figure 4.3: Comparison of local time-frequency representation for the cross section
in Figure 4.1 obtained using the `2 norm (left) and the `1 norm (right) for regu-
larization term. The amplitude of the constant 25Hz frequency slice (top) and the
constant 45Hz frequency slice (bottom) are displayed.

inversion solution for the local time-frequency representation is summarized in Table 4.1.

A set of four constant frequency slices are highlighted in Figures 4.5 and 4.6 to display the
change in frequency content of the example cross section. The amplitude of the constant
frequency slices shown in Figure 4.5 were obtained with the `1 norm solution and depict two
different frequency behaviours for the large paleochannels. The upper paleochannel around
0.425s contains a much stronger lower frequency content than its neighbouring reflectors but
relatively maintains its higher frequency content. This lower frequency shadow behaviour
is not displayed in the lower paleochannel which is dominated by a lower frequency content
and an absence of higher frequency content when compared to its neighbouring reflectors.
The contrast of frequency content is especially highlighted by the 25Hz and 45Hz sections.
Figure 4.6 displays the `2 norm solution’s phase and characterizes different scales of strati-
graphic layering. This property may improve interpretation in regions where thin bed tuning
effects are dominant such as the pinch out event located around 0.5s in the example cross
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Figure 4.4: Comparison of local time-frequency representation for the cross section
in Figure 4.1 obtained using the `2 norm (left) and the `1 norm (right) for regular-
ization term. The phase of the constant 25Hz frequency slice (top) and the constant
45Hz frequency slice (bottom) are displayed.
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Amplitude Phase

`2 Norm Solution
Low resolution with slight
variability between constant
frequency slices

Continuous phase distribu-
tion enables global and local
interpretation

`1 Norm Solution
High resolution with in-
creased variability between
constant frequency slices

Localized phase distribution
enables only local phase inter-
pretation

Table 4.1: Comparison of the local time-frequency representation obtained from `2
norm regularized inversion and `1 norm regularized inversion for the interpretation
of its amplitude and phase.

section which occurs around 4.0km in the 25Hz frequency slice and around 2.0km in the
45Hz frequency slice. By generating a local time-frequency representation, the different
frequency behaviours of these large paleochannels, which could not be clearly interpreted
on the original cross section, become apparent.

4.3 Time Slice Analysis

In actuality, the three dimensional data set containing the paleochannels becomes a four
dimensional local time-frequency representation after undergoing local time-frequency anal-
ysis. Therefore, not only does the previous section maintain a constant frequency to produce
an image but also fixed one of the spatial coordinates. Instead of fixing one of the spatial
coordinates, the time coordinate can be fixed to provide an analysis through constant time
sections, or time slices, of the data such as Figure 4.7 which depicts the lower large pa-
leochannel that was seen in the example cross section. The amplitude of the `1 norm
regularized inversion local time-frequency representation for this time slice is shown in Fig-
ure 4.8 for different constant frequency sections. The dominant frequency content of this
paleochannel is found to be around 25Hz whereas the energy from its neighbouring reflectors
is more dispersed among the higher frequencies, supporting the results from the example
cross section. The phase of the `2 norm regularized inversion local time-frequency represe-
nation, shown in Figure 4.9, defines the paleochannel across all of the constant frequency
sections, although different portions of the paleochannel are more clearly defined in particu-
lar constant frequency sections. For example, the upper portion of the paleochannel is well



CHAPTER 4. SPECTRAL DECOMPOSITION OF SEISMIC DATA 49

Figure 4.5: Amplitude of the `1 norm local time-frequency representation for the
example cross section in Figure 4.1. Top left: 25Hz slice, Top right: 35Hz slice,
Bottom left: 45Hz slice, Bottom right: 55Hz slice.
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Figure 4.6: Phase of the `2 norm local time-frequency for the example cross section
in Figure 4.1. Top left: 25Hz slice, Top right: 35Hz slice, Bottom left: 45Hz slice,
Bottom right: 55Hz slice.
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Figure 4.7: Time slice of the 3D data set displaying the lower channel (0.544s).

defined in the constant 25Hz frequency section as compared to the 45Hz frequency section,
whereas the 45Hz frequency slice defines the lower lefthand portion of the paleochannel more
clearly in comparison with the 25Hz frequency section. The generally sharp phase contrast
found at the paleochannel boundaries of the different constant frequency sections may lead
to improved edge detection results for the paleochannel when compared to edge detection
utilizing only the seismic amplitude volume.

The final example with this real 3D data set illustrates how spectral decomposition can be
used to enhance the imaging of small scale features. Figure 4.10 is a time slice between the
two large paleochannels in the example cross section of Figure 4.1 and vertically displays a
small channel-like structure. This structure has the base of the upper large paleochannel,
which runs horizontally, overprinting it and also suffers from a polarity reversal of its sur-
roundings near the bottom of the image. The small channel appears with better resolution
in Figure 4.11 by an apparent lack of energy in the amplitude of the `1 norm regularized
inversion local time-frequency representation’s constant 45Hz frequency section while dif-
ferent portions of the channel also appear with the same lack of energy in the amplitude
of the constant 25Hz and 35Hz frequency sections. Unlike the improved visualization from
a lack of energy in the amplitude of the `1 norm regularized inversion local time-frequency
representation, the phase of the `2 norm regularized inversion local time-frequency repre-
sentation solution in Figure 4.12, does not provide any significant improvements for imaging
this small scale feature.
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Figure 4.8: Amplitude of the `1 norm local time-frequency representaion for the
time slice in Figure 4.7. Top left: 15Hz slice, Top right: 25Hz slice, Bottom left:
35Hz slice, Bottom right: 45Hz slice.
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Figure 4.9: Phase of the `2 norm local time-frequency representation for the time
slice in Figure 4.7. Top left: 15Hz slice, Top right: 25Hz slice, Bottom left: 35Hz
slice, Bottom right: 45Hz slice.



CHAPTER 4. SPECTRAL DECOMPOSITION OF SEISMIC DATA 54

Figure 4.10: Time slice of the 3D dataset displaying a small channel-like structure
travelling vertically through the image (0.478s).

4.4 RGB Image Blending

To fully image the small paleochannel from the `1 norm regularized inversion local time-
frequency representation, one must look at each individual frequency section which may be
a difficult task as a large amount of different frequency sections are generated during the
spectral decomposition process. The issue of trying to compress all of the spectral informa-
tion obtained through local time-frequency analysis can be partially addressed through the
creation of a blended RGB image (Henderson et al., 2007). In an RGB image each pixel is
uniquely defined by three parameters, the intensity of the colours red, green, and blue which
each have a range of [0 1]. Through the summation of the amplitude from all of the constant
frequency sections within a specific frequency band and its subsequent normalization, the
local time-frequency representation can be condensed into the three RGB parameters where
the red intensity of a pixel represents the intensity of low frequencies, the green intensity
represents the intensity of intermediate frequencies, and the blue intensity represents the
intensity of high frequencies. Although this procedure will generate a blended RGB im-
age of low, intermediate, and high frequencies for a local time-frequency representation,
the resultant RGB image might not exhibit significant colour variation due to most pixel
values having a similar intensity. To help enhance the contrast of intensities for the pixels
on an RGB image, a contrast stretch can be applied to each individual colour component
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Figure 4.11: Amplitude of the `1 norm local time-frequency representation for the
time slice in Figure 4.10. Top left: 15Hz slice, Top right: 25Hz slice, Bottom left:
35Hz slice, Bottom right: 45Hz slice. Note the apparent lack of energy in the 45Hz
slice which displays the position of the channel.
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Figure 4.12: Phase of the `2 norm local time-frequency representation for the time
slice in Figure 4.10. Top left: 15Hz slice, Top right: 25Hz slice, Bottom left: 35Hz
slice, Bottom right: 45Hz slice.
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according to,

us(i) = (u(i)− umin)
1

umax − umin
, (4.1)

where u(i) and us(i) represent an image pixel before and after a contrast stretch and umin

and umax represent the minimum and maximum pixel value of u. The process of contrast
stretching simply expands information that is clustered together to encompass the entire
data range available as illustrated by Figure 4.13. The contrast stretched blended RGB
image of the `1 norm regularized inversion local time-frequency representation is shown in
Figure 4.14. Through creating a blended RGB image, the resolution of the small paleochan-
nel from Figure 4.10 is significantly enhanced.

4.5 Summary

Utilizing the inverse method for spectral decomposition developed in Chapter 3, the ad-
vantages and disadvantages of both `1 norm and `2 norm regularization for application to
seismic data was discussed. Through constraining the local time-frequency representation
to become sparse, `1 norm regularization’s higher resolution local time-frequency represen-
tation provided more variability between the amplitude of constant frequency sections. This
allowed for the different frequency behaviours of the two large paleochannels found in the
example cross section of Figure 4.1 to become more evident. When analyzing the seismic
amplitude volume alone, the difference between the low frequency shadows of the upper
paleochannel and the dominant low frequency energy of the lower paleochannel would have
been extremely difficult to ascertain. However, the sparseness of the local time-frequency
representation obtained through `1 norm regularization does not allow for a global inter-
pretation of the phase like the local time-frequency representation obtained from `2 norm
regularization. Although not commonly utilized for interpretation, the phase obtained from
`2 norm regularization based upon the multi-wavelet convolutional model may prove useful
for studying thin bed tuning effects such as stratigraphic pinch out events. By compressing
all of the spectral information obtained through spectral decomposition into a blended RGB
image, the information of how the frequency content changes in a cross section or time slice
can be displayed in a single image. This endeavour proves useful with large data sets since
local time-frequency analysis generates large volumes of data which can become difficult to
interpret. The creation of a blended RGB image from local time-frequency representations
can also aid in the visualization of features such as the small paleochannel in Figure 4.10.
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Figure 4.13: Histograms for the red pixel intensity a) before and b) after contrast
stretching, the green pixel intensity c) before and d) after contrast stretching, and
the blue pixel intensity e) before and f) after contrast stretching for the blended
RGB image of Figure 4.14.
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Figure 4.14: A contrast stretched blended RGB image of the `1 norm regularized
inversion local time-frequency representation for the time slice in Figure 4.10 uti-
lizing the frequency bands: below 25Hz, between 25Hz and 45Hz, and above 45Hz.
By combining all of the spectral decomposition information into a single image,
visualization of the small paleochannel was greatly improved.



CHAPTER 5

Spectral Decomposition with f − x− y

Preconditioning1

5.1 Motivation

Through the pursuit of creating a high resolution local time-frequency representation of
the seismic trace, noise becomes a greater problem as small changes within the data will
have a more profound effect on the local time-frequency representation. Although the de-
noising capabilities of sparse local time-frequency transforms have been well studied for
the reconstructed signal (Chen et al., 1998), the recovery of a denoised version of the local
time-frequency representation has not been as extensively studied. Typically, the spectral
decomposition problem for seismic data has been viewed as a transformation on a one dimen-
sional seismic trace into a two dimensional local time-frequency representation. Meanwhile,
seismic data is generally known to change slowly in the lateral direction, meaning neigh-
bouring seismic traces often have a similar structure. This general idea is applied in Wang
(2010) where a linearity assumption is implemented into a matching pursuit algorithm to
try to produce a more robust local time-frequency representation for a seismic cross section
and is the only published attempt to produce a denoised version of the local time-frequency
representation for seismic data.

In this chapter, the spectral decomposition problem is viewed as a multidimensional problem
to allow for the incorporation of neighbouring traces during the construction of the local
time-frequency representation of a seismic volume, i.e., a two dimensional seismic cross

1A version of this chapter has been submitted for publication (Bonar and Sacchi, 2012b).
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section to a three dimensional time-frequency representation. As discussed in Chapter 3,
representing the seismic trace as a multi-wavelet convolutional process allows its local time-
frequency representation to be considered as a set of wavelet dependent reflectivities. This
enables concepts such as f − x or f − x − y deconvolution to be incorporated into the
spectral decomposition algorithm via the preconditioning of the inversion problem similar
to the structure-and-amplitude-preserving multichannel deconvolution algorithm proposed
in Wang and Sacchi (2009). The incorporation of f − x or f − x− y deconvolution into the
spectral decomposition algorithm allows for the structure of neighbouring seismic traces to
influence the time-frequency representation of a seismic trace during its generation, helping
to eliminate the effects of noise. The application of the proposed f − x− y preconditioned
spectral decomposition algorithm is demonstrated with a synthetic data set and tested on the
real 3D data set containing the small paleochannel in Figure 4.10 where it is compared with
kx − ky, or bandpass, filtering for denoising after the generation of the local time-frequency
representation using sparse inversion.

5.2 Theory

The generation of a denoised time-frequency representation can be achieved by incorporating
the idea of f − x or f − x− y deconvolution within the sparse inversion approach described
previously for spectral decomposition. To accomplish this goal, a similar derivation to the
structure-and-amplitude-preserving multi-channel deconvolution method proposed in Wang
and Sacchi (2009) is followed. At the channel i of a seismic cross section, the convolutional
model of a seismic trace can be described in the Fourier domain by

Si(ω) = W (ω)Ri(ω) +Ni(ω), (5.1)

where Si represents the seismic trace, W represents the wavelet, Ri represents the reflectivity
series, and Ni represents random noise. Utilizing the assumption that the reflectors of the
subsurface are laterally continuous (i.e. low trace to trace variability), the reflectivity at the
channel i can be predicted from the previous L channels since the reflectivity in the f − x
domain becomes a sum of complex exponentials at each frequency ω (Canales, 1984). This
assumption leads to

Ri(ω) = P1(ω)Zi−1(ω) + P2(ω)Zi−2(ω) + . . .+ PL(ω)Zi−L(ω), (5.2)

where Pl refers to the prediction filter and Zl can be considered as the reflectivity series
prior to spatial smoothing. Once the prediction filter is found for a given frequency ω, the
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convolutional model can be rewritten as

Si(ω) = W (ω)
L∑
l

[Pl(ω)Zi−l(ω)] +Ni(ω), (5.3)

or more commonly the model for f − x deconvolution. The actual estimation of the spatial
prediction filter is a topic unto itself, however, examples of its estimation can be found in
Yilmaz (2001).

To expand this concept to the multi-wavelet convolutional model, Equation 3.2 must be
transformed into the Fourier domain,

Si(ω) =
K∑
k

[W (ω, k)Ri(ω, k)] +Ni(ω). (5.4)

Presuming that the assumption of reflectivity being laterally continuous also holds true for
the wavelet dependent reflectivity series, the time-frequency representation at the channel i
can also be predicted from the previous L channels. At a specific Fourier frequency ω, this
assumption leads to

Ri(ω, k) = P1(ω)Zi−1(ω, k) + P2(ω)Zi−2(ω, k) + . . .+ PL(ω)Zi−L(ω, k). (5.5)

Since the estimation of the unknown prediction filter, Pl, from the unknown wavelet depen-
dent reflectivity series is a non-linear process and difficult to compute, it is often estimated
from the original data, as discussed in Wang and Sacchi (2009), and will be considered
constant for all k. Combining Equations 5.4 and 5.5 results in,

Si(ω) =
K∑
k

{W (ω, k)
L∑
l

[Pl(ω)Zi−l(ω, k)]}+Ni(ω), (5.6)

or the forward model for spectral decomposition with f − x preconditioning. In this formu-
lation, the concept of a reflectivity series is expanded from being a one dimensional object
in time to a three dimensional object that varies not only in time, but also in space and
frequency. Figure 5.1 highlights this concept where spatial preconditioning is incorporated
into spectral decomposition. Instead of calculating each time-frequency representation sep-
arately, as in Figure 5.1a, they are computed as a group to enforce spatial continuity, as in
Figure 5.1b.

The extension of this method to incorporate multiple spatial dimensions is similar to the
extension of f − x deconvolution to f − x− y deconvolution where rather than incorporat-
ing only one spatial dimension to predict the reflectivity series, two spatial dimensions are
considered (Chase, 1992; Gulunay et al., 1993). Thus, a two dimensional prediction filter
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Figure 5.1: An example of spectral decomposition a) without and b) with spatial
preconditioning.

Pl,m is required instead of a one dimensional prediction filter Pl to allow for spatial predic-
tion among multiple azimuths. The forward model for f − x − y preconditioned spectral
decomposition then becomes,

Si,j(ω) =
K∑
k

{W (ω, k)
L,M∑
l,m

[Pl,m(ω)Zi−l,j−m(ω, k)]}+Ni,j(ω), (5.7)

where the sub-indices i and j represent the channel number in the x and y directions.

To solve for the spatially preconditioned time-frequency representation, the forward (Equa-
tion 5.8) and adjoint (Equation 5.9) problems are written in terms of linear algebra,

s = DPz + n (5.8)

ẑ = PHDHs. (5.9)

Here, the variable z represents the time-frequency representation prior to spatial smoothing
and the operator P denotes the predictive filtering process. Note that the variables s, z,n

no longer represent a single seismic trace but rather a group of traces that have been
organized into a vector. The determination of the spatially preconditioned time-frequency
representation is now achieved by minimizing the altered cost function J ,

J = ||s−DPz||22 + λ||z||1, (5.10)
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and then applying the prediction filtering process on the solution for z to obtain the spatially
preconditioned time-frequency representation mEST ,

mEST = Pz. (5.11)

The forward operator required for FISTA to minimize the cost function in Equation 5.10
now becomes,

A = DP, (5.12)

whose adjoint operator is given by,

AH = DHPH . (5.13)

As previously stated, the prediction filters were estimated from the original data and kept
constant for all k prior to the inversion process and were also not updated during the iterative
process of FISTA.

5.3 Results

To test the capabilities of the proposed preconditioned spectral decomposition algorithm,
a synthetic seismic cube was created with three linear events of varying frequency content
and a signal to noise ratio, defined by the ratio of the maximum amplitude of the sig-
nal to the maximum amplitude of the noise, of 2 as depicted in Figure 5.2. The linear
events were created using Ricker wavelets with central frequencies ranging from 15Hz to
40Hz and approximately 30% of the traces were time-shifted a small amount to simulate
statics within the data. Studying the local time-frequency representation obtained for a
single trace within the synthetic seismic cube (Figure 5.3), the benefits of preconditioning
spectral decomposition with f − x − y deconvolution can be seen. Although adding f − x
or f − x − y preconditioning to spectral decomposition creates more non-zero coefficients
in the local time-frequency representation, the local time-frequency representation does not
lose resolution when compared with a high resolution spectral decomposition. Instead, the
preconditioning simply spreads the energy from the noisy artifacts in the high resolution
spectral decomposition local time-frequency representation making them less pronounced
while promoting the resolution of the actual events in the data. By extending the pre-
conditioning to include two spatial dimensions at once, these effects become stronger as
information from multiple azimuths are incorporated. This statement is further illustrated
through RGB composite frequency volumes of a cross section through the data (Figure
5.4). A composite RGB frequency volume allows the information from several frequency
bandwidths to be displayed in the same plot. In this specific instance, the RGB image was
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Figure 5.2: A cross section of a synthetic data cube containing three linear events
a) without and b) with noise.

created with the amplitude of the low frequencies corresponding to the red pixel magnitude,
the amplitude of the intermediate frequencies corresponding to the green pixel magnitude,
and the amplitude of the high frequencies corresponding to the blue pixel magnitude. Simi-
lar to viewing the local time-frequency representation for a single trace, the artifacts caused
by noise are less apparent when the spectral decomposition algorithm is preconditioned with
f − x or f − x − y deconvolution. The incorporation of f − x or f − x − y deconvolution
within spectral decomposition also enables the algorithm to negate the effects of statics
within seismic data, regardless of the events frequency content. This is most evident with
the f − x − y preconditioned spectral decomposition data as the composite RGB image
for f − x − y preconditioned spectral decomposition contains the least deviation from the
perfectly linear events of the the noise free data.

When applied to a real 3D data set from Figure 1.3, the spectral decomposition with f−x−y
preconditioning method was applied in small windows to meet the assumptions inherent
within f −x− y deconvolution. Specifically, the data was divided into overlapping windows
whose spatial size was approximately 15 traces by 15 traces and the prediction filter for
f − x − y preconditioning was chosen to be a non-causal 7 x 7 prediction filter that was
estimated from the original seismic amplitude volume. The results of spectral decomposition
with f − x − y preconditioning for this data set are displayed in Figures 5.5 and 5.6. An
improvement in the lateral continuity of seismic reflectors is achieved in the f − x − y

preconditioned constant frequency sections of the seismic cross section when compared to
constant frequency sections obtained from sparse spectral decomposition (Figure 7.2), while
a decrease in the amount of noise in the f−x−y preconditioned constant frequency sections
of the seismic time slice is apparent when compared to the sparse spectral decomposition
constant frequency sections (Figure 7.3). Most importantly, the structural features that
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Figure 5.3: The local time-frequency representation for a single trace within the
synthetic data set in Figure 5.2 for a) sparse spectral decomposition on the noise free
data, b) sparse spectral decomposition on the noisy data, c) spectral decomposition
with f − x preconditioning on the noisy data, and d) spectral decomposition with
f − x− y preconditioning on the noisy data.
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Figure 5.4: A composite RGB image for the local time-frequency representation
of the cross section of the synthetic data represented in Figure 5.2 for a) sparse
spectral decomposition on the noise free data, b) sparse spectral decomposition on
the noisy data, c) spectral decomposition with f − x preconditioning on the noisy
data, and d) spectral decomposition with f − x − y preconditioning on the noisy
data. The blue pixel magnitude represents the amplitude of the high frequencies,
the green pixel magnitude represents the amplitude of the intermediate frequencies,
and the red pixel magnitude represents the amplitude of the low frequencies.
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Figure 5.5: a) A seismic amplitude cross section through a real 3D poststack data
set. b) A constant 50Hz section of a) using spectral decomposition with f − x− y
preconditioning. c) A constant 35Hz section of a) using spectral decomposition
with f − x − y preconditioning. d) A constant 25Hz section of a) using spectral
decomposition with f − x− y preconditioning.
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Figure 5.6: a) A seismic amplitude time slice through a real 3D poststack data
set. b) A constant 15Hz section of a) using spectral decomposition with f − x− y
preconditioning. c) A constant 25Hz section of a) using spectral decomposition
with f − x − y preconditioning. d) A constant 45Hz section of a) using spectral
decomposition with f − x− y preconditioning.

were seen in the sparse spectral decomposition have been preserved. The difference between
the frequency behaviours of the lower and upper large channels is still identifiable in the
f − x− y preconditioned constant frequency sections of the cross section and the definition
of the small channel within the f −x− y preconditioned constant 45Hz section of time slice
has improved.

The denoising of a local time-frequency representation of the seismic volume can also be
performed after the local time-frequency representation has been generated, unlike f−x−y
preconditioning which denoises while the local time-frequency representation is being gen-
erated. To denoise the local time-frequency representation after it is generated, kx − ky or
bandpass filtering was performed on each time slice of the local time-frequency represen-
tation to remove large wave numbers representing noise within the data. A comparison of
denoising the local time-frequency representation after or while it was generated is depicted
in Figures 5.7 and 5.8. While the results of denoising the spectrally decomposed seismic cross
section are quite comparable (Figure 5.7), the difference between these local time-frequency
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Figure 5.7: Comparison of local time-frequency representation denoising techniques
for the seismic amplitude cross section. a), c), and e) represent the sparse spectral
decomposition, kx−ky filtering, and f−x−y preconditioning spectral decomposition
for the constant 50Hz frequency section while b), d), and f) represent the sparse
spectral decomposition, kx − ky filtering, and f − x − y preconditioning spectral
decomposition for the constant 25Hz frequency section.
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representation denoising methods is highlighted through the spectrally decomposed seismic
time slice depicted in Figure 5.8. By always trying to fit the data exactly, spectral decompo-
sition with f −x− y preconditioning helps to prevent the smoothing out of small geological
structures, such as the small channel, since the data is always being fit during the denoising
process. Likewise, kx − ky filtering is altering the local time-frequency representation after
it is generated, meaning it changes the local time-frequency representation after it is fit to
the data. This makes methods which denoise after the local time-frequency representation
is generated, such as kx−ky filtering, more likely to lose the resolution or smooth out small
scale geological structures since the denoising process is not specifically trying to reconstruct
the seismic data. However, as in every signal processing problem there are parameters to
be set before optimal results can be acquired with high resolution spectral decomposition
with f − x− y preconditioning. Specifically, the trade-off parameter λ, the prediction filter
length, and the window size must all be specified through user input and can be found
in an ad hoc way similar to the prediction filter length of f − x deconvolution. In other
words, a solution is found to predict the data and the residuals or data misfit is studied. For
instance, if the residuals contain signal it means that the model is underfitting the data and
λ, the prediction filter length, and/or the window size needs to be decreased. Likewise, if
the residuals do not contain enough noise, i.e., the local time-frequency representation still
contains a significant amount of noise, λ, the prediction filter length, and/or the window
size needs to be increased.

5.4 Conclusions

Spectral decomposition, or localized time-frequency analysis, can be a powerful tool for
interpreting seismic data. However, through the pursuit of generating high resolution local
time-frequency representations using sparsity constraints, noise that was not visible in the
original seismic amplitude volume becomes more noticeable in the spectrally decomposed
data. To combat this issue, denoising efforts can be carried out after the local time-frequency
representation is generated or during the creation of the local time-frequency representation.
By posing the spectral decomposition problem through a multi-wavelet convolutional model,
the concepts of f − x and f − x − y deconvolution were able to be incorporated into an
inversion method for generating a local time-frequency representation that is denoised while
it is created. A comparison with the post processing denoising technique of kx−ky filtering
on a sparse spectrally decomposed real data set demonstrates the advantages of denoising the
local time-frequency representation while it is being generated. Although large scale features
are relatively unaffected by the choice of when denoising occurs, small scale features are more
likely to be preserved when the denoising of the local time-frequency representation occurs
during its creation since spectral decomposition with f − x− y preconditioning attempts to
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always fit the original data set unlike post processing denoising techniques which alters the
local time-frequency representation after it is fit to the data.

Figure 5.8: Comparison of local time-frequency representation denoising techniques
for the seismic amplitude time slice. ( a) seismic amplitude time slice, b) sparse
spectral decomposition constant 45Hz section, c) kx−ky filtering of b), d) f −x−y
preconditioned spectral decomposition constant 45Hz section. ) Note the enhanced
resolution of the small channel feature, highlighted with the red arrow, in d) when
compared to the other plots.



CHAPTER 6

Group Sparsity Local Time-Frequency

Denoising

6.1 Introduction

As shown in previous chapters, local time-frequency analysis can be employed as an inter-
pretational tool for seismic data. In addition to this powerful trait, spectral decomposition
can also be applied as a serviceable tool during its processing. Through transforming and
expanding the seismic signal to display its frequency spectrum at each time sample, spec-
tral decomposition has been deployed to identify and attenuate undesirable signals such as
ground roll (Deighan and Watts, 1997; Askari and Siahkoohi, 2008) and has provided an
alternative domain for regularization and interpolation (Naghizadeh and Innanen, 2011).
Another application of local time-frequency analysis for processing seismic data is the at-
tenuation of random noise, either through strategic thresholding of the local time-frequency
representation (Parolai, 2009; Elboth et al., 2010) or directly through inversion (Vera Ro-
driguez et al., 2011). The latter of these random noise attenuation methods is more formally
known as the Basis Pursuit Denoising problem (Chen et al., 1998). As briefly discussed in
Chapter 3, regularization stabilizes the inversion process in the presence of noise and, for
the case of `1 norm regularization, has been shown to also produce an adequate denoised
version of the data. In contrast to user defined strategic muting or thresholding strategies
of the local time-frequency representation to generate a denoised time-series, Basis Pursuit
Denoising simply fits a signal model up to the noise level of the signal.

Similar to how information from nearby spatial traces were incorporated to generate a de-
noised local time-frequency representation in Chapter 5, the simultaneous utilization of
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information from the different components of a multicomponent seismic signal can aid in
the signal denoising process. As a seismic wave travels in three dimensional space, it is
often recorded with a multicomponent geophone which contains three orthogonally oriented
recorders, one vertical and two horizontal, to capture the three dimensional nature of the
signal. When the seismic wave arrives and is recorded on the multicomponent geophone,
the frequency content at a particular time should be identical on all three components even
though it may have a different amplitude and phase within each component. Therefore,
sparsity constraints might not be the optimal choice for regularization since this common-
ality between the components will not necessarily be preserved. Instead it would be more
beneficial to consider the three components together before sparsity constraints are applied.
This goal can be accomplished through quaternions (the extension of complex numbers, see
Stanton and Sacchi (2011) for an example with seismic data) or through the consideration
of group sparsity constraints (Yuan and Lin, 2006; Eldar and Bolcskei, 2009). The con-
cept of group sparsity has been implemented in problems such as linear regression (Yuan
and Lin, 2006), brain activity imaging (Cotter et al., 2005) and the determination of the
direction of arrival in antennas (Hyder and Mahata, 2010). Specifically within geophysics,
group sparsity constraints have been used in compressive imaging by wavefield inversion
(Herrmann, 2009) and the joint determination of the origin time, hypocenter location and
moment tensor of microseismic events (Vera Rodriguez et al., 2010a,b). Before the concepts
of group sparsity are explored in this chapter, a review of the parameter selection of `1
norm regularized inversion for spectral decomposition is provided to illustrate the denoising
capabilities of local time-frequency analysis.

6.2 Denoising Through Sparsity Constrained Inversion

Formally, the cost function described in Equation 3.11 defines the Basis Pursuit Denoising
problem, not the Basis Pursuit problem. However, in the limit when the trade-off parameter
λ approaches zero this cost function does describe the Basis Pursuit problem since the goal
of Basis Pursuit is to reconstruct the signal exactly with a minimum `1 norm model. This
goal is in slight contrast to the goal of Basis Pursuit Denoising which is to approximately
reconstruct the signal with a minimum `1 norm model (Chen et al., 1998). Therefore, λ
controls the degree of fit between the observed signal and the reconstructed or predicted
signal. Since observed data is always influenced by the presence of noise, this parameter
should in effect always be larger than zero which requires the solution to Basis Pursuit
Denoising problem.

To illustrate the denoising properties of the `1 norm regularized inverse method for spectral
decomposition, a synthetic signal containing two separate events of different phase and
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Figure 6.1: Pareto curve for `1 norm regularized inversion of the noisy synthetic
time series in Figure 6.2. The dotted black line denotes the `2 norm of the noise
and the red box represents the optimal choice for λ.

frequency content was contaminated with random noise from the Matlab function randn.m.
The signal to noise ratio (SNR) of this noise contaminated synthetic time-series is 2, as
defined by the maximum amplitude of the signal divided by the maximum amplitude of
the noise. To ensure that over fitting or under fitting of the noisy signal does not occur,
the Pareto curve (Hennenfent et al., 2008) was employed. The Pareto curve is simply a
comparison of the data misfit term (i.e., the predicted noise) and the regularization term
defined by the `1 norm and allows for a quantitative analysis of how λ influences the amount
of noise that is fit within the model. As depicted in Figure 6.1, increasing λ provides more
influence to the regularization term meaning that a greater value for the data misfit term
is permitted. In other words, a larger value for λ signifies a greater estimated level of noise
within the signal. For the case of synthetic data where the noise level is known, the optimal
selection of λ simply becomes the point on the Pareto curve that corresponds to the actual
noise level (i.e., the `2 norm of the noise). However, when applied with real data the noise
level is often unknown so heuristic methods are required. Once the optimal choice for λ is
determined, the denoised version of the synthetic signal, s`1 , can be obtained from mapping
the solution of the `1 norm minimization, m`1 , back into the data domain with the forward
operator,

s`1 = Dm`1 . (6.1)

Figure 6.2 displays the result of denoising through `1 norm regularized inversion and, for
comparison, the result of denoising through `2 norm regularized inversion. It is apparent
that although `2 norm regularization attenuates some of the random noise, a cleaner esti-
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Figure 6.2: A comparison of denoising with spectral decomposition with `2 norm and
`1 norm regularized inversion: a) synthetic time-series, b) noisy synthetic time-series
(SNR = 2), c) `2 norm denoised time-series, d) local time-frequency representation
of c), e) `1 norm denoised time-series, f) local time-frequency representation of e).

mated signal is obtained through constraining the local time-frequency representation to be
sparse. This comparison illustrates that the choice for the regularization term in the spectral
decomposition inversion method has a strong influence on its denoising capabilities. Real
data examples with microseismic data for denoising through `1 norm regularized inversion
based on local time-frequency analysis are presented in Vera Rodriguez et al. (2011).
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Figure 6.3: An example of a seismic signal travelling through a three dimensional
space and being recorded by a multicomponent geophone.

6.3 Denoising Through Group Sparsity Constrained In-

version

To fully capture a seismic wavefront that travels through the three dimensional space of the
subsurface, it can be recorded on a multicomponent geophone as illustrated in Figure 6.3.
Since all three components of a multicomponent geophone record the same signal, it can be
assumed that the frequency content at one particular time are similar for all components
as depicted in Figure 6.4, regardless of the different amplitude and phase that the signal
might have on each individual component. Through considering these three components as
a multiple measurement vector (MMV) (Cotter et al., 2005; Hyder and Mahata, 2010), the
concept of group sparsity can be incorporated as the regularization term for the spectral
decomposition inversion method. The MMV, vMMV, for a multicomponent seismic trace
can be defined as,

vMMV =

 c1

c2

c3

 , (6.2)

where c1, c2, and c3 correspond to the seismic trace for each of the three components
recorded from a single multicomponent geophone. To impose the constraint for groups to
be sparse, such as a particular frequency and time for all components, a different metric
other than the `1 norm to measure sparsity must be defined. A metric that can handle
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Figure 6.4: The local time-frequency representation obtained from a multicom-
ponent seismic trace. The highlighted red box represents the assumption that if
the signal has a frequency content at a particular time, it must be present on all
components.

this constraint comes from the study of mixed p, q norms (Kowalski and Torrésani, 2009).
Specifically, this chapter will focus on the mixed `2 − `1 norm defined by,

||x||2,1 =

∑
g

(∑
%

xg,%2

)1/2
 , (6.3)

where || · ||22,1 denotes the mixed `2−`1 norm, g is the index for groups, and % is the index for
the elements within a group. By incorporating group sparsity constraints for the inversion
method of spectral decomposition, the cost function becomes,

J = ||vMMV −Dm||22 + λ||m||2,1, (6.4)

where D and m have been modified to incorporate multicomponent data according to,

D =
(

D(c1), D(c2), D(c3)
)
, (6.5a)

and

m =

 m(c1)
m(c2)
m(c3)

 . (6.5b)

Similar to the `1 norm in the cost function of Equation 3.11 being separable, the mixed `2−`1
norm in the cost function of Equation 6.4 is also separable. Therefore, the minimization of
the cost function in Equation 6.4 can be computed in a similar manner to how FISTA solves
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Table 6.1: Construction of multicomponent synthetic time-series to test group spar-
sity denoising.

the minimization of the cost function in Equation 3.11. Rather than taking the soft threshold
of each gradient descent step as in FISTA, a new multidimensional thresholding operator
is required (Fornasier and Rauhut, 2008; Puig et al., 2011). This new multidimensional
thresholding operator, Gλ is defined by,

Gλ (g) =


(
||g||22 − λ

)
g
||g||22

if ||g||22 > λ

0 if ||g||22 ≤ λ
, (6.6)

where g is a pre-defined vector group. Since Gλ does not affect the model parameter update
of FISTA, it can be directly incorporated into a FISTA-like algorithm (Fornasier and Rauhut,
2008),

mi+1 =
∑
g

Gλ/2α
(
yi(g)− 1

α
DH [v(g)−Dyi(g)]

)
, (6.7)

which in this thesis will be called Group FISTA. In essence, the multidimensional thresh-
olding operator is applied to all pre-defined groups within v and yi during each iteration to
determine mi+1.

To test if group sparsity constraints provide additional benefits when compared with spar-
sity constraints for denoising multicomponent seismic signals through local time-frequency
analysis, a multicomponent synthetic time-series was created according to the parameters
in Table 6.1. This multicomponent synthetic time-series was then contaminated with ran-
dom noise from the Matlab function rand.m to obtain three different noise contaminated
signals with a SNR of 10, 4, and 2. As explained in Section 6.2, the optimal choice for λ
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was determined with the aid of Pareto curves and the known noise levels. The denoised
results for the three different noise levels are displayed in Figure 6.5 for both sparsity and
group sparsity constraints. Although similar results are obtained for the denoising of c1

with perhaps a slightly cleaner signal obtained from sparsity constraints for the SNR = 2
signal, the advantages of applying group sparsity constraints to the inversion process are
evident. These advantages are probably best highlighted with the noise attenuated signals
of c3 where sparsity constrained inversion was unable to recover the relatively low ampli-
tude second event for all SNR’s unlike group sparsity constrained inversion. For c2, group
sparsity constrained inversion was able to recover the first event for the SNR = 2 signal in
contrast to sparsity constrained inversion and was also able to preserve the phase informa-
tion of the second event more efficiently. These differences can be directly seen in the local
time-frequency representations obtained from the noisy synthetics as depicted in Figures 6.6

Figure 6.5: A comparison of sparsity and group sparsity denoising for the multi-
component synthetic time-series described in Table 6.1. The top row represents c1,
the middle row represents c2, and the bottom row represents c3. In the left column
the multicomponent synthetic time-series is displayed with no noise (black), a SNR
= 10 (blue), a SNR = 4 (red), and a SNR = 2 (green). The middle column displays
the denoising results based upon sparsity constraints with the noise free synthetic
signal (black). The right column displays the denoising results based upon group
sparsity constraints with the noise free synthetic signal (black).
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and 6.7. Despite the more coefficients in the local time-frequency representation obtained
with group sparsity, similar frequency content at particular time values are seen across all
components. This characteristic enables group sparsity constrained inversion to maintain
smaller amplitude information, even when it is below the noise level, more efficiently if
another component has a larger amplitude event of similar frequency content at the same
particular time. When sparsity constraints are utilized, information from other components
have no influence in the generation of the local time-frequency representation leading to a
greater possibility of smaller amplitude events being eliminated as illustrated by the lack of
recovery of the second event in c2. It should be noted that the quality of the noise attenua-
tion efforts of both sparsity constrained and group sparsity constrained inversion degrades
as the noise level increases. Real data tests using group sparsity constraints for denoising
with inverse spectral decomposition were performed on microseismic data by Ismael Vera
Rodriguez in (Vera Rodriguez et al., 2012).

6.4 Summary

Through regularizing the inverse spectral decomposition method developed in Chapter 3, the
potential exists to attenuate random noise within the observed data. By creating a sparse
local time-frequency representation, `1 norm regularization tries to represent the signal in
as few coefficients as possible. A byproduct of this characteristic is that random noise is not
easily fit since it requires a greater number of coefficients and therefore it will be attenuated
in the predicted or reconstructed data. The degree to which the predicted data fits the
observed data is controlled by the trade-off parameter λ and represents the estimated noise
in the signal. By increasing λ, more influence is given to the regularization term meaning
that a greater amount of noise is expected in the observed data. The selection of λ can be
accomplished through the use of Pareto curves if the noise level is known, otherwise, it can
be selected through the use of heuristic methods.

However, sparsity constraints may not be the most optimal choice for multicomponent
seismic signals. It can be assumed that as a seismic wave is recorded on a multicomponent
geophone its frequency content is similar on all components at the same particular time. To
preserve this commonality between the components, the mixed `2− `1 norm can be utilized
as the regularization term to constrain the local time-frequency representation to exhibit
group sparsity. Constraining the local time-frequency representation to be group sparse
provides the benefit that small amplitude events can take advantage from information in
the other components for denoising. This enables small amplitude events that are below the
noise level, which would have been eliminated with denoising through sparsity constraints,
to have the possiblity of being preserved if the other components are above the noise level.
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Figure 6.6: The local time-frequency representation of the noise contaminated mul-
ticomponent synthetic time-series obtained from sparsity constraints, i.e., the local
time-frequency representation of the middle column of Figure 6.5.
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Figure 6.7: The local time-frequency representation of the noise contaminated mul-
ticomponent synthetic time-series obtained from group sparsity constraints, i.e., the
local time-frequency representation of the right column of Figure 6.5.



CHAPTER 7

Denoising seismic data using the

Non-Local Means algorithm1

7.1 Introduction

As mentioned in Chapters 5 and 6, the removal or attenuation of noise remains a crucial
step for processing seismic data. To effectively mitigate the influence of this noise, one
must be specific about what type of noise is desired to be removed. Generally noise within
seismic data can be considered to fit into two categories, coherent or incoherent noise. For
the purposes of this chapter, the removal of incoherent or random noise is considered.

Random noise attenuation within seismic data has generally been performed using different
methods based on different assumptions about the data. For example, band-pass, f − k,
and kx − ky filtering (Yilmaz, 2001) all transform seismic data into the Fourier domain to
mute undesirable portions of the signal, i.e., noise, based on the assumption that the signal
and noise are separated in this new domain. Other methods such as f − x deconvolution
(Canales, 1984), t−x prediction filtering (Abma and Claerbout, 1995), and Cadzow filtering
(Trickett, 2008) or Singular Spectrum Analysis (Oropeza and M.Sacchi, 2011) attempt to
remove random noise based on assumptions such as the linearity of seismic events.

Originally developed for image processing (Buades et al., 2005), the Non-Local Means
(NLM) algorithm is a random noise attenuation filter that assumes the degree of redun-
dancy present within an image can be utilized to reinforce the structures within any small
window, or neighborhood, within the image from the many similar windows that are also

1A version of this chapter has been published (Bonar and Sacchi, 2012a).
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within that image. Thus, the data itself is employed for denoising. Since the NLM algorithm
uses the entire image or data set to denoise a single pixel or location, it can become compu-
tationally demanding (Buades et al., 2010). Therefore, several variations of the algorithm
have arisen to decrease the computational time. Of particular interest is the NLM algo-
rithm’s highly parallelizable nature which enables it to be implemented on GPUs (graphical
processing units) (Sheng et al., 2009). Other attempts to decrease the computational time
for a single pixel or location, such as only considering a portion of the image for denoising,
have also been undertaken (Coupé et al., 2008; Mahmoudi and Sapiro, 2005; Brox et al.,
2008). Most recently, claims have been made to have decreased the computational time by
15 to 180 times from previous methods by using hashed structures (Dowson and Salvado,
2011) and to have adapted the NLM algorithm to become real-time, or near real-time (de
Fontes et al., 2011). The NLM method has been shown to successfully denoise medical data
(such as MRI, Coupé et al., 2008), radar data (Deledalle et al., 2011), speech and audio
data (Zoican, 2010), and microscopy images (Wei and Yin, 2010). We propose to adopt
the NLM algorithm for attenuating the random noise within seismic data. In particular, we
use the traditional NLM algorithm originally developed by Buades et al. (2005) for random
noise attenuation in a time slice extracted from a spectrally decomposed volume depicting
a small channel, in a synthetic data set containing curved events and sharp discontinuities,
and in a noisy seismic cross section. It should be noted that the NLM algorithm is not only
limited to denoising in the time domain, but also has the potential to be implemented in
the frequency domain, like f −x deconvolution, or even integrated into a POCS (projection
onto convex sets) like algorithm where each iteration from POCS is denoised using NLM
(Huang et al., 2011).

7.2 Theory

We describe the NLM denoising algorithm based on the description provided by Buades
et al. (2010). Let a discrete noise contaminated image v be defined by

v = u+ n, (7.1)

or simply the summation of the original noise free image u with random noise n. At the
pixel i, the non local means denoised pixel, v̂(i), is simply the weighted average of all of the
pixels within the image v,

v̂(i) =
∑
j

wNLM (i, j)v(j), (7.2)

where the weights wNLM (i, j) depend upon the similarity between the pixels i and j and
must satisfy the conditions 0 ≤ wNLM (i, j) ≤ 1 and

∑
j wNLM (i, j) = 1. Note that each
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pixel i of the image has its own independent weights of the other j pixels within the image.
To quantify the similarity between the pixels i and j, a neighborhood or window, Ni, around
the pixel of interest is defined to allow for information about local structures and textures
to be incorporated. The neighborhood of a pixel is generally chosen to be a square or cube,
depending upon the dimensionality of the image, with a dimension size of 3 to 9 (Awate and
Whitaker, 2006; Coupé et al., 2008; Dowson and Salvado, 2011) centered upon the pixel of
interest, however, the size and shape of the neighborhood can vary. The similarity between
the pixels i and j is then computed using a Gaussian weighted Euclidean distance, DG (i, j),
between the neighborhood around the pixel i, v(Ni), and the neighborhood around the pixel
j, v(Nj),

DG
2 (i, j) =

nl∑
l

[Ga(l) (v(Ni(l))− v(Nj(l)))]2, (7.3)

where Ga represents the Gaussian kernel with standard deviation a, and l represents one of
the total nl elements within a neighborhood. For a two dimensional image, the Gaussian
kernel, Ga, can be defined by,

Ga(x, y) = exp
(
− (x− xo)2 + (y − yo)2

2a

)
, (7.4)

where xo and yo denote the center of the Gaussian kernel with x and y corresponding to the
coordinates of the element l in equation 7.3. By weighting the Euclidean distance between
the neighborhoods of pixels i and j with a Gaussian kernel, smaller weights are assigned to
distant pixels within a neighborhood allowing structures closest to the pixel of interest to be
more likely preserved. Given the Gaussian weighted Euclidean distance, DG (i, j), between
the pixels i and j, the weights wNLM (i, j) are computed according to

wNLM (i, j) =
1

ZNLM (i)
exp

(
−DG

2 (i, j)
h2

)
, (7.5)

where ZNLM (i) is the normalizing factor defined by

ZNLM (i) =
∑
j

exp
(
−DG

2 (i, j)
h2

)
(7.6)

to ensure
∑
j wNLM (i, j) = 1. The parameter h is a constant which controls the decay of

the exponential function as a function of the Euclidean distance. For example, a large value
for h will provide similar weight for all j pixels in the image while a small value for h will
provide a significant weight for only a few of the j pixels in the image. In Figure 7.1, a
grid has been generated to display the NLM image weights calculated with equation 7.5 for
each of the coloured boxes. This image clearly illustrates how the weights depend upon the
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Figure 7.1: a) Example grid to display the pixel weights used by NLM for three
different regions of the synthetic image. b) NLM pixel weights for the blue box. c)
NLM pixel weights for the green box. d) NLM pixel weights for the red box.

local structure or neighborhood of the pixel of interest and can yet be spatially non-local,
as evidenced by the weights for the blue box (Figure 7.1b) which highlight all of the points
within the image that contain an intersection between the horizontal and vertical lines, the
weights for the green box (Figure 7.1c) which highlight all of the areas that only contain
a horizontal line, and the weights for the red box (Figure 7.1d) which highlight all of the
areas that contain only a vertical line.

7.3 Examples

To demonstrate how the NLM denoising algorithm can be applied to seismic data, we first
look at a time slice extracted from a spectrally decomposed volume of a real data set at
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45Hz (Partyka et al., 1999) as seen in Figure 7.2. Although the small channel (only a few
traces wide) running vertically through the time slice is more clearly defined in the constant
45Hz section, the amount of noise and residual acquisition footprint degrades the quality of
the image. The NLM denoising algorithm, low pass kx − ky filtering, and x− y prediction
filtering (Abma and Claerbout, 1995) were applied to the noisy constant frequency section
to try to attenuate and reduce the effect of this noise. For the purposes of this article, the
standard deviation of the Gaussian kernel in the NLM method was kept at a constant value
of a = 0.25 for all examples and the window or neighbourhood size was chosen to be an
11x11 square for this particular example. Of these three denoised images, the NLM image
preserves the small channel most effectively since its goal is to explicitly attenuate random
noise by reinforcing the structures already within an image, unlike the other two methods
whose goals are to limit the frequencies/wavenumbers within the data or to predict the
data, attenuating random noise as a byproduct. Although the small channel only occurs
once within the data, its structure within a small neighborhood can be replicated several
times. This redundancy of structures within a neighborhood allows for the attenuation
of random noise using the NLM algorithm, enhancing the visualization of the channel’s
structure.

A comparison of Figures 7.2e and 7.2f, NLM denoising with h = 40 and h = 100, depicts
the effect of choosing the parameter h to be too large. By increasing h to the extreme,
the NLM algorithm essentially assigns a constant value to all of the weights, as stated
previously, which produces a constant intensity image. Likewise, if h is chosen to be too
small, the NLM algorithm is incapable of denoising images since the weight assigned to the
most similar pixel, i.e. the actual pixel of interest, will be too large. Proper estimation of
the parameter h can be carried out using methods such as the χ2 criterion for the goodness
of fit (Aster et al., 2005) if the standard deviation of the noise is known or heuristically,
like the estimation of the prediction filter length in f − x deconvolution, if little is known
about the noise. For consistency, the parameter h was chosen heuristically throughout this
article. In other words, we visually inspected the denoised image for both noise attenuation
and structure preservation to determine the optimal value for the parameter h. Typically
this value was found to be around one order of magnitude less than the largest amplitude
present within the data.

One of the specific advantages that the NLM algorithm can have for attenuating random
noise in seismic data is its ability to handle sharp discontinuities, such as faults, and events
with curvature. To illustrate these capabilities, a synthetic data set containing linear, curved,
and crossing events with sharp discontinuities was created and contaminated with random
noise such that the signal to noise ratio (SNR) was 0.8. Here, the SNR is defined as the
maximum amplitude of the data divided by the maximum amplitude of the noise. The
denoising of this synthetic data set, as shown in Figure 7.3, was performed using NLM with
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Figure 7.2: a) Real data time slice depicting a small channel running vertically.
b) Constant 45Hz slice of a) obtained from spectral decomposition. c) Denoised
version of b) using low pass kx − ky filtering. d) Denoised version of b) using 2D
prediction filtering. e) Denoised version of b) using NLM with h = 40. f) Denoised
verion of b) using NLM with h = 100.
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Figure 7.3: a) Synthetic data with linear, curved, and crossing events with sharp
discontinuities. b) Synthetic data contiminated with random noise to a SNR =
0.8. c) Denoising with f − x deconvolution. d) Denoising with NLM. Note how
the amplitude of the curved events are more effectively conserved and the lack of
energy smeared across the sharp discontinuities with NLM.

h = 0.15 and an 11x11 square window and f − x deconvolution that was applied in small
spatial windows, 11 traces wide, to help validify its plane wave assumption. Unlike f − x
deconvolution, the NLM algorithm preserves the amplitude of the curved events and does
not smear seismic energy across the sharp discontinuities. Figure 7.4 depicts the Fourier
amplitude spectrum of the synthetic data and its denoised versions and highlights the ability
of NLM to adequately maintain high frequencies as compared to f − x deconvolution, even
though it is an averaging process.

As a final example, the NLM algorithm was applied to a real poststack seismic cross section
as seen in Figure 7.5. For optimal results, the parameter h was chosen to be 0.2 with a
window size of 17x17. The larger window size was required to fully encompass a peak and
a trough signature within the seismic data (i.e., the structures that are trying to be de-
noised). The results from denoising the cross section using NLM allows for the character of
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Figure 7.4: The Fourier amplitude spectrum of the data in Figure 7.3.

the reflectors to become more apparent while not losing any of their energy to the estimated
noise. Because of the adaptive nature of this method, the amount of noise which is removed
varies as evidenced from the greater amount of estimated noise at later times where the
original data appears more noisy. Like the synthetic data example, the NLM algorithm
maintains higher frequencies comparably well to other denoising methods, such as f − x
deconvolution, as shown in Figure 7.6. Although this dataset lacks sharp discontinuities or
significant events with curvature, it demonstrates that the NLM algorithm can be just as
effective for attenuating random noise in seismic data as more commonly used denoising
methods such as f − x deconvolution highlighted by the amplitude comparison shown in
Figure 7.7. However, it should be noted that to achieve these results, the simple implemen-
tation of the NLM algorithm had a computational time that was greater than two orders of
magnitude than that of f − x deconvolution. To become more feasible for application with
seismic data, further research into decreasing the computational time of NLM needs to be
conducted.

7.4 Conclusions

The NLM algorithm is a random noise attenuation filter that utilizes the redundancy of
structures within a data set to denoise each location within it. Unlike other common de-
noising methods for seismic data, the concepts governing NLM makes it less likely to smooth
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Figure 7.5: Real poststack data set denoised using NLM and f − x deconvolution
(from left to right: noisy data, NLM denoised data, f − x deconvolution denoised
data). The dotted blue and red lines indicate the horizons utilized by Figure 7.7.

Figure 7.6: The Fourier amplitude spectrum of the data in Figure 7.5.
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a)

b)

Figure 7.7: Amplitude comparison for the two highlighted horizons in Figure 7.5.
The NLM algorithm compares quite favourably to f −x deconvolution at removing
the random noise across these horizons.
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over small features, such as small channels, while enabling it to handle curvature and faults
without losing the resolution of these features. In its basic implementation there are three
parameters to be controlled: the window or neighborhood size, the standard of deviation a

for the Gaussian kernel, and the parameter h. While the algorithm is relatively insensitive
to the parameter a since it only controls the weights at the edges of a neighborhood, the
neighborhood size must be chosen such that it is large enough to encapsulate the structures
of interest within the data. For reflection seismic data, this means that the neighborhood
size, in the time dimension, should be larger than the wavelet length. The parameter h con-
trols the level of denoising the NLM algorithm performs and for the examples provided was
found to be optimally set to be about one order of magnitude less than the maximum am-
plitude of the data. Comparisons on real seismic data illustrate that this denoising method
can produce similar results to more commonly used denoising methods such as f −x decon-
volution. The NLM algorithm can be easily expanded to incorporate multiple dimensions
and has the potential to become a common denoising method in either prestack or poststack
seismic data because of its abilities to not smear seismic energy at termination points or
sharp discontinuities (i.e., faults).



CHAPTER 8

Conclusions

Time-frequency analysis has traditionally been accomplished through the use of the Fourier
transform through converting a signal from the time domain into the frequency domain.
However when studying signals that vary their frequency content with time, this type of
time-frequency analysis has difficulties locating where specific frequencies are present or ab-
sent within the time domain signal. To solve this non-unique problem, local time-frequency
analysis also known as spectral decomposition must be employed. Chapter 2 provides a
review of the general strategies most commonly applied within geophysics. Some of these
strategies include the analysis of the complex signal (instantaneous frequency), the applica-
tion of the Fourier transform within small time windows (STFT), and the representation of
the signal with time-frequency atoms (CWT). Perhaps the most generalized of these concepts
is the CWT which can be manipulated to express other local time-frequency transforms,
such as the STFT, through an appropriate choice of the time-frequency atoms known as
wavelets.

In an effort to create a high resolution local time-frequency representation, Chapter 3
presents an inversion method based upon a multi-wavelet convolutional model that was
regularized with the `1 norm of the model parameters. The forward and adjoint opera-
tor, or the mapping from model space to data space and the mapping from data space to
model space, of this multi-wavelet convolutional model simply become the CWT and in-
verse CWT, respectively. Through regularizing the inverse problem with the `1 norm of the
model parameters a sparse local time-frequency representation is obtained. This is in direct
contrast to the smooth solution, known as the damped least squares solution, that would
have been obtained through regularization utilizing the `2 norm of the model solutions.
However, the drawback of utilizing the `1 norm for regularization is that it is much more
computationally expensive in comparison to `2 norm regularization. A modification to the
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iterative soft thresholding strategy for solving `1 norm regularized inversion called FISTA
(Fast Iterative Soft Thresholding Algorithm) was utilized to help address this problem. As
with all regularized inverse problems, a trade-off parameter must be selected to balance the
emphasis placed upon the measurements for the data misfit and regularization terms.

The application of the high resolution spectral decomposition inversion method to a 3D
poststack seismic data set is shown in Chapter 4. Through applying sparsity constraints
on the local time-frequency representation, increased variability can be seen between con-
stant frequency sections of the local time-frequency representation. This property helped
to highlight the different frequency behaviours of two large paleochannels within the data
set. Although sparsity provides high resolution local time-frequency representations, it
cannot provide a continuous phase like the damped least squares solution for the local time-
frequency representation since many of the coefficients of the sparse local time-frequency
representation are zero. Despite a general lack of published interpretation of the phase from
local time-frequency representations, the continuous phase definition of the damped least
squares solution for the local time-frequency representation may help provide further insight
into different scales of stratigraphic layering.

By obtaining a high resolution local time-frequency representation through sparsity con-
strained inversion, it was noticed that noise has a more profound effect on the local time-
frequency representation. Chapter 5 addresses this issue through preconditioning the `1

norm regularized inversion method developed in Chapter 3 with concepts obtained from
f − x − y deconvolution. Instead of considering the spectral decomposition problem as a
transformation of a one dimensional signal into a two dimensional local time-frequency rep-
resentation, Chapter 5 views it is as a multidimensional problem to allow for information
from neighbouring seismic traces to influence the local time-frequency representation ob-
tained for a particular seismic trace. This information is incorporated through predictive
filtering in a manner similar to f − x− y deconvolution which assumes that the subsurface
does not contain large lateral variations. The preconditioning process helps to generate a
denoised version of the local time-frequency representation while maintaining the integrity
of small scale geological features such as small paleochannels. This is in contrast to denoising
after the local time-frequency representation has been obtained which tends to also remove
these small scale geological features from the local time-frequency representation.

Through posing the spectral decomposition problem as an `1 norm regularized inversion,
random noise can be attenuated from the time domain signal. Chapter 6 explores this
problem, more formally known as Basis Pursuit Denoising, which is solely controlled by
the trade-off parameter. The selection of the optimal trade-off parameter based upon the
noise level of the signal is highlighted through the utilization of Pareto curves. Chapter 6
also explores how the information from different components of a multicomponent signal
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can aid in the denoising process. By regularizing the inverse problem with group sparsity
constraints rather than sparsity constraints, the preservation of events well below the noise
level is possible if the event has a larger amplitude in another component.

Chapter 7 presents the application of a random noise attenuation method called the Non-
Local Means (NLM) algorithm, which was originally developed for image processing, for
seismic data to aid the data processing procedure before local time-frequency analysis oc-
curs. Through weighted averaging, this algorithm provides promising random noise attenu-
ation results in areas of curvature and sharp discontinuities where traditional random noise
attenuation methods, such as f − x deconvolution, have difficulties. However, it should
be noted that these improvements come at a much greater computational cost. The vari-
ous acceleration modifications that have been provided in the literature for NLM were not
investigated within this thesis but may allow this algorithm to become more practical for
application to large seismic data sets.

Future endeavours to be explored from the works of this thesis include a comparison of
`1 norm regularized inversion to the reassignment method for generating high resolution
local time-frequency representations, a study of the advantages and disadvantages of group
sparsity and quaternions for vector processing of multicomponent seismic data, the compu-
tational acceleration of NLM to make it more feasible for application with seismic data, and
the application of the multi-wavelet convolutional model for thin bed reflectivity inversion
following the concepts developed in Puryear and Castagna (2008).
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