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Abstract

Our ability to generate accurate images of the Earth interior relies on three steps:

data acquisition, data preconditioning, and imaging/inversion. Imaging and inver-

sion methods adopt mathematical physics principles associated with wave propa-

gation phenomena to transform the seismic observations acquired on the surface of

the Earth subsurface images. Preconditioning techniques aim to remove coherent

and incoherent noise, equalize the energy of the source, and solve problems resulting

from inadequate data acquisition.

This thesis focuses on developing data preconditioning methods for multidimensional

seismic volumes. I propose new data completion algorithms based on reduced-rank

filtering for matrices and multilinear arrays (tensors). These techniques execute

signal enhancement and data reconstruction simultaneously.

My research explores unsolved questions of reduced-rank reconstruction methods,

including alleviating irregular data sampling and reconstructing data contaminated

with outliers. To provide solutions to these questions, I propose two new algorithms.

The first algorithm, based on the Multichannel Singular Spectrum Analysis (MSSA)

algorithm, is named Interpolated MSSA (I-MSSA). Unlike classical MSSA methods,

I-MSSA can honour true spatial coordinates of an irregularly sampled dataset. The

second algorithm reconstructs five-dimensional seismic volumes based on robust ten-

sor completion principles. To do so, I explore robust loss functions that attenuate
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the influence of outliers in the reconstruction.
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CHAPTER 1

Introduction

The seismic method uses principles of wave propagation phenomena to obtain an

interpretable image of the subsurface. The experiment consists of three main steps.

The initial stage is the acquisition of the seismic data. An active source triggers a

signal with a controlled pulse of energy. This energy propagates into the subsurface

of the earth in the form of seismic waves, transmitting and reflecting energy. Re-

flected waves are measured by arrays of detectors and processed to obtain the seismic

volume. The depth range of the structures to investigate determines the seismic ex-

periments and the possible applications. The near-surface seismic data experiment,

required for geotechnical investigations, environmental assessments, and shallow re-

source exploration, covers up to 1 km in depth. Seismic methods for hydrocarbon

exploration, or exploration seismology, targets a depth range of 1 to 10 km and

requires expensive acquisition systems with source-detector distances of the order

of 10 km. Deeper seismic data, covering up to 100 km depth, can image Earth’s

crust and often the Moho. The investigation depth defines the specific acquisition,

processing, and interpretation tools to be used.

Exploration seismology can target onshore and offshore geological objectives. Since

this environment differs significantly, acquisition strategies must be adapted for

each case (Vermeer, 1990). Onshore acquisition of seismic data includes shot points

with vibroseis or dynamite sources. Fixed geophone stations record the signal on

the surface of the earth. These receivers are electromechanical transducers that

record the waves impinging on them and convert ground displacement into electrical

signals. The signal is digitized and registered as a time series called a seismic

1
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trace or seismogram. If seismic sources and receivers are deployed on a line, the

experiment results in a 2D profile. We often refer to this particular layout as a

2D seismic acquisition. Modern seismic exploration methods deploy areal arrays of

receivers and sources to collect the so-called 3D seismic acquisition. The latter allows

capturing seismic responses from 3D geological structures. Offshore acquisitions also

use an exploding energy source, usually an air-gun towed by a vessel. The cable

or streamer also carries hydrophones or channels. Another popular technique for

offshore acquisition is to lay arrays of geophones and hydrophones on the seabed.

The method is called Ocean Bottom Seismic (OBS) and finds broad applications in

reservoir monitoring.

In both the onshore and the marine environments, seismic data includes signals and

noise. For our purposes, signals are seismic reflections that one needs to process to

form an interpretable image of the subsurface. Marine datasets, for example, are

often affected by multiples or energy that reflects multiple times. Multiples are a

consequence of the high contrast in the elastic properties between the sea and the

seabed and, for practical purposes, are considered coherent noise that one must elim-

inate. This thesis addresses mainly processing problems that affect onshore seismic

surveys. In onshore data, ground-roll (surface waves) and direct waves contaminate

seismic reflections. Typical processing flows start with aggressive denoising methods

to eliminate these types of waves.

A standard processing sequence includes the following steps (Yilmaz, 2001): static

corrections, ground-roll attenuation, deconvolution, stacking, and migration. De-

convolution improves the temporal resolution of the recorded events by collapsing

the signature of the seismic source. Stacking exploits the redundancy of sources and

receivers to estimate an initial image of the subsurface. Migration techniques adopt

wave propagation principles to estimate subsurface images with their structures

in the correct spatial position. Denoising and imaging techniques have stringent

sampling requirements. For instance, many processing techniques and migration

methods are designed for data acquired on a regular grid of sources and receivers.

They also have stringent requirements in terms of Nyquist sampling. For instance,

ground-roll becomes challenging to filter when receiver sampling does not honour

Nyquist spatial sampling criteria. When acquisition constraints are not correctly

observed, reconstruction algorithms can be adopted to reconstruct the recorded

seismic wavefield.
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1.1 Seismic Data Reconstruction

The seismic wavefield is a continuous signal of time and space. However, the signal

acquired by the receivers is a discrete-time series. To fully sample the wavefield,

the acquisition design should cover a regular spatial 4D grid. Thus, each sample

depends on five coordinates: time, source location (sx, sy), and receiver location

(rx, ry). Such layout defines the offset, midpoint, and azimuth of traces, as indicated

in Figure 1.1. A relevant concept related to homogeneous coverage in seismic is the

definition of fold. The fold measures the redundancy of data for each common

midpoint. Irregularities in fold of coverage and offset and midpoint distribution can

result in a low-quality image of the subsurface.

Midpoint	 (mx,my)
Y

X
hx

hy

Source	

Receiver

Offset	ℎ = ℎ#$ + ℎ&$

Azimuth	∅

Figure 1.1: Schematic representation of the seismic acquisition geometry,
plane view.

Recovering a continuous band-limited signal from its discrete samples requires a

sampling rate at least twice as high as its highest frequency. Otherwise, the signal is

aliased; the high frequencies of the input signal take the identity of a lower frequency

(Oppenheim et al., 2001; Sheriff, 2002). In time, the seismic signal usually fulfills

the Nyquist criterion because time-dependent signals are sampled by hardware that

can produce the proper sampling. On the contrary, the spatial sampling is typically

irregular or insufficient in offset, azimuth and fold. Sources and receivers are de-

ployed by people working in the field. Therefore, it is more challenging to control

spatial sampling than temporal sampling. The effect, resulting from economic and

geographical constraints, is most noticeable in onshore acquisitions (Ely et al., 2015).

However, inadequate sampling also affects marine data because of cable feathering
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and bad trace editing (Xu et al., 2005).

Reconstruction of seismic data is relevant to many processes, including surface-

related multiple removal (SMRE), amplitude versus offset (AVO) and amplitude

versus azimuth (AVA) analysis, removal of acquisition footprint and migration. The

following paragraphs discuss the connections.

The basic model in seismic processing assumes only primary reflections. Then, the

effective removal of multiples is critical for adequately imaging and interpreting

offshore fields (Weglein, 1995). Multiples generate due to high reflectivity contrasts

at water bottom, and top and base of salt surfaces. However, the leading cause of

considerable multiple energy is the reflectivity of the surface (Verschuur et al., 1992).

To properly remove the complex multiples in these environments, SRME requires

high density and wide azimuth data. Conventional acquisition geometries have

sparse source locations and narrow crossline aperture (Lin et al., 2005). Therefore,

reconstruction becomes a necessity for multiple removal algorithms.

AVO and AVA analysis study the amplitude variations in the traces with source-

receiver distance or angle. AVO/AVA effects have particular relevance in seismic

exploration as they are direct hydrocarbon indicators. However, noisy and irregu-

larly sampled traces might distort their effect (Liu, 2004). Since acquiring data with

sufficient sampling in offset and azimuth presents logistic and economic challenges,

reconstruction gains particular relevance. By improving the offset and azimuth

coverage and reducing noise, AVO/AVA effects can highlight velocity and density

changes, providing a valuable reservoir characterization tool.

The acquisition footprint is a linear grid pattern on 3D seismic time slices or hori-

zontal amplitude maps on shallow times. These patterns, resulting from suboptimal

spatial sampling, correlate with the acquisition geometry affecting the real amplitude

and lateral continuity of the seismic events (Al-Bannagi et al., 2005). Reconstruction

of seismic traces reduces the acquisition footprint, allowing for better interpretation

of the near-surface properties (Trickett et al., 2010; Canning and Gardner, 1998).

Prestack migration also benefits from seismic reconstruction. For example, in Kir-

choff migration, each trace is added to the migrated volume by spreading the data

along impulse response curves. Ideally, overlapping impulse responses form the

correct answer and cancel elsewhere. Cancellation does not happen, in general, if

there are irregular variations in the midpoint, offset, azimuth, and velocity sampling
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(Gardner and Canning, 1994). Wave equation migration (Claerbout, 1971) also re-

quires common-shot data, with the receiver array covering the entire domain of the

survey. Sparse sampling and irregular azimuth coverage result in strong artifacts.

Seismic interpolation provides a practical means to obtain proper migrated images.

Given the importance of proper trace recovery, there have been many contributions

to seismic data reconstruction and interpolation. The following sections review past

work on seismic reconstruction.

1.1.1 Review of previous work

The sampling of onshore seismic data can be inadequate for two reasons. Data

might be spatially aliased, or seismic traces might be irregularly acquired. In any

case, seismic reconstruction is crucial to image the subsurface properly. Reconstruc-

tion algorithms attempt to generate missing traces by using a deterministic spatial

interpolation approach. Essentially, algorithms attain reconstruction by assuming

that the seismic wavefield is simple enough to be represented as a finite number of

basis functions. In other words, on a small window, the seismic signal is a superpo-

sition of plane waves (Stanton and Sacchi, 2013). Given the relevance of the field,

many authors have developed techniques to address the problem. A broad classifica-

tion of methods recognizes three categories, algorithms based on the wave equation,

algorithms based on signal processing tools, and algorithms based on machine learn-

ing. The algorithms based on signal processing tools use reconstruction via domain

transforms, prediction error filters, and rank-reduction methods. Table 1.1 shows

a diagram emphasizing signal processing tools used in seismic reconstruction. The

following paragraphs briefly introduce the most salient techniques in each category.

Wave-equation-based methods

A typical approach in wave-equation-based methods considers the linearization of

the Born approximation. The approximation relates data to reflectivity via the

subsurface parameters, introduced as a linear operator. The method uses the obser-

vations to invert the linear operator and estimate the subsurface reflectivity. From

the resulting reflectivity, one can model the data at new spatial positions. The in-

verse problem is ill-posed and requires the inclusion of regularization methods. In
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Transforms Prediction Filters
Rank Reduction

Matrix Tensor

Fourier FX FXY Eigenimage HOSVD

Radon FK SSA/Cadzow Nuclear Norm

Curvelet TX MSSA Tucker

Nuclear Norm Tensorial SVD

Factorization PMF

Table 1.1: Signal processing-based seismic reconstruction algorithms

addition, the linearized Born operator requires the subsurface velocity model, which

is seldom available. The methods are attractive because they preserve the observed

trace position and adopt wave propagation physics to reconstruct the seismic wave-

field. Methods proposed by Ronen (1987); Nemeth et al. (1999); Stolt (2002); Fomel

(2003); Malcolm et al. (2005), and Kaplan et al. (2010) fall within this category.

Fourier methods

Reconstruction methods based on signal processing techniques do not require a sub-

surface velocity model and are the workhorse for reconstructing massive datasets

in the seismic processing industry. Reconstruction via signal processing often uses

linear transforms to represent the available data by coefficients in the transformed

domain. The problem is underdetermined and requires a constrained inversion.

Once the coefficients are estimated, they are used to synthesize data at new spa-

tial locations. The methods are computationally efficient, easy to use, and usually

achieve denoising of the signal. The methods in this category typically consider the

Fourier transform, but other transforms as Radon (Kabir and Verschuur, 1995; Trad

et al., 2002) and Curvelet (Hennenfent and Herrmann, 2006; Herrmann et al., 2008;

Naghizadeh and Sacchi, 2010a) are often explored.
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Seismic data reconstruction methods based on multidimensional Fourier transforms

gained popularity in the past decades. Duijndam et al. (1999) consider reconstruc-

tion from irregular coordinates via a least-squares approach. The algorithm cal-

culates the signal in the regularly sampled Fourier domain from irregularly sam-

pled data. To do so, the authors employ a nonuniform discrete Fourier transform

(NDFT) to estimate the Fourier spectrum of the band-limited signal. The algo-

rithm allows for gaps in data and is an alternative to binning and stacking given a

reasonable bandwidth and a typical stack fold. Liu and Sacchi (2004) approximate

the reconstructed traces with a minimum weighted wavenumber-domain norm. The

algorithm, Minimum Weighted Norm Interpolation (MWNI), uses the smoothed

periodogram to approximate the matrix of weights required to impose simplicity

(sparsity) in the wavenumber Fourier coefficients. The method is computationally

more efficient than NDFT as it relies on the Fast Fourier Transform (FFT), but

it assumes regularly sampled or binned input data. Antileakage Fourier Transform

(ALFT) (Xu et al., 2005) reconsiders the problem of irregularly sampled data and

recognize that the Fourier bases are non-orthogonal in an irregular grid. The non-

orthogonality of Fourier bases results in spectral leakage, which is energy from one

Fourier coefficient leaking into others. To attenuate the effect, the authors use a

greedy algorithm to estimate the Fourier coefficients that honour the data. The

method also handles mild levels of aliasing. In a different vein, Zwartjes and Gisolf

(2006) consider the nonuniform fast Fourier transform (NFFT) to reconstruct an

irregularly sampled wavefield. The algorithm includes a non-quadratic function in

the model, forcing a sparse solution. This new function stabilizes the inversion and

improves reconstruction through gaps by weighting the large model parameters less

than the smaller ones. To solve the Fourier coefficients, the authors use a precondi-

tioned IRLS algorithm (Trad et al., 2003).

Abma and Kabir (2006) introduced Projection onto Convex Sets (POCS) for seismic

data reconstruction. POCS relies on an iterative scheme that applies a threshold to

the transformed data. The algorithm progressively lowers the threshold to include

weaker events that might have been ignored or poorly reconstructed in the first

iterations. The method reconstructs irregularly missing samples on a regular grid.

Other authors extended POCS usage to include antialiasing filters (Gao et al., 2013)

and investigate different thresholding schemes. Stanton et al. (2015), for example,

demonstrate that soft thresholding combined with debiasing improves results over
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Algorithm Irregular coordinates Aliasing Fast Computation

Fourier Inversion with NDFT X

MWNI X

ALFT X

POCS X

Prediction Filters X

Table 1.2: Salient properties of reconstruction signal-processing-based algo-
rithms

hard thresholding. Finally, POCS can also reconstruct multicomponent data via

its quaternionic extension (Stanton and Sacchi, 2011). The method relies on the

spectral overlap of components in the frequency-wavenumber domain to improve

the reconstruction quality over independent component-wise reconstruction.

Methods considering sparse coefficients are closely related to the field of compressive

sensing. The aim is to recover the complete wavefield from randomized incoherent

sampling using sparsifying transforms and sparsity-promotion recovery (Herrmann

and Hennenfent, 2008; Herrmann, 2010). The sought solution is the one that lever-

ages a sparse spectrum. By taking the inverse Fourier transform of the vector that

solves the sparsity promoting problem, one recovers the reconstructed data. Li

et al. (2012) define an interpolated restriction operator with coefficients given by

a local Lagrange interpolation polynomial. Following a similar idea, Jiang et al.

(2017) extend POCS by including a mapping operator in the iterative scheme. The

mapping is a weighted summation from neighbouring traces considering the linear,

cubic, sinc, Lagrange or spline interpolator. Table 1.2 describes salient properties

of reconstruction signal-processing-based algorithms.
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Prediction filter methods

Fourier methods are considered a non-parametric approach to spectrum estima-

tion and data reconstruction. The parametric alternative is via prediction filtering,

which uses autoregressive modelling to estimate spatial signals. The algorithms

can operate in the time-space domain (Claerbout, 1992; Crawley et al., 1999), in

the frequency-space domain (Spitz, 1990; Porsani, 1999; Naghizadeh and Sacchi,

2010b), or the frequency-wavenumber domain (Gulunay, 2003). In general, predic-

tion filtering deals with interpolating regularly sampled data onto a high-density

regular grid, including interpolation beyond aliasing. In other words, the technique

upsamples the data in a grid rather than completing irregularly missing patterns.

Prediction filter-based algorithms assume that the signal is a superposition of plane

waves. Then, the signal is predictable in space. In the reconstruction problem,

one estimates the coefficients of the filter from the low-frequency components of the

signal to interpolate the high-frequency aliased events.

Rank-reduction methods

Rank-reduction-based denoising and reconstruction methods also assume that data

are predictable in space. The data predictability results in low-rank arrays in the f -

x domain. Methods in this category recover irregularly missing samples on a regular

grid. Therefore, binning is usually required before the reconstruction. The following

section focuses on rank-reduction reconstruction algorithms in more detail.

Machine learning-based methods

Finally, recent advances in seismic data reconstruction correspond to methods in-

cluded under the machine learning category. These methods differ from previous

algorithms in that they do not depend on a model but a training dataset. Jia and

Ma (2017) reconstruct undersampled data or missing traces via a support vector

regression. Mandelli et al. (2018) train an autoencoder to fill the missing samples in

a corrupted prestack seismic image. Greiner et al. (2019) use a convolutional neural

network for upscaling a non-aliased wavefield. The authors study, in particular,

the interpolation of near-offset traces. Continuing the development of convolutional

neural networks, Shi et al. (2019) introduce a random initialization that improves
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the quality of the reconstruction compared to other methods. Finally, Wang et al.

(2019) implement a residual learning network (ResNets) to reconstruct dense seismic

data beyond aliasing.

1.1.2 Rank reduction in seismic reconstruction

Rank-reduction methods can enhance the signal-to-noise ration (S/N) and recon-

struct the seismic data. A broad classification of the methods divides them into

two groups. The first group applies rank reduction to seismic data embedded in

matrices and the second to seismic data embedded in tensors or multilinear arrays.

Initial contributions in the low-rank field were related to the seismic data denoising.

Early efforts include eigenimage filtering in the f -x and f -x-y domain (Freire and

Ulrych, 1988; Trickett, 2003). Eigenimage filtering explores the fact that coherent

energy maps onto their first eigenimages. The method consists of replacing spatial

frequency slices with the sum of the first few eigenimages via the Truncated Singular

Value Decomposition (TSVD). Next, Cadzow filtering was introduced to seismic

data by embedding the frequency slices in a Hankel matrix before calculating the

TSVD (Trickett and Burroughs, 2009; Burroughs and Trickett, 2009). Combinations

of eigenimage and Cadzow filter were also explored (Trickett and Burroughs, 2009).

Simultaneously, Sacchi (2009) introduces the Singular Spectrum Analysis (SSA)

algorithm for seismic data denoising. Figure 1.2 shows the workflow of the algorithm.

Rank Reduction +

Lanczos / rQR

Fast 
(Gao et al, 2013)

Window extraction

Noisy data

FFT Transform

Hankelization

Parallel processing in frequency slices

FFT-1 Transform

Unpatch

Denoised data

Anti-diagonal 
averaging

Figure 1.2: Workflow of the SSA algorithm.

Oropeza and Sacchi (2011) advanced rank-reduction methods to simultaneous de-

noising and interpolation of 3D seismic data. The authors introduce Multichannel
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Singular Spectrum Analysis (MSSA), an SSA-based algorithm that allows recon-

struction via a POCS-like imputation scheme. MSSA typically considers a linear

decrease of the imputation parameter resulting in gradual reinsertion of the esti-

mated filtered data at each iteration. A drawback of the MSSA method is the

computational cost of the TSVD on the Hankel matrix. Randomized techniques

for rank-reduction, including randomized SVD and QR decomposition, extend the

capabilities of the algorithm (Oropeza and Sacchi, 2010; Cheng et al., 2019). A dif-

ferent computational efficiency approach studies a factorization strategy that avoids

the SVD (Aravkin et al., 2014; Kumar et al., 2015; Chen and Sacchi, 2015).

The MSSA method was modified to cope with prestack 5D reconstruction by form-

ing block Hankel matrices (Trickett et al., 2010). Several acceleration methods

followed based on the Lanczos bidiagonalization technique (Gao et al., 2011, 2013;

Cheng et al., 2019). Fast solvers utilize fast matrix-times-vector multiplications of

circulant matrices employing FFT properties (Gao et al., 2011). The technique sig-

nificantly reduces the computational cost of the iterative Lanczos bidiagonalization

algorithm and permits the reconstruction of massive volumes of data. Finally, Sac-

chi et al. (2017) extend the SSA algorithm to multicomponent or 3C seismic data.

Multicomponent seismic data samples the three components (one vertical and two

horizontal) of the wavefield. Vector SSA embeds the vector measurements into a

Hankel matrix, where each element is the 3C field. Bahia and Sacchi (2019) follow

a different approach and represent the vector-field as quaternions. The authors use

the quaternionic rank-reduction method to solve the problem.

This thesis evaluates a shortcoming of the original MSSA reconstruction algorithm.

Even though seismic data are irregularly sampled in the spatial domain, the MSSA

method assumes a regular distribution of traces. The standard approach is to map

seismic traces to a regular grid before reconstruction. The process, called binning,

introduces errors in the amplitude and phase of the traces. López et al. (2016)

considered non-uniform Fourier transform to reduce the impact of binning on the

final image. In this thesis, I consider an inverse problem that minimizes the residuals

between observations and synthesizes data in the original spatial coordinates. The

MSSA filter is applied as a projection operator to the desired reconstructed data in

the regular grid. The problem reduces to optimizing an objective function via the

projected gradient descent method.

The full seismic wavefield has four spatial dimensions in addition to time. In such a
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high dimensionality, the low-rank properties of the data remain valid. By embedding

the data into tensors, reconstruction algorithms benefit from the data redundancy

and relations in the different dimensions. Therefore, tensor completion methods

operate directly on the multilinear array rather than on data embedded into Hankel

or block Hankel matrices. Kreimer and Sacchi (2012) introduce tensorial algebra

into the seismic reconstruction problem. The authors recognize that a low-rank ten-

sor represents the ideal (fully sampled and noise-free) seismic data. The algorithm

resorts to the High-Order-SVD (HOSVD) algorithm to solve the inverse problem.

Kreimer et al. (2013) adopt the nuclear norm minimization to circumvent rank se-

lection. Trickett et al. (2013) introduce the Hankel tensor completion algorithm.

The algorithm first forms a tensor from a frequency slice of the data. Then, it

applies tensor completion using the canonic polyadic decomposition and ignoring

missing elements. Finally, it recovers the reconstructed frequency slice by averag-

ing over every tensor element in which each frequency slice value was originally

placed. Da Silva and Herrmann (2015) exploit the Hierarchical Tucker decompo-

sition. Ely et al. (2015) introduce tensorial SVD and Popa et al. (2020) improve

the computational time by exploiting the symmetry properties of the Fourier trans-

form. Finally, Gao et al. (2015, 2017) introduce the Parallel Matrix Factorization

algorithm (PMF) to the seismic reconstruction problem. Chapter 5 of this thesis

presents a robust implementation of PMF to reconstruct seismic data with non-

Gaussian noise. The following section describes the importance and the challenges

of including non-Gaussian noise in reconstruction algorithms.

1.2 Erratic noise in seismic data

Seismic traces are composed of reflection information contaminated by noise. By

adopting an additive noise model, one can represent the observed data as

U = D + N ,

where U is a discrete-time series containing the seismic data or traces, D is the signal

or reflection information, and N is the noise. The seismic signal can be represented

by a superposition of linear events in a small time-space window (Sacchi, 2009;

Trickett et al., 2010). On the contrary, the noise is so complex that an accurate

description is extremely complicated (Oppenheim et al., 2001). Then, one often
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models the noise as a stochastic series.

Seismic noise is either incoherent or coherent regarding the correlation with subse-

quent samples (Yilmaz, 2001). The first type, incoherent noise, typically follows a

Gaussian distribution. In onshore seismic acquisitions, sources of random noise are

the wind, instrumental noise and surface activities. The second type, coherent noise,

includes noise that is correlated either in space or time. The noise that is coherent

in space originates typically in the seismic source. Ground roll, mainly composed of

Rayleigh waves, is the primary type of coherent linear noise in onshore data. To fil-

ter ground roll, one can use f -k-filters or bandpass filters (Yilmaz, 2001). Noise can

also be coherent in time. Temporally coherent noise corrupts seismic traces with

an erratic or impulsive component, usually not generated by the seismic source.

Power lines, misfired shots, and poor coupling of geophones are frequent sources

of high-amplitude noise. Expressions of high-amplitude noise in seismic data are

spikes, bursts and noisy traces (Anderson and McMechan, 1989). Figure 1.3 shows

two field gathers pervaded by impulsive noise.

In seismic data processing, many algorithms rely on the least-squares inversion to

improve the subsurface image. In other words, the best image results from min-

imizing the squares of the residuals between the observed seismic traces and the

corresponding model. However, this approach considers a Gaussian distribution of

errors. As seismic data usually presents erratic components or non-Gaussian noise,

the least-squares approach is not optimal. This thesis considers reconstruction al-

gorithms that are robust to the presence of erratic or high-amplitude errors. The

robust approach replaces the l2 norm with norms that down weight the erratic errors.

Conventional robust norms are the l1 norm, the Huber norm, the bi-weight func-

tion, and the Geman-McClure function. This thesis considers a generalized function

that includes a flexible parameter to adjust the solution robustness. Setting the

parameter to specific values recovers the traditional robust norms.

1.3 Main motivation of this work

The main motivation of this thesis is to utilize the redundancy of multidimensional

datasets to reconstruct regularly and irregularly missing data. To accomplish this,

I establish constrained inverse problems and consider the algorithm that fits the
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Figure 1.3: Prestack seismic data are frequently pervaded by high-amplitude
noise. (a) Teapot dome, RMOTC and the U.S. Department of Energy, SEG
Open Data. (b) Stratton 3D , Bureau of Economic Geology, University of
Texas, Austin, SEG Open data.

needs. The objective is twofold. First, to design methods that consider the presence

of unknown noise distributions by including robust norms. Second, to allow for the

reconstruction of irregularly sampled data. Both goals aim to reduce the computa-

tional efforts of standard algorithms. The thesis considers the particular application

of reconstruction and noise attenuation of seismic wavefields.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

• Introduce Interpolated Multichannel Singular Spectrum Analysis (IMSSA) to

reconstruct irregularly sampled data from their real coordinates. I propose
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reconstruction through a mapping operator that honours the observed loca-

tions. I adopt the projected gradient method to approximate the low-rank

constraint.

• Evaluate the effect of robust norms in the seismic wavefield. Extend the Par-

allel Matrix Factorization (PMF) method to account for the presence of non-

Gaussian noise.

• Investigate computational tools to reduce the cost of the algorithms as ran-

domized sampling. I also explore reconstruction via cross-spread gathers to

reduce the computational burden of windowing the data.

1.5 Outline of the thesis

The thesis is organized as follows

• Chapter 2 formally introduces seismic reconstruction as a rank-reduction re-

covery problem. The chapter covers an overview of the notation and defini-

tions. Besides, it introduces algorithms for matrix and tensor reconstruction.

• Chapter 3 presents the Interpolated Multichannel Singular Spectrum Analysis

algorithm (IMSSA). The proposed method reconstructs seismic data randomly

decimated from irregular locations. I propose an inversion scheme that mini-

mizes the misfit between predicted and observed data in the frequency-space

domain. The predicted data are mapped to the observed coordinates via an

interpolator operator. The inverse problem is solved via the projected gradient

method. The projection is imposed via the SSA filter. I show synthetic and

field data to test the performance of the algorithms. Field data are processed

in cross-spread gathers to favour the natural windowing of the data. This

results in reduced processing efforts.

• Chapter 4 explores robust norms in seismic reconstruction. The chapter re-

views the applications of robust inversion in geophysics. Following, it intro-

duces M-estimators, the robust analogue of the maximum likelihood method.

Next, I propose a robust approach to the reconstruction method. The al-

gorithm minimizes the discrepancies between the predicted data and the ob-

servation but replaces the l2 approach with a generalized robust norm. The
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generalized norm regulates its shape via a continuous parameter. The solution

is obtained via the projected gradient method. I evaluate synthetic and field

tests. Synthetic tests allow examining the solution as a function of the free pa-

rameter that defines the convexity of the norm. I concluded that datasets with

a high percentage of non-Gaussian noise require non-convex norms for proper

reconstruction. However, seismic data typically presents lower percentages of

high-amplitude errors. Therefore, robust monotonic norms provide acceptable

results.

• In chapter 5, I adapt the Parallel Matrix Factorization method for robust re-

construction of seismic data. I present a new scheme that computes a weighted

approximation of the data. The weight depends on the robust norm and the

amplitude of the error. The method leads to a two-step algorithm. The

first step approximates the data via an imputation algorithm, considering the

weights. The second step computes the rank-reduced approximation of the

unfoldings of the tensor. I consider synthetic and field examples. Field ex-

amples consider a full seismic dataset. I implement 5D slide windowing to

approximate the result. Besides, rank-reduction is obtained via randomized

QR decomposition, which relaxes the selection of the rank.

• Chapter 6 contains the conclusions of this thesis given by the contributions

and limitations of my research.



CHAPTER 2

Rank Reduction

He who refuses to do arithmetic is doomed to talk nonsense.

John McCarthy

The matrix and tensor completion problems intend to estimate an array from its

partially observed entries. The problem is underdetermined and, therefore, it does

not have a unique solution. However, one can find a solution by imposing addi-

tional constraints. In particular, one can assume that the dataset is of low-rank.

Thus, a small percentage of correlated samples enable the recovery of the complete

array. The completion problem has seen much development in theory and applica-

tions in computer vision, machine learning, data mining and collaborative filtering,

bioinformatics, control, and signal processing (Zhou et al., 2014; Candès and Plan,

2010).

In seismic data processing, continuous wavefields are adequately sampled in time,

but not in their spatial coordinates. Spatial undersampling is a result of economic

and physical constraints. In some cases, one can model the seismic wavefield as a

limited number of complex exponentials (Stanton and Sacchi, 2013), and show that

this model leads to, for instance, Hankel matrices that are low rank. The latter is

the essence of reduced-rank methods such as MSSA filtering and Cadzow filtering.

This chapter intends to present mathematical tools and simple models that will

allow us to develop methods for reduced-rank filtering operating on Hankel forms

and tensors.

17
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2.1 Representing seismic data with low-rank arrays

To gain intuition on why one can adopt rank-reduction for denoising and data re-

construction, we first study a simple model. Consider a seismic signal in a small

window. The signal can be modelled as an event with constant dip, where the dip

or ray-parameter is denoted by p. In the t-x (time-space) domain, such a signal can

be represented by a delayed function

s(t, x) = w(t− px) ,

where t and x represent time and space, and w(t) is a band-limited wavelet. We

can use the Fourier transform to map time to frequency s(t, x) → S(ω, x), where

S(ω, x) is often referred as the signal in the f -x (frequency-space) domain. Applying

Fourier shift theorem it is easy to show

S(ω, x) = W (ω) exp−iωpx ,

where ω = 2πf is the temporal frequency in radians per seconds and f is frequency

in Hz.

We analyze one frequency ω0, and assume regularly sampled data. The following

equation reflects the data for one channel

Sn = W exp−iαn , (2.1)

where xn = n∆x and α = ω0p∆x. The spatial distance between channels is ∆x.

As it is clear that the model is valid for any frequency, I drop the dependency on

temporal frequencies to avoid notational clutter. Let us now consider the waveform

in the adjacent channel

Sn+1 = W exp−iα(n+1) . (2.2)

One can infer a recursive expression between channels given by combining equations

2.1 and 2.2

Sn+1 = SnP , (2.3)

where P = exp−iα. That is, the signal is predictable in space with a recursion of

order one.
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Let us now consider Nx consecutive equally spaced records of the waveform. The

trajectory matrix is given by

H =


S1 S2 · · · SK

S2 S3 · · · SK+1

...
...

. . .
...

SLx SLx+1 · · · SNx

 ,

where selecting Lx = bNx/2c + 1 and K = Nx − Lx + 1 results in a square Hankel

matrix when Nx is odd (Trickett, 2008). The symbol bc indicates the integer part of

the argument. Considering the predictability of the signal in space given by equation

2.3, it is easy to show the following

H =


S1 S1P · · · S1P

K−1

S2 S2P · · · S2P
K−1

...
...

. . .
...

SLx SLxP · · · SLxP
K−1 .

 (2.4)

We conclude that the rank of the trajectory matrix H with one constant dip equals

one. Figure 2.1 shows a 2D seismic section with one dipping linear event and the

singular values of the Hankel matrix for frequency index 20. In the presence of

uncorrelated noise or missing samples, the rank of the trajectory matrix increases.

Appendix A presents a generalization of the concept to multiple events and higher

dimensions. The following sections introduce the matrix and tensor algebra required

for the reconstruction problem.

2.2 Matrix completion

The completion problem consists of finding a matrix that best approximates a matrix

of incomplete and corrupted data. The underdetermined problem has no unique

solution. However, if the unknown matrix is of approximately low rank, it is possible

to find a solution by exploiting reduced-rank filtering techniques. This section has

the following objectives. First, introduce fundamental concepts as the rank of a

matrix and matrix decomposition. Following, define the matrix completion problem.

Finally, review popular algorithms to solve the problem.
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Figure 2.1: Seismic data is low rank. (a) 2D seismic section with one dipping
linear event. (b) The rank of the Hankel matrix of a frequency slice equals
one.

2.2.1 Preliminaries

Let us consider a square matrix A of dimensions M ×M , and a general vector x

of length M . In general, the multiplication Ax results in a new vector pointing in

a different direction from x. However, there is a subset of exceptional vectors that

multiplied by A do not change direction. That is,

Ax = λx .

Vectors with such properties are called eigenvectors of matrix A. The coefficient λ

is called an eigenvalue and describes the stretching or shrinking of the vector x after

the multiplication.

We now consider A, a rectangular matrix of dimensions M ×N . The singular value

decomposition (SVD) of A is defined as

A = UΣVT

= Σn
i=1uiσiv

T
i , (2.5)

where U is an M ×M matrix, V is an N ×N matrix, and σ is a diagonal matrix
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of dimension M × N . The columns of U are called the left singular vectors of A,

the columns of V are the right singular vectors of A, and the elements of σ are

called the singular values of A. Matrices U and V have orthonormal columns,

UTU = VTV = In.

The SVD of A is strongly connected to the eigenvalue decomposition of the sym-

metric semidefinite matrices AAT as AAT = UΣVTVΣTUT = UΣΣTUT . The

columns of U are the eigenvectors of AAT , the columns of V are the eigenvec-

tors of ATA, and the diagonal elements of σ are the square roots of the non-zero

eigenvalues of AAT and ATA.

The rank of a matrix describes the number of linearly independent rows or columns

of a 2D array. SVD is a rank-revealing decomposition in the sense that a matrix

of rank r has only the first r elements of the main diagonal in Σ different from

zero. From the SVD, a rank-one matrix A1 equals the outer product of two vectors,

A1 = u ⊗ v, and a rank r matrix equals the summation of rank-one matrices as

Ar = σ1u1 ⊗ v1 + · · ·+ σrur ⊗ vr.

The SVD also allows for the definition of a pseudoinverse of matrix A as

A† =

r∑
i=1

viσ
−1
i uTi . (2.6)

The solution to a linear problem Ax = b can be sensitive to perturbations in A.

One can measure the sensitivity of the problem via the condition number

cond (A) = ‖A‖2‖A†‖2 = σ1/σr , (2.7)

where σ1 is the largest singular value, σr is the smallest one, and ‖ · ‖2 represents

the p=2 matrix norm, with ‖A‖2 = σmax(A). A large condition number implies

that A is nearly rank-deficient, that is, the system of linear equations is ill-possed

and requires regularization to find a solution.
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2.2.2 Low-Rank Matrix Approximation

Given a matrix Y of sizeM×N and rank R, one can estimate the best approximation

of Y via a matrix X of rank r, with r < R. The problem is

min ‖Y −X‖2F subject to rank(X) = r , (2.8)

where ‖Y − X‖2F =
∑

m,n |Ymn − Xmn|2 is the square of the standard Frobenius

norm.

The low-rank approximation problem has a solution given by the truncated Singular

Value Decomposition of the observed matrix (Eckart and Young, 1936)

X =
r∑
i=1

σiuiv
T
i . (2.9)

Matrix X requires only r(M + N) coefficients in contrast to the original M × N
coefficients used for the rank R matrix. This characteristic is an indication that it

might be possible to recover a low-rank matrix from relatively few measurements.

Figure 2.2 presents the decomposition schematically.

=M

N

M

R R
Rr

N

r

r

X U Σ VT

Figure 2.2: Matrix rank reduction via truncated SVD. Matrix X ∈ RM×N
can be approximated by r(M +N) coefficients.

2.2.3 Low-rank Matrix Completion

Let us now consider the recovery of a low-rank matrix X of size M ×M from a

subset of its entries. The problem is

min rank(X) , s.t. Ω(X) = Y , (2.10)
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where X is the complete, low-rank matrix of interest, Ω is a sampling operator

returning a subset of the entries, and Y are the observations. However, the obser-

vations are also contaminated by noise, Y = Ω(X) + N. Then, the problem is to

find the best low-rank approximation to Y, or

min rank(X) , s.t. ‖Ω(X)−Y‖2F ≤ ε . (2.11)

This objective function describes the low-rank matrix completion problem.

The nuclear norm

Minimizing the rank of a matrix corresponds to minimizing the l0 norm of its singular

values (Donoho, 2006). That is,

min rank(X) = min ‖σi‖0 = min
R∑
i=1

|σi|0 ,

where σi are the singular values of X, and the l0 norm minimizes the number of

non-zero entries of a given vector. This definition exposes the non-convexity of the

matrix completion problem (Equation 2.11). The tightest relaxation of the l0 norm

is the l1 norm. In the matrix completion problem, this convex relaxation results in

the nuclear norm, or trace norm ‖X‖∗ = trace
(√

X∗X
)

=
∑R

i=1 σi. The problem

is now tractable.

Candès and Recht (2009) proved that given an M × N matrix, the number of

available entries m should be greater or equal to CL1.2R logL to recover the desired

matrix. In the expression, C is a positive numerical constant, and L = max(M,N),

and R is the rank. Besides, there should be no empty rows or columns. To prevent

this, the singular values of the matrix need to be sufficiently spread. The minimum

number of entries needed to recover a matrix exactly was later reviewed by several

authors (Candès and Plan, 2010; Keshavan et al., 2010; Recht, 2011), concluding

that most low-rank matrices can be recovered even if they have a very low cardinality.

By using Lagrange formulation, one can express the reconstruction problem as an

unconstrained convex optimization problem

arg min
X
‖Ω(X)−Y‖2F + λ‖X‖∗ . (2.12)
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The equation can be solved using algorithms from the proximal family, as the singu-

lar value thresholding algorithm (SVT) (Cai et al., 2010), the fast iterative shrinkage

thresholding algorithm (FISTA) (Beck and Teboulle, 2009), and the alternating di-

rection method of multipliers algorithm (ADMM) (Parikh et al., 2014).

Fazel et al. (2013) analyze the solution to Equation 2.12, where the matrix requires

to be of low rank and with Hankel or Toeplitz structure. The solution is obtained

via ADMM and gradient projection methods.

In general, non-convex regularization methods present better performance than nu-

clear norm minimization (Nie et al., 2012; Lai et al., 2013; Wen et al., 2018). An

alternative approach is to minimize the lq norm of the singular values with 0 < q < 1

(Marjanovic and Solo, 2012). This measure of the singular values is called the

Schatten-q norm. To solve this non-convex problem, one can use a proximal descent

scheme. The matrix completion problem via nuclear norm or Schatten-p norm is

generally stable but requires the repeated computation of the SVD to obtain the

singular values of the matrix. The process can be computationally intensive for

large datasets.

Matrix factorization

When the matrix of interest is large, as for seismic data, storage and computation

demand becomes an issue. A common approach is to consider A ∼ LRT , where the

M × r and N × r matrices are also low-rank, restricting the storage demand in all

the iterations. The approach is validated by the following property of the nuclear

norm

‖X‖∗ = arg min
L,R

1

2

(
‖L‖2F + ‖R‖2F

)
, s.t. X = LRT . (2.13)

Then, one can express Equation 2.12 by

arg min
L,R

‖ΩLRT −Y‖22 +
λ1

2
‖L‖2F +

λ2

2
‖R‖2F . (2.14)

The misfit term in the cost function is a product of two unknowns. Then, the

formulation is non-convex. The problem can be solved via alternating minimization

(Recht et al., 2010). The method iteratively fixes each unknown while solving the
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other one, resulting in two convex subproblems. The iterations are

Rk+1 = arg min
R
‖ΩLkR

T −Y‖

Lk+1 = arg min
L
‖ΩLRT

k+1 −Y‖ . (2.15)

The method outperforms nuclear norm minimization as the SVD is not calculated.

On the other hand, the underlying rank needs to be predefined, which can be chal-

lenging in particular applications.

The Projected Gradient Descent

In general, finding a solution to equation 2.11 is NP-hard (Candès and Recht, 2009).

A possible relaxation of the problem assumes a priori knowledge of the rank

arg min
X
‖Ω(X)−Y‖2F s.t. rank(X) ≤ r . (2.16)

The Projected Gradient Descent, which results in the Singular Value Projection

algorithm (Jain et al., 2010) and the Iterative Hard Thresholding algorithm (Gav-

ish and Donoho, 2014), solve the optimization problem. Both algorithms are very

similar, with a two-step iterative scheme. Each iteration is

X̃k+1 = Xk − γkΩ∗ (Ω(Xk)−Y)

Xk+1 = ProjectRankr

(
X̃k+1

)
. (2.17)

The operator called ProjectRank computes components of the SVD up to rank r.

If r � min(M,N), this algorithm is faster than computing the full SVD.

This thesis presents an implementation of the Projected Gradient Descent algorithm

for seismic reconstruction. The algorithm considers the ProjectedRank operator as a

rank minimization over a Hankel matrix containing the values of the sampled wave-

field. Chapter 3 presents the mathematical considerations together with synthetic

and field results.
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2.3 Tensor Completion

Tensors were introduced at the end of the 19th century with the development of the

differential calculus and homogeneous polynomials (Comon, 2014; Cichocki et al.,

2015). Tensor decomposition techniques have seen major research development since

their introduction. In particular, Tucker (1964) and Carroll and Chang (1970)

established the Tucker decomposition and Canonical Polyadic Decomposition (CPD)

in psychometrics, while Harshman (1970) introduced the concept into linguistics.

Many applications can also be found in fields such as chemometrics (Bro, 1997;

Smilde et al., 2005), data mining (Acar et al., 2010; Mørup, 2011), graph analysis

(Kolda, 2006), and neuroscience (Mørup et al., 2006; Lee et al., 2007). In the field

of signal processing, tensors have been used in audio processing, image processing,

video processing, machine learning, and biomedical applications, among other fields

(Cichocki et al., 2015). In geophysics, tensor algebra was adopted for seismic data

reconstruction (Kreimer and Sacchi, 2012; Kreimer et al., 2013; Ely et al., 2015; Gao

et al., 2015). The problem is posed as optimizing a cost function that minimizes a

misfit in conjunction with a low-rank constraint.

The following sections cover the basics of tensorial algebra and the low-rank tensor

recovery problem.

2.3.1 Preliminaries

A tensor X is a multidimensional array. The dimension of the array is named the

order of the tensor or the number of ways or modes. A first-order tensor is a vector

x, a second-order tensor is a matrix X, and a third-order tensor or higher is a

high-order tensor X . Figure 2.3 shows a diagram of a third-order tensor.

The seismic wavefield has four spatial dimensions. Data depends on five dimensions:

time, source and receiver x and y coordinates. We stress that we always prefer to

work in the frequency-space domain. In other words, the seismic volume in the

frequency-space domain for one single frequency corresponds to a 4D volume that

can be embedded in a four-order tensor. Then, one can focus on fourth-order tensors.

The elements of a fourth-order tensor are xi,j,k,l. One can also gather subarrays by

fixing, for example, all the elements of a mode xi,j,:,l. A slice is a two-dimensional

section of a tensor obtained by fixing all the indices except two, x:,:,k,l. Similarly, a
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⋯
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

Figure 2.3: Schematic representation of a third-order tensor.

fiber is a one-dimensional subarray, the analogue of a column or row to a matrix,

obtained by fixing all the indices except for one x:,j,k,l.

One can also reorder the elements of an Nth-order tensor into a matrix. The pro-

cess is called unfolding, flattening, or matricization and we indicate it as X(n) =

fold(n)(X ). There are different methods to unfold a matrix. This thesis consid-

ers the mode-n matricization (Kolda and Bader, 2009). The unfolding rearranges

the mode-n fibers to be the columns of the matrix. Figure 2.4 shows the process

schematically. In general, the specific permutations of columns are not critical, but

they should be consistent throughout the calculations. Similarly, one could vectorize

a tensor.

The inner product of two tensors of the same size X , Y equals the sum of the

products of their entries

〈X ,Y〉 =
I∑
i=1

J∑
j=1

K∑
k=1

L∑
l=1

xi,j,k,l yi,j,k,l . (2.18)

Vector spaces with scalar products facilitate the definition of a norm. The tensor

Frobenius norm is the square root of the sum of the squares of the elements

‖X‖F =

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

L∑
l=1

x2
i,j,k,l . (2.19)

With the previous definitions, one concludes that 〈X ,X〉 = ‖X‖2F . The inner prod-

uct and the Frobenius tensor norm are a high-order generalization of the definitions

concerning matrices.
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Figure 2.4: A third-order tensor can be unfolded in three different matrices
or modes.

Tensors, like matrices and vectors, are equipped with multiple definitions of mul-

tiplication. The mode-n product, for example, considers the multiplication of a

tensor by a matrix, or vector, in mode n. In the case of a matrix, each mode-n fiber

is multiplied by the matrix U. As an example, the mode-3 product of a fourth-

order tensor X ∈ RI,J,K,L with a matrix U ∈ RM×K results in the tensor Z of size

I × J ×M × L. The element i, j,m, l of tensor Z is

zi,j,m,l = (X ×3 U)i,j,m,l =

K∑
k=1

xi,j,k,l um,k . (2.20)

Finally, if an Nth-order tensor can be decomposed as the outer product of N vectors

A = b(1) ⊗ · · · ⊗ b(N) , (2.21)

the tensor is of rank one. In the definition, bn represents a vector ∈ RIn , and ⊗ is

the standard outer product of vectors. This definition is similar to the matrix rank.

However, there are substantial differences. The next section delves into this concept

and considers two main models or tensor decompositions.
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2.3.2 Tensor Decompositions and rank

Tensor decompositions give a concise representation of the underlying structure

of the data, revealing the dimension of the subspace. This section describes two

tensorial decompositions and the tensor rank associated with them.

The Canonical Polyadic Decomposition

An Nth-order tensor X ∈ RI1...IN is expressed in its Polyadic Decomposition (PD)

when described as a linear combination of rank-1 tensors (Kolda, 2006; Comon,

2014; Cichocki et al., 2015; de Morais Goulart, 2016; Sidiropoulos et al., 2017).

Mathematically, the Polyadic Decomposition is

X =
R∑
r=1

λrb
(1)
r ⊗ . . .⊗ b(N)

r , (2.22)

where λr is a normalizing scalar, and bn represents a vector ∈ RIn (Figure 2.5).

When describing tensor X with the minimum possible R, one presents its Canonical

Polyadic Decomposition (CPD). The rank of the tensor X equals the value of R for

which the CPD holds exactly.

 a1

b1

c1

a2

b2

c2

aR

bR

cR

= + ++⋯

Figure 2.5: Canonical Polyadic Decomposition of a third-order tensor of rank
R.

The definition of tensor rank is a counterpart to the definition of matrix rank.

However, there are substantial differences to address. First, only one combination

of rank-one tensors sums to X , except for the elementary indeterminacies caused by

scaling and permutation (Kolda and Bader, 2009). This uniqueness of the CPD is

not valid for matrices. Besides, the tensor rank depends on the underlying field and

can exceed the smallest dimension of the array.
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Given the nature of the definition, defining the rank of a given tensor is an NP-hard

problem (Fortnow, 2009). As the CPD is unique for tensors, one could eventually fit

multiple CP decompositions with alternative values of R until one fits the data as

expected. However, when the data are noisy, the fitting approach cannot determine

the rank in any case. Then, the rank should be fixed with a priori knowledge of the

data.

There are complementary definitions of the tensor rank. The border rank is the

minimum number of rank-one tensors that approximate the tensor of interest within

a given tolerance (Comon, 2014). The maximum rank is the largest attainable rank.

Finally, the typical rank is any rank that occurs with a probability greater than

zero. The typical and maximal ranks are identical for matrices but not for tensors.

There may be more than one typical rank in R, while there is always one typical

rank in C.

The best rank-k approximation of a given matrix is the solution of the truncated

SVD (Eckart and Young, 1936). Contrarily, for higher-order tensors, summing the

first k factors of the CP decomposition of a rank R tensor does not yield the best

rank-k approximation of the tensor. In other words, the components of a CP de-

composition should be calculated simultaneously instead of sequentially. Finally,

the best rank-k approximation of a tensor might not exist. These arrays are called

degenerate tensors. In such cases, it is useful to consider the border rank.

The Tucker Decomposition

The Tucker Decomposition describes an Nth-order tensor X ∈ RI1...IN as the com-

position of a core tensor G ∈ RR1...RN multiplied by factor matrices in each mode

(Kolda, 2006; Comon, 2014; Cichocki et al., 2015; de Morais Goulart, 2016; Sidiropou-

los et al., 2017). The matrices are defined as B(n) = [b
(n)
1 , . . . ,b

(n)
Rn

] ∈ RIn×Rn ,

n = 1, 2, . . . , N . The decomposition is

X =

R1∑
r1=1

R2∑
r2=1

. . .

RN∑
rN=1

Gr1...rN
(
b(1)
r1 ◦ . . . ◦ b(N)

rN

)
. (2.23)

The core tensor G is a compressed version of the initial tensor X , especially when

R1, R2, . . . , RN are smaller than I1, I2, . . . , In. Figure 2.6 illustrates the decomposi-

tion.
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Figure 2.6: Tucker decomposition of a third-order tensor.

In contrast to the CPD, the Tucker decomposition is not unique. Then, it is common

practice to choose transformations that restrict the problem. In particular, one can

simplify the core, aiming for the highest number of zero elements, which reduces

interactions among elements. The extreme case in which G is a fully diagonal matrix

is coincident with the polyadic decomposition.

The High-Order SVD (HOSVD) is the Tucker decomposition in which the factor

matrices are orthogonal (De Lathauwer et al., 2000; Kreimer and Sacchi, 2012).

In the HOSVD decomposition, the matrices B(1), B(2), . . . , B(N) contain the left

singular vectors of the matricization of the tensor X . Besides, the core tensor plays

a role similar to that of the matrix of singular values in the SVD. Then, one can

reduce the rank of the approximated tensor by truncating the core tensor G.

Previously, we related the rank of the tensor to the CPD. In a similar vein, we

define the n-Rank or multilinear rank of a tensor referencing the Tucker decompo-

sition. The n-Rank is the vector whose components are the column rank of the

unfoldings of the tensor X . The Tucker decomposition of a tensor of n-Rank equal

to (R1, R2, . . . , RN ) is exact. On the contrary, if (R1, R2, . . . , RN ) is less than the

n-Rank, the Tucker decomposition provides only an approximation. In contrast to

the SVD, the Tucker decomposition is not the best approximation from a least-

squares perspective. Nevertheless, every tensor has a best at most rank-k Tucker

approximation, even if it is near optimally computed via the High Order SVD.
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2.3.3 Low-Rank Tensor Completion

Tensor completion is the problem of recovering a tensor with partially observed

elements. The problem deals with obtaining tensor models to enable reconstruc-

tion. As a high-dimension generalization of matrices and vectors, tensors exploit

redundancy in all the modes. Such redundancy allows us to characterize the com-

plex structures of higher-order data. However, as in the matrix case, the low-rank

constraint is necessary to restrict the degrees of freedom of the missing entries.

Mathematically, one can describe the low-rank tensor completion problem as

min rank (X ) , s.t Ω (X ) = Y , (2.24)

where X is the underlying tensor, Y is the observed one, Ω is the sampling operator

that keeps the entries of X that were observed in Y and zeros out the ones that were

not observed.

The rank function results in a non-convex objective function for the completion

problem. Besides, the multiplicity of definitions of rank makes this problem more

complicated than its matrix completion counterpart. For example, the tensor rank

is an NP-hard problem, and tensor degeneracy is widespread. Therefore, the n-rank

is the most frequently used definition of the low-rankness of a tensor.

The Nuclear Norm

As described in the low-rank matrix completion section, the Nuclear Norm is the

tightest convex relaxation of the rank of a matrix. Generalizing from this concept,

Liu et al. (2012) define the nuclear norm for tensors

‖X‖∗ =
N∑
n=1

‖X(n)‖∗ , (2.25)

with X(n) representing the Nth-unfolding of the tensor. The nuclear norm of a

tensor is the combination of the trace norms of all matrices unfolded in each mode.

Now, the model for tensor decomposition is

min
N∑
n=1

‖X(n)‖∗ , s.t. Ω (X ) = Y . (2.26)



CHAPTER 2. RANK REDUCTION 33

Although the matrices in the problem cannot be optimized independently, the con-

vex relaxation allows for a solution of the tensor reconstruction problem without

predefining the tensor rank. To solve the problem, Liu et al. (2012) propose opti-

mizing via the block coordinate descent. Gandy et al. (2011) introduce the ADMM,

the standard approach in convex tensor completion.

Tensor Factorization

Based on ideas from the weighted least squares method, Tomasi and Bro (2005)

present two methods to complete tensors using the PD model. The first approach

considers an alternately projection optimization method to estimate the parameters,

followed by an imputation scheme

X = Ω (Y) + (1− Ω)X̂ . (2.27)

The operator Ω is the sampling operator. Then, 1 − Ω is the complement set of

the observed samples. The algorithm is derived as an Expectation-Maximization

iterative method. The algorithm is easy to implement, but it might converge to a

local minimum with increasing missing values.

The second algorithm considers building the model solely with the observed data

by minimizing the misfit component-wise

J =
N∑
i=1

‖Xi − Yi‖2F . (2.28)

The problem is solved via a Gauss-Newton algorithm and proves to be computa-

tionally efficient for high missing ratios.

Different authors consider similar algorithms in the context of the Tucker Decompo-

sition. This model proves to be more effective than CP as the core tensor captures

the interactions between components. Andersson and Bro (1998) and Walczak and

Massart (2001) combine the High-Order Orthogonal Iteration algorithm with an

imputation scheme. Karatzoglou et al. (2010) consider the optimization approach

in combination with the HOSVD. The problem is solved via stochastic gradient

descent.

Of particular interest in this thesis is the Parallel Matrix Factorization algorithm (Xu
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et al., 2015). The method applies low-rank matrix factorization to each unfolding of

the tensor and updates the matrix factors alternately. The approach is non-convex,

and the size of the matrix factors must be specified in the algorithm. However, the

method is faster than the HOSVD (Gao et al., 2015). To recover the tensor Z, PMF

solves an optimization problem

min
Z,X ,Y

N∑
n=1

αn
2
‖XnYn − Z(n)‖2F , s.t Ω(Z) = B , (2.29)

where αn are the weights and satisfy that their sum equals 1. The constraint enforces

consistency with observations B. One applies the low-rank approximation to each

unfolding by finding matrices Xn ∈ RIn×rn and Yn ∈ Rrn ×
∏
j 6=nIj , such that

Z(n) ∼ XnYn for n = 1, 2, . . . , N , where rn is the estimated rank for the given

unfolding. The problem is solved by alternately updating X, Y, and Z. The

method avoids using the SVD in its rank reduction step. Chapter 5 of this thesis

presents a robust implementation of PMF for seismic reconstruction in the presence

of erratic noise.



CHAPTER 3

Interpolated Multichannel Singular Spectrum Analysis

(I-MSSA)

So many secrets in the universe to be discovered

Ample samples, yet the Signal remains to be recovered

Farokh Marvasti

The goal of seismic data reconstruction is to simultaneously denoise and regularize

field data (Duijndam et al., 1999; Trad, 2009). This work focuses on the MSSA

reconstruction method, also called the Cadzow reconstruction method (Trickett,

2008; Sacchi, 2009; Oropeza and Sacchi, 2011).

MSSA was conceived to denoise and reconstruct data deployed on a regular grid.

In other words, missing observations are assumed to be irregularly distributed on

a regular grid (Oropeza and Sacchi, 2011). In general, seismic data are irregularly

sampled in the spatial domain. The standard approach is to assign seismic traces

to a regular grid via a process called binning. Binning assigns traces of arbitrary

coordinates to the nearest neighbor nodes of the desired regular output grid. The

binning process introduces errors in the amplitude and phase of the traces. These

errors can be significant for complex data sets with steeply dipping events. I cir-

cumvent binning via a new algorithm, the Interpolated MSSA (I-MSSA) method.

The method connects off-the-grid observations to the desired gridded data via a

mapping operator. In essence, I solve an inverse problem that minimizes the residu-

als between observations and synthesized data in the original spatial coordinates. I

35
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use the Projected Gradient Descent Method (Cheng and Sacchi, 2016; Bolduc et al.,

2017) to find a solution. The algorithm consists of two steps. The first step uses

the steepest descent method to estimate the gridded data that honours off-the-grid

observations. The second step guarantees convergence to a solution by applying the

MSSA filter to the gridded data. The MSSA filter is applied as a projection oper-

ator to the desired reconstructed data in the regular grid. In essence, this chapter

presents a modified MSSA method to warrant a reconstruction that honours field

coordinates.

This chapter follows the subsequent structure. First, I introduce the notation

adopted and provide preliminary definitions. I continue with a description of the

I-MSSA algorithm. Finally, I test the proposed method via synthetic and field data.

I also provide an application where 3D prestack data corresponding to an orthogonal

survey is fully reconstructed using cross-spread gathers. I use I-MSSA to restore

each subset individually. The output is a complete seismic volume described in a

regular CMP grid.

3.1 Method

3.1.1 Preliminaries

The focus of this chapter is on the reconstruction of seismic volumes that depend

on two spatial dimensions. However, the method can be generalized to volumes

that depend on three or four spatial dimensions. Let us consider a 3D volume

of seismic observations denoted by u(t, rx, ry), where the variable t indicates time,

and rx and ry correspond to, for instance, receiver coordinates of a common shot

gather. Similarly, rx and ry could correspond to inline and crossline coordinates of

a cross-spread gather, respectively.

The observed data, u(t, rx, ry), can be represented in the frequency-space domain

via U(ω, rx, ry) where ω indicates temporal frequency. Without loss of generality, I

ignore the variable ω and understand that the proposed process is carried out for

all frequencies. I also denote ri = (rxi , ryi) the coordinate of the trace i such that

the observed data can be represented as U(ri), i = 1, . . . , Nu, where Nu is the total

number of available traces. I describe the data in the observation grid, U(ri), as a
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linear combination of observations in the desired regular grid

U(ri) =
∑
k∈Ni

WkD(ξk) , (3.1)

where D(ξk) represents the desired observations in the regular grid. Likewise, Ni
represents the indexes of the regular grid coordinates surrounding the coordinate

ri, and the coefficients Wk are the associated weights computed as a function of

the distance between ri = (rxi , ryi) and ξk = (ξxk , ξyk). Last, the regular grid

coordinates are

ξxk = ξx0 + (k − 1) ∆ξx , k = 1, . . . , Nx , (3.2)

ξyk = ξy0 + (k − 1) ∆ξy , k = 1, . . . , Ny , (3.3)

where x0, y0 are the coordinates of the first grid point and ∆ξx and ∆ξy are the x

and y grid intervals, respectively. Equation 3.1 represents an operator that maps

observations in the desired output grid to the off-the-grid observations, U(ri).

A similar expression for the whole data is as follows

U =WD , (3.4)

where U denotes the observed data as a vector of size Nu × 1 containing the obser-

vations. Similarly, D is the desired data on the regular grid, which is an Nx × Ny

matrix of unknown coefficients, and W is the interpolation operator connecting ob-

servations to gridded data. The adjoint of the interpolation operator is the operator

W∗. Both W and W∗ are implicitly implemented as linear operators rather than

matrices. Figure 3.1 compares the process of linear interpolation to the assignation

of values via nearest neighbor interpolation. In Figure 3.1a, the value in ξ8 is as-

signed to the location r, that is, the nearest neighbor grid coordinate. In contrast,

in Figure 3.1b, the value r is calculated via a linear combination of the observation

in adjacent coordinates ξ8, ξ9, ξ13, and ξ14. Figure 3.1b corresponds to a bilinear

interpolator (Press et al., 2007). For the numerical experiments, I adopt a bilinear

interpolator and a sinc interpolator tapered with a Kaiser window to limit its spatial

support (Fomel, 2001). Appendix B provides pseudo-codes for the bilinear, and the

Kaiser window tapered sinc interpolators.

Equation 3.4 cannot be solved directly because the operator W is non-invertible. I
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Figure 3.1: (a) Nearest neighbor interpolation. (b) Linear interpolation.

adopt the MSSA filter in the form of a coherence pass projection, which acts as a

constraint on D to solve equation 3.4.

3.1.2 The MSSA filter and MSSA reconstruction

Before introducing the I-MSSA algorithm, I briefly describe the MSSA method

following the work of Oropeza and Sacchi (2011). The classical MSSA filter can be

applied directly to regularly sampled data, indicated as D. We remind the reader

that D corresponds to data in the f -x-y domain, D(ω, ξx, ξy). This volume contains

observations regularly distributed on a grid described by equations 3.2 and 3.3.

Therefore, for a given frequency ω, D is a matrix of size Nx ×Ny. As a denoising

tool, the MSSA filter consists of three steps:

1. From the 2D spatial data matrix D at a given frequency ω, form a level-2

Block Hankel matrix H. The Block Hankel matrix of size N1 ×N2 should be

approximately square. A typical strategy is to consider N1 = Lx × Ly and

N2 = Kx ×Ky, where Lx = bNx
2 c+ 1, Kx = Nx − Lx + 1, Ly = bNy

2 c+ 1 and

Ky = Ny − Ly + 1. The symbol bc indicates the integer part of the argument

(Trickett, 2008; Oropeza and Sacchi, 2011). If one denotes the Hankelization

operator by H, then

H(D) = HD .

2. Apply rank reduction to the matrix H(D) to obtain its low-rank approxima-

tion. This operation can be carried out via the Singular Value Decomposition,
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or by efficient strategies based on Lanczos bidiagonalization (Gao et al., 2013),

or randomization techniques for rank reduction (Oropeza and Sacchi, 2011;

Cheng and Sacchi, 2016). By symbolizing the rank reduction operator as R,

the low-rank approximation is given by

Ĥ = RH(D) .

3. Finally, apply block anti-diagonal averaging A to recover the filtered data

D̂ = A Ĥ .

Then, I synthesized the MSSA filter using the three operators above, which, after

concatenation, can be expressed as one projection, P = ARH. Hence, one can

summarize the MSSA filter via the following expression

D̂ =ARHD

=PD . (3.5)

If the data set consists of p plane waves, the rank of the level-2 Hankel matrix is p

(Hua, 1992; Yang and Hua, 1996). In general, random noise and missing observations

increase the rank of H, and rank reduction can be used to re-establish its ideal

rank. Reconstruction of seismic data via MSSA requires the inclusion of a sampling

operator S, which, for the 2D case, is an Nx ×Ny matrix with elements given by

Sij =

1 if grid point i, j is occupied by a trace

0 if grid point i, j is empty .
(3.6)

If the observed data in the regular grid is Dobs, then

Dobs = S ◦D , (3.7)

where the symbol ◦ indicates element-wise multiplication, also known as the Hadamard

product. The MSSA reconstruction method corresponds to the following iteration

Dν = αDobs + (1− αS) ◦ PDν−1 . (3.8)
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The scalar α ∈ (0, 1] is the reinsertion parameter (Oropeza and Sacchi, 2011), ν

denotes iteration number, and 1 is the Nx × Ny all-ones matrix. For data sets

with a high signal-to-noise ratio, we prefer α = 1, which means full reinsertion of

observations into the reconstructed solution. Classical MSSA interpolation assumes

that observed and reconstructed data occupy the same regular grid. In the following

section, I propose I-MSSA, a method for coping with off-the-grid observations.

3.1.3 The I-MSSA via the PGD method

So far, I have described the reconstruction problem as one where one recovers D from

U (equation 3.1). I replace equation 3.1 by U ≈ WD to emphasize the presence of

noise in the observations U. In this case, our goal is to optimize the cost function

that minimizes the difference between the observations U and the modeled data

WD. I also select the l2 error norm to minimize

J = ‖U−WD‖22 . (3.9)

Equation 3.9 cannot be solved because W is non-invertible. Hence, the problem

requires a constraint to guarantee convergence to a solution. For instance, following

Xu et al. (2015), one can assume that the data Hankel matrix H(D) is of low rank.

Equation 3.9 and a low-rank constraint for H(D) can be combined into a regularized

cost function of the form

JR = ‖U−WD‖22 + µ‖H(D)−AB‖22 , (3.10)

where the N1×N2 level-2 Block Hankel matrix of the desired data is approximated

by factors A and B of size N1 × p and p ×N2, respectively. The problem requires

solving for the unknowns A, B, and D simultaneously. In this thesis, we explore

a less complicated algorithm via the application of the Projected Gradient Descent

(PGD) method (Bertsekas, 1996; Iusem, 2003; Cheng and Sacchi, 2016; Bolduc et al.,

2017; Peters et al., 2019). We propose solving

min J subject to D ∈ S , (3.11)

where S is the set of solutions Z, such that H(Z) is low-rank. The Projected

Gradient Descent algorithm can be expressed by an iteration that contains two
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stages. First, a step in the gradient descending direction of J . Then, a projection

onto the set S
Dν = P [ Dν−1 − sν∇J(Dν−1)] , (3.12)

where sν is the step size at iteration ν, and P is the previously described MSSA

filter.

The gradient contains the interaction between off-the-grid data and the data in the

desired regular grid. After replacing ∇J in equation 3.12, we have

Dν = P [ Dν−1 − sνW∗(WDν−1 −U)] . (3.13)

The term WDν−1 − U defines off-the-grid observation error. Next, the adjoint

interpolator W∗ maps the error back to the regular desired grid. The fitting goal

guarantees that the observed trace coordinates are honoured while the MSSA filter

is applied to the reconstructed data at each iteration.

Algorithm 1 shows the final expression for the proposed I-MSSA method. As a

stopping criterion, we consider the normalized Frobenius norm of the gradient of

the cost function J . The algorithm stops when either ‖∇Jν‖/‖∇J1‖ < η or a

maximum number of iterations Max Iter is reached.

Algorithm 1 I-MSSA via Projected Gradient Descent Algorithm

1: Input: U (off-the-grid data), p (rank), η, Max Iter

2: i = 1
3: while ‖∇J i‖/‖∇J1‖ ≤ η and i ≤ Max Iter do
4: Descent direction: ∇J =W∗(WD−U)
5: Step size: s = Backtracking(D,∇J)
6: Update: D = D− s∇J
7: Projection: D = MSSA(D, p)
8: i← i+ 1
9: end while

Backtracking line search

To find the step size in equation 3.13, we used Backtracking Line Search (Nocedal

and Wright, 2006). The algorithm starts with an initial estimation of the step size s0

and iteratively shrinks the step size until satisfying Armijo’s condition (Nocedal and
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Wright, 2006). Other strategies could have been adopted for adaptive line search,

including those discussed by Iusem (2003) and, more recently, by Bolduc et al.

(2017). For our particular application, backtracking was preferred because it leads to

a Projected Gradient Descent algorithm that converges in a few iterations, typically

about 8-10 iterations. Algorithm 2 shows the expression for the backtracking line

search used in I-MSSA.

Algorithm 2 Backtracking

1: Input: s0 > 0 (initial large step), ρ ∈ (0, 1), c ∈ (0, 1/2)
2: s = s0

3: while J(D− s∇J) ≤ J(D)− cs‖∇J‖2 do
4: s← ρs
5: end while
6: si = s

3.2 Examples

3.2.1 Synthetic Examples

To evaluate I-MSSA, we present a series of synthetic examples. We quantify the

quality of the reconstruction via the signal-to-noise ratio of the output, which is

defined as follows

S/No = 10 log10

‖dtrue‖22
‖drec − dtrue‖22

, (3.14)

where ‖ · ‖22 denotes the squared l2 norm of a vector, dtrue is the vectorized ideal

volume without decimation or noise contamination, and drec is the recovered data

after reconstruction. The reader should note that, even though the reconstruction

is calculated in the frequency domain, S/No is calculated in the time-space domain.

We also define the signal-to-noise ratio of the input data via

S/Ni[dB] = 10 log10

‖dtrue‖22
‖dobs − dtrue‖22

, (3.15)

which is also the ratio of the power of the clean signal to the power of the noise.

To add noise to clean synthetic observations, dobs = dtrue + n, we adopt Gaussian

random noise with a variance calculated to yield the desired S/Ni.
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Linear events

The first example considers a 3D volume with two dipping linear events. The initial

grid consists of 25 × 125 grid points separated by 8 m in both x and y directions.

After defining the initial grid, the positions were jittered and randomly decimated,

to produce the observed data coordinates. The output desired grid has a spacing

of 25 m in both x and y directions with a total of 10 × 50 traces. The observed

traces account for 40% of the desired number of output traces. We show the initial

grid, the coordinates of the observations, and the desired grid in Figure 3.2. For the

I-MSSA reconstruction, we consider an ideal rank p = 2. For the convergence of the

reconstruction, we examine the difference between the normalized gradients of two

consecutive iterations. To minimize the number of iterations, we define η = 0.05 for

the bilinear interpolator and η = 0.02 for the windowed sinc interpolator.

The range of frequencies in which we calculate the reconstruction is 1-80 Hz. The

step size was calculated using an inexact line search via backtracking. Heuristically,

we found that the optimal parameters for the backtracking algorithm are c = 0.001,

ρ = 0.8, and the initial large step size s0 = 5. For better analysis, we consider

two interpolators in the I-MSSA algorithm, a bilinear interpolation operator, and a

Kaiser-windowed sinc interpolation operator (See Appendix B for details).

We first consider input data free of random additive noise (S/Ni = ∞). Figure 3.3

displays 3D volumes corresponding to this test. Figure 3.3a shows the observed data

after binning, and Figure 3.3b shows the result of applying conventional MSSA after

binning. Figure 3.3c shows the reconstruction via I-MSSA with bilinear interpola-

tion, and Figure 3.3d depicts the reconstruction via I-MSSA with sinc interpolation.

Finally, Figures 3.3e-3.3g show the residuals between the ideal volume and the recon-

structions in Figure 3.3b-3.3d, respectively. The reconstruction via MSSA, with an

ideal rank equal to 2, results in S/No = 18.5 dB. Conversely, the reconstruction via

I-MSSA with the bilinear interpolation results in S/No = 24.4 dB. The reconstruc-

tion via I-MSSA with the sinc interpolator yields S/No = 38.9 dB. The difference

in S/No between the MSSA and the I-MSSA reconstruction is a direct consequence

of errors introduced by binning in the MSSA method. However, the difference in

reconstruction quality between our two implementations of I-MSSA is related to

the error in the interpolators. In general, for simple examples, the sinc interpola-

tor yields superior results compared to those obtained with the linear interpolator.
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However, as we will see in the following tests, the difference is less significant when

working with examples that depart from an ideal superposition of linear events.

Figure 3.4 shows the 2D slices of the data in Figure 3.3. Figure 3.4a shows the

observed data after binning. Figure 3.4b shows the reconstruction via conventional

MSSA, after binning. Figure 3.4c presents a slice of the volume obtained after I-

MSSA reconstruction implemented with the bilinear interpolation. The results of

I-MSSA with sinc interpolation are in Figure 3.4d. In all cases, we plot every third

trace. Figure 3.4e shows two traces extracted from the MSSA volume. We colored

in red the difference between ideal traces and reconstructed traces. Figures 3.4f and

3.4g show the reconstruction via I-MSSA with bilinear and sinc interpolation. We

also colored in red the difference between these results and the ideal traces.

Finally, in Figure 3.5, we highlight the difference between the ideal volume and

the processed outputs for one trace for the volumes displayed by Figures 3.3a-3.3d,

respectively. In all cases, we plot with dash lines the ideal trace for reference.

In red is the trace obtained after binning. The figure highlights the time shift

introduced by binning. These time shifts affect the input volume that is provided to

the MSSA algorithm. In blue, we also portray the reconstructed trace with MSSA

after binning. MSSA can cope with the time shifts caused by binning but does not

fully compensate for them. In green, we highlight the reconstruction via I-MSSA

with bilinear interpolation. In magenta, the reconstruction via I-MSSA with sinc

interpolation. I-MSSA applies reconstruction directly with input data in their actual

coordinates without having to use binning. Therefore, it does not introduce time

shifts in the input volume, obtaining reconstructed volumes of higher S/No. From

the figures, we conclude that I-MSSA, with either the bilinear interpolator or the

sinc interpolator, yields better results than MSSA.

In our next example, we add Gaussian noise to the volume of linear events with

S/Ni = 1.2 dB. We show reconstruction results obtained via MSSA and I-MSSA in

Figures 3.6 and 3.7. The reconstruction via MSSA, with an ideal rank p = 2, yields

S/No = 13.5 dB. The reconstruction via I-MSSA yields S/No = 15.6 dB with bilinear

interpolation, and S/No = 15.9 dB with sinc interpolation.
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Figure 3.2: Coordinate systems considered in the synthetic examples. (a)
Initial grid. (b) Coordinates of the observations. (c) Desired output grid.
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Figure 3.3: Reconstruction of a randomly decimated volume with linear
events and S/Ni = ∞. (a) Data volume after binning. (b) Result of the
3D MSSA reconstruction. (c) Reconstruction calculated via the I-MSSA
algorithm with bilinear interpolation and (d) sinc interpolation. (e) Resid-
uals between the ideal volume and the reconstructed result in (b) with re-
sulting S/No = 18.5 dB. (f) Residuals between the ideal volume and the
reconstructed volume in (c) with resulting S/No = 24.4 dB. (g) Residuals be-
tween the ideal volume and the reconstructed volume in (d) with resulting
S/No = 38.9 dB.
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Figure 3.4: An x-slice of the volume in Figure 3.3. (a) Binned volume.
(b) Reconstruction via MSSA from the binned volume. The reconstruction
yields S/No = 18.5 dB. (c) Reconstruction via I-MSSA from irregular traces
with bilinear interpolation. The reconstruction yields S/No = 24.4 dB. (d)
Reconstruction via I-MSSA from irregular traces with sinc interpolation.
The reconstruction yields S/No = 38.9 dB. Figures (a) to (d) show one every
third trace for better visualization. Sections (e) to (g) show a detail of the
results in (b) to (d), respectively. Highlighted in red is the difference between
the reconstructed traces and the ideal ones.
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Figure 3.5: One trace from Figures 3.3(a) to (d). In black dashed line is the
ideal trace. (a) In red is the binned trace. This figure shows the time shift
in the traces induced by binning. (b) In blue, the reconstructed trace with
MSSA after binning. MSSA can cope with the time shifts induced by binning
but does not fully compensate for the errors. (c) In green, the reconstruction
via I-MSSA with bilinear interpolation. (d) In magenta, the reconstruction
via I-MSSA with sinc interpolation. I-MSSA considers reconstruction from
the observed traces, without binning. Therefore, it does not include time
shifts in the input volume, obtaining reconstructed volumes with higher S/No.



CHAPTER 3. I-MSSA 48

0.2

0.4

0.6

0.8

T
im

e 
(s

)

10 70 130
X (m)

0
200

400
600

800Y (m)

0.2

0.4

0.6

0.8

T
im

e 
(s

)

10 70 130
X (m)

0
200

400
600

800Y (m)

0.2

0.4

0.6

0.8
T

im
e 

(s
)

10 70 130
X (m)

0
200

400
600

800Y (m)

0.2

0.4

0.6

0.8

T
im

e 
(s

)

10 70 130
X (m)

0
200

400
600

800Y (m)

0.2

0.4

0.6

0.8

T
im

e 
(s

)

10 70 130
X (m)

0
200

400
600

800Y (m)

0.2

0.4

0.6

0.8

T
im

e 
(s

)

10 70 130
X (m)

0
200

400
600

800Y (m)

0.2

0.4

0.6

0.8

T
im

e 
(s

)

10 70 130
X (m)

0
200

400
600

800Y (m)

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.6: Reconstruction of a randomly decimated volume with linear
events and Gaussian noise. S/Ni = 1.2 dB. (a) Data volume after binning.
(b) MSSA reconstruction. (c) Reconstructed volume obtained via the I-
MSSA algorithm with bilinear interpolation, and (d) with sinc interpolation.
(e) Residuals between the ideal volume and reconstructed volume in (b)
with resulting S/No = 13.5 dB. (f) Residuals between the ideal volume and
reconstructed volume in (c) with resulting S/No = 15.6 dB. (g) Residuals
between the ideal volume and reconstructed volume in (d) with resulting
S/No = 15.9 dB.
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Figure 3.7: Reconstruction of a randomly decimated volume with linear
events and Gaussian noise, S/Ni = 1.2 dB. This figure shows x-slices of the
3D volume in Figure 3.6. Figures (a) to (d) show one every third trace.
(a) Binned volume. (b) Reconstruction via MSSA from the binned volume.
The reconstruction yields S/No = 13.5 dB. (c) Reconstruction via I-MSSA
from irregular traces with bilinear interpolation. The reconstruction yields
S/No = 15.6 dB. (d) Reconstruction via I-MSSA from irregular traces with
sinc interpolation. The reconstruction yields S/No = 15.9 dB. (e) to (g) show
a detail of the results in (b) to (d), respectively. Highlighted in red is the
difference between the reconstructed traces and the ideal ones.
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Linear and parabolic events

We also test the method on a synthetic section that contains one dipping linear event

and two parabolic events. We use this example to test the technique in a scenario

slightly less ideal than the previous example. The dip of the parabolic event varies

in space, violating the constant dip assumption made by MSSA. The initial grid

is composed of 25 × 125 grid points. The distance between grid points is 8 m for

both x and y-directions. The grid is decimated and jittered to model the observed

coordinates. The output desired grid presents 10×50 grid points spaced every 25 m

in both x and y-directions. The observed traces represent 40% of the number of

desired traces in the regular output grid. Figure 3.2 shows the initial, observed, and

output coordinates.

The reconstruction via I-MSSA adopts a rank p = 6. The range of frequencies

included in the test is 1-80 Hz. The stopping criteria and step size selection for

I-MSSA is the same used for the example with linear events. We first consider the

case where the input decimated data does not contain additive noise (S/Ni = ∞).

The results for this example are shown in Figure 3.8. Figure 3.8a shows the data

volume after trace binning. Figure 3.8b shows the reconstruction via the MSSA

method, with S/No = 9 dB. Figure 3.8c shows the reconstruction via I-MSSA using

bilinear interpolation. This result yields S/No = 10.38 dB. Figure 3.8d shows the

reconstruction with sinc interpolation, resulting in S/No = 10.9 dB. Figures 3.8e-

3.8g show the respective residuals. Figure 3.9 shows the 2D slices extracted from

the volumes portrayed in Figure 3.8.

Figure 3.10 describes the experiment with added Gaussian noise of S/Ni = 1.2 dB.

Figure 3.10a shows the binned traces. Figure 3.10b shows the traces after apply-

ing conventional MSSA, with a resulting S/No = 5.8 dB. Figure 3.10c shows the

reconstruction via I-MSSA with bilinear interpolation. This result corresponds to

S/No = 7.65 dB. Figure 3.10d shows the reconstruction via I-MSSA with sinc inter-

polation. This result corresponds to S/No = 7.8 dB. Figure 3.10e-3.10g show the

respective residuals. Figure 3.11 shows 2D slices extracted from Figure 3.10.

As expected, the resulting S/No values for these examples are not as favorable as

those obtained for the experiments with linear events. The MSSA method assumes

linear events in the t-x domain, a condition that is not satisfied in this example.

Nevertheless, these experiments show that reconstruction via I-MSSA can also cope
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Figure 3.8: Reconstruction of a randomly decimated volume with a combi-
nation of linear and parabolic events. For this example, S/Ni =∞. (a) Data
volume after binning. (b) Reconstruction with the MSSA method. (c) Re-
construction calculated via I-MSSA with bilinear interpolation and (d) sinc
interpolation. (e) Residuals between the ideal volume and the reconstructed
volume in (b) ( S/No = 9 dB). (f) Residuals between the ideal volume and
the reconstructed volume in (c) (S/No = 10.38 dB). (g) Residuals between
the ideal volume and the reconstructed volume in (d) (S/No = 10.9 dB).
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Figure 3.9: Reconstruction of a randomly decimated volume with linear and
parabolic events. This figure shows x-slices of the 3D visualization in Figure
3.8. Figures (a) to (d) show one every third trace for better visualization.
(a) Binned volume. (b) Reconstruction via MSSA from the binned volume.
The reconstruction yields S/No = 9 dB. (c) Reconstruction via I-MSSA from
irregular traces with bilinear interpolation. The reconstruction yields S/No =
10.38 dB. (d) Reconstruction via I-MSSA from irregular traces with sinc
interpolation. The reconstruction yields S/No = 10.9 dB. Sections (e) to (g)
show a detail of the results in (b) to (d), respectively. Highlighted in red is
the difference between the reconstructed traces and the ideal ones.
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Figure 3.10: Reconstruction of a randomly decimated volume with linear and
parabolic events. The volume includes Gaussian noise with S/Ni = 1.2 dB.
(a) Data volume after binning. (b) Result of 3D MSSA reconstruction. (c)
Reconstruction calculated via I-MSSA with bilinear interpolation, and (d)
sinc interpolation. (e) Residuals between ideal volume and MSSA recon-
structed result in (b). S/No = 5.8 dB. (f) Residuals between ideal volume
and reconstructed result in (c). S/No = 7.65 dB. (g) Residuals between ideal
volume and reconstructed result in (d). S/No = 7.8 dB.

with moderate spatially variant dips.

Convergence of I-MSSA

We analyze the convergence of the proposed algorithm using results obtained from

the four synthetic tests. First, we remind the reader that we have omitted the

temporal frequency ω from our expressions to simplify notation, but it is clear that

the cost J to minimize in equations 9-11 is a function of ω, J(ω). We evaluate the

scalar ρ =
∑

ω ‖∇J(ω)‖2F and display it versus iteration to analyze the convergence

of I-MSSA. Figure 3.12 shows ρk/ρ1 where k is iteration number. We point out that

in our algorithm, the stopping criterion is applied individually to each frequency.

Figure 3.12 shows the global behavior of the gradient for all frequencies to summarize



CHAPTER 3. I-MSSA 54

0 200 400 600 800 1000
Y Coordinate (m)  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m
e 
(s
)  

 

0 200 400 600 800 1000
Y Coordinate (m)  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

   

 

0 200 400 600 800 1000
Y Coordinate (m)  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

   

 

0 200 400 600 800 1000
Y Coordinate (m)  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

   

 

800 820
Y Coordinate (m)

0

0.2

0.4

0.6

Ti
m
e 
(s
)

800 820
Y Coordinate (m)

0

0.2

0.4

0.6

800 820
Y Coordinate (m)

0

0.2

0.4

0.6

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.11: Reconstruction of a randomly decimated volume with linear
and parabolic events, with Gaussian noise of S/Ni = 1.2 dB. This figure
shows x-slices of the 3D visualization in Figure 3.10. Figures (a) to (d)
show one every third trace for better visualization. (a) Binned volume.
(b) Reconstruction via MSSA from the binned volume. The reconstruction
yields S/No = 5.8 dB. (c) Reconstruction via I-MSSA from irregular traces
with bilinear interpolation. The reconstruction yields S/No = 7.65 dB. (d)
Reconstruction via I-MSSA from irregular traces with sinc interpolation.
The reconstruction yields S/No = 7.8 dB. Sections (e) to (g) show a detail
of the results in (b) to (d), respectively. Highlighted in red is the difference
between the reconstructed traces and the ideal ones.
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Figure 3.12: Convergence of the I-MSSA algorithm. This diagram shows
the normalized, averaged over frequency, squared Frobenius norm of the
gradient of the cost function versus iteration. (a) Linear events. (b) Linear
events with Gaussian noise. (c) Linear and parabolic events. (d) Linear and
parabolic events with Gaussian noise.

results in one diagram.

Figure 3.13 shows the quality of the reconstruction given by S/No versus iteration

until convergence. These figures show that the Projected Gradient Descent algo-

rithm with backtracking line-search always converges in fewer iterations than the

MSSA algorithm. Besides, I-MSSA with bilinear interpolation requires about 5-7

iterations until convergence, while windowed-sinc interpolation requires about 8-12

iterations. Then, an interpolator such as I-MSSA that considers reconstruction from

real coordinates, without binning, results in an improved reconstruction of seismic

traces.
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Figure 3.13: Signal-to-noise ratio for MSSA, and I-MSSA considering a bi-
linear interpolation operator and a sinc interpolation operator. 60% of the
traces are decimated. (a) Linear events. (b) Linear events with Gaussian
noise. (c) Linear and parabolic events. (d) Linear and parabolic events with
Gaussian noise.
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Figure 3.14: Survey acquisition geometry. Red dots indicate the location of
the sources. Blue dots represent the location of the receivers.

3.2.2 Field data tests

We considered a 3D onshore seismic data set acquired in the Western Canadian

Sedimentary Basin. The data correspond to an orthogonal survey. Figure 3.14

delineates the acquisition geometry. The red dots represent the sources’ location,

and the blue dots indicate the receivers.

Reconstruction of a shot gather

We extracted a shot gather to test the reconstruction capabilities of I-MSSA. We

randomly decimated 60% of the traces and reconstructed them with the proposed

method. Finally, we compared the data and the reconstructed result.

Figure 3.15 shows the location of the active source and receivers. Figure 3.16a shows
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the distribution of the receiver stations for the shot gather. The mean distance

between receiver lines is 60 m, and the mean distance between receivers in the same

line is 10 m. Figure 3.16b shows the location of traces after decimation, and after

reconstruction in Figure 3.16c. The second row of the image depicts an x-slice of

the corresponding volume. Figure 3.16d shows the observed traces for a central

line, and Figure 3.16e shows the results after the reconstruction with I-MSSA. For

the reconstruction, we considered a rank p = 20. Figure 3.16f depicts the residuals

between the observed data and the reconstruction via I-MSSA.

The residuals in Figure 3.16f show insignificant signal leakage or artifacts. The

I-MSSA method also tolerates events that are not strictly linear. As analyzed in

the synthetic examples, I-MSSA can accommodate slightly curved events without

affecting the final solution.

Reconstruction of cross-spread gathers

We now consider the reconstruction of the orthogonal seismic survey in the CMP

domain. To process the data, we organized the traces in cross-spread gathers. Then,

for each cross-spread gather, we calculated actual CMP locations and reconstructed

the traces via I-MSSA into a regular grid of CMPs. Once all the gathers were recon-

structed, we stacked traces that belong to the same regularized CMP coordinate.

In this workflow, we reconstruct the full wavefield by processing 3D subvolumes

(cross-spreads) of the survey.

Figure 3.17 shows the geometry for one cross-spread gather, and the area in magenta

highlights the CMP coverage for that particular gather. Figure 3.18 shows a diagram

of the proposed workflow.

Our tests compare three possible approaches to the regularization problem. The

first one considers the regularization of the data via binning, without reconstruction.

The second one consists of two steps: binning followed by reconstruction of the data

via classical MSSA. Finally, we show the results obtained via I-MSSA. It is worth

mentioning that the parameters of each algorithm were optimized heuristically to

provide a minimum amount of signal leakage in error panels that we compute for

quality control. Moreover, we point out that the same output grid was used for

MSSA and I-MSSA. The output CMP coordinates correspond to a grid of 5 m in
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Figure 3.15: Geometry for one-shot gather. The magenta rectangle delin-
eates the area of interest. In red, the location of the source, and in blue,
the coordinates of the receivers. Dots in grey represent sources and receivers
that are not considered for the reconstruction.
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Figure 3.16: Reconstruction of a randomly decimated volume of a shot gather
from the Western Canadian Sedimentary Basin. (a) Observed grid. (b) Ran-
domly decimated grid. (c) Output desired grid. (d) Crossline of observed
traces. (e) I-MSSA reconstruction. (f) Residuals between regularized ob-
served traces and I-MSSA reconstruction.
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Figure 3.17: Geometry for one cross-spread. In red, the location of the
sources. Receivers are indicated in blue. Dots in grey represent sources and
receivers that do not belong to this cross-spread. The magenta rectangle
delineates the CMP coverage for this cross-spread.
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Figure 3.18: Workflow for the reconstruction of cross-spread gathers in the
CMP domain. First, we organize the data into cross-spread gathers. Sec-
ond, we define the observed grid as the true CMP locations of the traces.
Third, we apply I-MSSA reconstruction independently for each set of traces
belonging to one cross-spread. The flow yields CMP positions that are dis-
tributed in the regular desired output grid. Finally, we can stack traces with
matching CMP coordinates.
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both x and y-directions. We identify the first and second spatial dimensions with

common midpoint x (CMPx) and common midpoint y (CMPy).”

Figure 3.19 compares CMPx slice number 20 of one cross-spread for the different

methods. Figure 3.19a shows the raw data after binning, without reconstruction.

Figure 3.19b shows the result of binning and reconstructing the volume via MSSA.

Finally, Figure 3.19c shows the corresponding slices after I-MSSA. Figure 3.20 shows

a detail of the previous CMPx sections. Figures 3.20a-3.20c show the observed traces

in red. Figure 3.20a shows the binned data. Figure 3.20b shows the result after

MSSA reconstruction. Figure 3.20c shows the results after I-MSSA reconstruction.

This figure reveals the effect of binning versus reconstruction with interpolation.

The misalignment of events in the binned volume results in a reduced quality of the

reconstruction via MSSA compared to the I-MSSA method.

Figure 3.21 shows sections of the same volume for 5 consecutive slices. The arrow

on top of CMPx number 34 marks the presence of a fault. The discontinuity is

noticeable in the reconstruction obtained via I-MSSA.

Figure 3.22 shows time slices for two different cross-spread gathers. The first row

presents the time slice at t = 0.4 s for cross-spread number 60, and the second row

shows the time slice at t = 0.7 s for cross-spread number 100. Figures 3.22a and

3.22d show the binned data without reconstruction. Figures 3.22b and 3.22e show

the reconstructed data after binning and MSSA. Figures 3.22c and 3.22f show the

result after I-MSSA reconstruction. This figure confirms that the reconstruction

via I-MSSA results in more continuous events that resemble geologically plausible

results. The improved quality of the reconstruction using the I-MSSA algorithm is

particularly evident when analyzing the artifacts in Figure 3.22b and 3.22e. Such

artifacts are a consequence of using the binned volume as an input for the recon-

struction algorithm. On the contrary, they are attenuated in the reconstructed

volume via the I-MSSA method, where the input volume includes traces in their

actual location.

Finally, Figure 3.23 shows a comparison of the amplitude spectrum before and after

reconstruction. Figure 3.23a shows the results for MSSA, and Figure 3.23b shows

the result for I-MSSA. We conclude that both methods reconstruct the data without

introducing significant changes in the amplitude spectrum.

Figure 3.24 shows a crossline of the stacked cube for the binned data, binned data
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Figure 3.19: Reconstructed field seismic data for fixed CMPx= 20 in cross-
spread 60. (a) Binned data, (b) binned data with SSA reconstruction, and
(c) I-MSSA reconstruction.
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Figure 3.20: Detailed analysis of Figure 3.19. (a) Binned data. (b) Recon-
struction via SSA. (c) Reconstruction via I-MSSA. All the figures show the
observed traces in red, for reference. The arrows underline the events that
are most affected by binning.

with MSSA reconstruction, and I-MSSA traces. We point out that the stack of the

data before reconstruction was properly normalized by fold. Although the stacked

volumes obtained via MSSA and I-MSSA are very similar, the improvement in

the prestack volumes could be beneficial for attribute extraction and quantitative

interpretation.

3.3 Discussion

Multichannel Singular Spectrum Analysis is an accurate and flexible reconstruction

algorithm. Nonetheless, it requires regular spatial sampling of the input data. Then,

binning is necessary to accommodate traces to the grid where one carries out the

MSSA reconstruction. Optimal binning in complex data sets could result in errors in

the input volume provided to the reconstruction algorithm. Also, some traces might

be discarded or averaged when more than one trace falls in the same bin. I-MSSA,

on the other hand, uses all the traces with their correct spatial coordinates.

The field examples show the effect of the exclusion of some traces from the recon-



CHAPTER 3. I-MSSA 66

30 31 32 33 34
CMPx Number

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Ti
m
e 
[s
]

CMPy

 

30 31 32 33 34
CMPx Number

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Ti
m
e 
[s
]

CMPy

 

30 31 32 33 34
CMPx Number

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Ti
m
e 
[s
]

CMPy

 

(a)

(b)

(c)

Figure 3.21: Reconstructed field seismic data in cross-spread 60. (a) Binned
data for CMPx 30 to 34. (b) Binned data with MSSA reconstruction. (c)
I-MSSA reconstruction. The arrow indicates the presence of a fault. The
discontinuity is visible in the results obtained via I-MSSA.
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Figure 3.22: Time slices of the reconstructed seismic wavefield. Figures (a),
(b), and (c) are binned data, MSSA reconstruction, and I-MSSA reconstruc-
tion for cross-spread 60 at time 0.4 s, respectively. Figures (d), (e), and
(f) are binned data, MSSA reconstruction, and I-MSSA reconstruction for
cross-spread 100 at time 0.7 s, respectively.
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Figure 3.23: Comparison of amplitude spectrum for the data before and
after reconstruction with (a) MSSA, and (b) I-MSSA algorithms.
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Figure 3.24: Stack for CMPy coordinate 955 to 975 from all cross-spreads.
(a) Binned data, (b) binned with SSA reconstruction, and (c) I-MSSA re-
construction.
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struction process. As I-MSSA considers the complete data set, it delivers recon-

structed volumes with more continuous reflections. This chapter explores recon-

struction in the cross-spread gathers domain. The efficiency of cross-spread gathers

for prestack denoising and reconstruction has already been studied. For instance,

Poole and Herrmann (2007), and Calvert et al. (2008) describe FXY deconvolution

in cross-spread gathers, and Shaw et al. (2007) and Vermeer (1998) analyze 3D f -k

filtering, among other methods for data enhancement. Similar to the conclusions of

the previous authors, we observe that the spatial continuity of events in cross-spread

gathers makes it an excellent domain for reduced-rank filtering and reconstruction

techniques such as I-MSSA.

3.4 Conclusions

This chapter considers a modification of the MSSA algorithm to cope with irregu-

larly sampled (off-the-grid) traces. The MSSA algorithm was initially proposed to

denoise and reconstruct seismic traces organized on regular grids. A typical flow

for MSSA involves applying trace binning to move observed coordinate positions to

gridded positions. This process, usually called binning, is inherent to the MSSA

algorithm that requires forming Hankel or Block Hankel matrices from regularly

sampled data. The modification proposed in my work leads to a new algorithm that

honours observed trace coordinates. We named the algorithm I-MSSA (Interpolated

MSSA). The method minimizes an error function with a constraint given in the form

of a projection. In this chapter, I consider the projection as the MSSA coherence

pass filter. Then, what seemed a complicated optimization problem was reduced to a

simple iterative algorithm where we adopt the Projected Gradient Descent method.

The I-MSSA method can obtain solutions that honour exact data coordinates in a

few iterations (typically eight to ten iterations).

Synthetic examples did not show significant gains in reconstruction quality when we

compared I-MSSA to the conventional MSSA method applied to data after binning.

The latter should not prevent users from adopting I-MSSA for prestack seismic

data reconstruction. I-MSSA avoids constructing intermediate data volumes, of-

ten populated by empty bins, as usually done with classical MSSA reconstruction

and with some Fourier reconstruction methods such as Minimum Weighted Norm

Interpolation.
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When examining the field data experiments, I noticed improvements in prestack

volumes reconstructed via I-MSSA over those reconstructed via MSSA. The time

slices of the individually reconstructed cross-spread gathers highlight these improve-

ments. In the figures, I observed an increased continuity of events and attenuation

of acquisition footprint noise when one adopts I-MSSA. However, I recognize that

poststack volumes obtained by MSSA after binning and I-MSSA are very similar.

The same conclusion is reported in the literature on prestack seismic reconstruction.

Despite achieving slightly notable improvements, I-MSSA via the Projected Gradi-

ent Descent method offers a novel way of posing reduce-rank denoising and recon-

struction in cases where one wants to honour exact data coordinates. I-MSSA also

addresses a pending problem in the literature on MSSA reconstruction, considering

data deployed on irregular locations.



CHAPTER 4

Robust norms in seismic reconstruction

When a traveler reaches a fork in the road,

the l1-norm tells him to take either one way or the other,

but the l2-norm instructs him to head off into the bushes.

John F. Claerbout and Francis Muir

Chapter 3 describes the matrix completion technique as an inverse problem. The

solution is the minimum of an objective function with a low-rank constraint, where

the objective function measures the squared residuals between the model and the

observed data. The approach corresponds to the classical l2 norm criterion inversion.

Such a model results in a convenient mathematical formulation of the problem, which

justifies the widespread use of l2 losses in geophysics.

However, the l2 norm assumes that the measurement uncertainties follow a Gaussian

distribution. In reality, this supposition is only approximately correct, as a small

portion of the observations usually presents atypical deviations from the general

pattern. Unfortunately, the l2 criterion is highly sensitive to the presence of gross

errors, even if they represent a slim percentage of the overall measurements.

Gaussian and erratic noise frequently pervade seismic data. Erratic noise is mainly

present in onshore prestack data originating from misfired shots, poor coupling

between the geophone and the surface, surface activity and others. This chapter

aims to evaluate the impact of high amplitude noise in seismic reconstruction. I

propose a robust alternative to reconstruction via an inverse problem that measures

72
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the misfit with a generalized loss function. The scheme iteratively estimates a robust

approximation and evaluates a projection into the subset of possible solutions via

the SSA filter.

This chapter has the following structure. First, it introduces M-estimators, the

robust analogue of the maximum likelihood method. As a particular example of

an M-estimator, I evaluate a generalized loss function that regulates its shape via

a continuous parameter. The chapter continues with a review of the role of robust

statistics in geophysics. Following, I propose a robust reconstruction approach based

on the SSA filter. The innovation is the inclusion of the generalized loss function

in the misfit. In this implementation, the minimum solution is calculated via the

Projected Gradient Descent method (PGD). Finally, this chapter presents synthetic

and real examples to evaluate the performance of the algorithm.

4.1 M-estimators

The data collected in many fields are contaminated by noise. Therefore, estimating

the signal from the noisy measurements becomes a relevant topic in signal processing

(Zhao et al., 2018). A classic approach to the problem considers the maximum

likelihood method. The method captures the model under which the data has the

highest probability of occurring (Brandt, 2014; Liano, 1996). If the samples have

a normal distribution, their mean returns an optimal estimate of the real value

(Maronna et al., 2019).

In reality, observations usually present outliers, atypical measurements that are well

separated from the bulk of the data (Maronna et al., 2019). Examples of outliers are

interference in radar and sonar systems or impulsive noise in mobile communications

(Zoubir et al., 2012). A set of measurements with outliers results in a distribution

with heavier tails than the ideal normal distribution (Tarantola, 2005; Amundsen,

1991; Claerbout and Muir, 1973; Scales and Gersztenkorn, 1988). In this case, classic

estimates are suboptimal and fail to provide good fits to the data.

One approach to estimating a signal from sets of measurements with outliers is de-

tection and deletion. There are many outlier detection methods, but they might not

be practical for reconstruction purposes (Branham, 1986). In general, it is also true

that for seismic data processing, detection and deletion methods are used, which,
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in general, eliminate a complete seismic trace rather than portions of it. On the

other hand, the work presented in this chapter does not attempt to eliminate whole

traces from processing but to weight them properly during a robust reconstruction

process.

The generalization of maximum likelihood estimates for non-Gaussian distributions

is called M-estimators (Carrillo et al., 2016). M-estimators are defined by the cost

function of an optimization problem

µ̂ = min
µ

∑
ρ (µ, xi) (4.1)

or by the implicit equation ∑
ψ (µ, xi) = 0 , (4.2)

where ψ is the derivative of the loss with respect to the unknown.

The robustness of M-estimators results from down weighting outliers outside a de-

fined interval. Moreover, robust estimators show approximately optimal perfor-

mance under slight perturbations of the model. Popular M-estimators include ob-

jective functions considering the l1 norm (Lee et al., 2006), the l1/l2 norm (Bube

and Langan, 1997), the Geman-McClure error criterion (Geman and McClure, 1985)

and the Huber norm (Carrillo et al., 2016). More recently, Barron (2019) proposed a

general function that includes most typical norms and pseudo-norms. The following

paragraphs introduce the M-estimators mentioned above.

Median estimator

Let us consider a set of observations x = {x1, . . . , xn} of a given property of interest

µ. One can assume that the observations are affected by noise via the linear model

xi = µ+ ui , i = 1, . . . , n , (4.3)

where the noise ui in each observation is independent and identically distributed.

The goal is to calculate an estimated µ̂ of the real value µ from the set of noisy

observations xi. This problem is called the location parameter estimation problem.
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An approach to the problem is to minimize the sum of the squared residuals

µ̂ = min
µ

n∑
i=1

(µ− xi)2 . (4.4)

One equates the partial derivative of the sum with respect to the unknown to zero,

which results in an analytical expression for the estimate

µ̂ =
1

n

n∑
i=1

xi . (4.5)

The estimator µ̂ is the sample mean or the arithmetic average of the data. If the

observations have a normal distribution, the sample mean is the maximum likelihood

estimator. It is clear from the definition that a single observation that is deviated

from the bulk of the data has an unbounded influence on the mean. Then, the

estimate is not robust to outliers.

Instead of minimizing the sum of the squared errors, one could minimize the summed

absolute values

µ̂ = min
µ

n∑
i=1

|µ− xi| . (4.6)

If we set the partial derivative with respect to the unknown to zero, it results in

0 =

n∑
i=1

sgn (µ− xi) . (4.7)

Equation 4.7 defines the median of the samples. It sets µ̂ such that there is an equal

number of observations exceeding and below the estimate. The median represents

the maximum likelihood estimator of samples with a zero-mean Laplacian distribu-

tion. In the presence of an outlier, the median is not affected as much as the mean.

In this sense, this is a robust estimator.

Considering the location parameter estimation problem and the definition of M-

estimators (Equations 4.1 and 4.6), the loss function is ρ(µ − xi) = |µ − xi|, the l1

norm (Lee et al., 2006). Its derivative, the ψ function, is ψ(µ− xi) = sgn (µ− xi).
In the linear regression context, this solution is called the least-absolute deviation

(LAD). The estimator is convex, piece-wise continuous, and non-differentiable in

the origin. Then, it cannot be used by methods that require derivatives.
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lp estimator

The lp function represents a family of estimators that include the mean and the

median. Consider the set of observations x = {x1, . . . , xn}. The estimator µ̂ is the

minimum of the objective function

µ̂ = min
µ

n∑
i=1

1

σpi
|µ− xi|p , (4.8)

where σ is a scale parameter, and p > 0 controls the shape of the modelled dis-

tribution. When p = 2, the lp estimator yields the weighted mean for a Gaussian

distribution. Conversely, p = 1 results in the weighted median estimator, or l1 norm.

If 0 < p < 1, the model assumes very impulsive samples (Carrillo et al., 2016).

Note that, if p > 1, the lp norm is convex and continuous everywhere. If p = 1, the

function is piece-wise continuous but remains convex. When 0 < p < 1, the norm is

piece-wise continuous and non-convex.

The lp estimator represents the maximum likelihood estimator of samples with zero-

centred generalized Gaussian distributions and provides particularly robust estima-

tions for impulsive noise applications. The lower the value of p, the more heavy-tailed

is the distribution.

Myriad estimator

Let us now assume that the samples present a Cauchy distribution. If we consider

the maximum likelihood method, it estimates the property of interest as

µ̂ = min
µ̂

n∑
i=1

log[σ2 + (µ− xi)2] . (4.9)

The equation defines the Least Lorentzian Squares criterion, and the solution is

the myriad estimator. The scale parameter σ defines the robustness properties

of the Lorentzian norm. The Lorentzian norm behaves as an l2 cost function for

variations that are small compared to 1/σ. The function is convex in the interval

−1/σ ≤ xi ≤ 1/σ and log-concave outside it. Further, the function is everywhere

continuous and differentiable.
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Huber estimator

M-estimates are defined by Equation 4.1 and do not necessarily represent a given

distribution (Maronna et al., 2019). For example, the Huber estimator (Bube and

Langan, 1997) combines the l2 and l1 norm in the cost function. Considering the

definition of M-estimators, one can set ρ to the Huber’s function

ρ (c, x) =

{
1/2x2; |x| ≤ c
c|x| − 1/2c2; |x| > c .

(4.10)

The Huber function is piece-wise continuous, convex, and differentiable. The tun-

ning constant c modifies the degree of robustness of the estimator. Huber’s function

provides strong theoretical guarantees for the convergence of optimization problems.

As a result, it is the most popular norm in robust statistics.

From Huber’s function, one obtains the Huber estimator as

ψ (c, x) =

{
x ; |x| ≤ c
c sgn(x) ; |x| > c .

(4.11)

The M-estimators in the limit cases when c→∞ and c→ 0 are the mean and the

median.

Bi-square estimator

A different set of robust functions includes those with non-monotonic ψ functions.

In this case, the loss function increases more slowly than Huber’s function for large

deviations. The bi-weight family of functions proposed by Beaton and Tukey (1974)

is an example of such estimators

ρ (c, x) =

{
1/6c2

{
1− [1− (x/c)2]3

}
; |x| ≤ c

1 ; |x| > c ,
(4.12)

where c is a tuning constant. The derivative of the loss function is

ψ(c, x) =

 x
[
1−

(
x
c

)2]2
; |x| ≤ c

0 ; |x| > c .
(4.13)
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Note that ψ is everywhere differentiable and vanishes outside [−c, c]. Those M-

estimators with ψ functions that tend to zero at infinity are called redescending

estimators (Maronna et al., 2019). Redescending M-estimators offer an increase in

robustness toward large outliers as they completely reject their effect on the estima-

tor and fit the clean measurements. Other examples of redescending estimators are

the Geman-McClure and the Welsch criterion.

A generalized M-estimator

It is common practice in robust statistics to interchange M-estimators when design-

ing a model. Even though the characteristic provides flexibility to the approach,

tunning specific parameters and evaluating convergence requires time and exper-

tise. To overcome the hassle, Barron (2019) introduces a generalized M-estimator

that encompasses most features of traditional robust estimators. The generalized

objective function controls the robustness of the solution via a shaping parameter

α ∈ R. The loss function emerges from the generalized Charbonnier loss (Sun et al.,

2010; Barron, 2019). For practical implementations, the generalized loss function is

ρ (x, α, c) =
b

d

((xc )2
b

+ 1

)(d/2)

− 1

 , (4.14)

where b = |α − 2| + ε, d =

{
α+ ε α ≥ 0

α− ε α < 0
, ε = 10−5 is a small scalar to

avoid singularities, and c > 0 is a scale parameter that controls the size of the

loss quadratic bowl near x = 0. The inclusion of parameters b and d circumvents

singularities and indeterminations.

In equation 4.14, when α = 2, ρ→ l2, which results in a non-robust estimator. For

α = 1, the loss is a smoothed form of Huber estimator, typically known as l1/l2

or pseudo-Huber norm. If α = 0, equation 4.14 approximates Cauchy estimator.

Setting α = −2 results in the Geman-McClure estimator (Geman and McClure,

1985). In the limit, when α →-∞, the generalized norm approximates the Welsch

estimator (Dennis Jr and Welsch, 1978). Table 4.1 presents the correspondence

between traditional misfit criteria and the generalized measure of misfit for selected

values of α.
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Shape Parameter α Criterion ρ(v = x/c)

2 l2
1
2 |v|

2

1 l1/l2
√

1 + |v|2 − 1

0 Cauchy ln
(
1 + 1

2 |v|
2
)

-2 Geman-McClure 2|v|2/
(
|v|2 + 4

)
→-∞ Welsch 1− exp

(
−1

2 |v|
2
)

Table 4.1: Identification of typical misfit criteria with the generalized loss
function, for selected values of α.
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Figure 4.1: Robust metrics for several values of α. (a) Functional ρ . (b)
Influence function.
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Figure 4.1a shows the objective function for different values of α, revealing the

nature of the robustness of M-estimators. The l2 norm assigns the highest values to

the most significant deviations. In other words, the cost function increases its value

faster when x→∞. Conversely, robust estimators down weight the assignments to

higher deviations.

Figure 4.1b depicts gradients or influence functions, which enable a possible classi-

fication of norms (Holland and Welsch, 1977). The influence function of the non-

robust l2 norm (α = 2) is linear, increasing the influence of outliers on the results.

As α decreases in equation 4.14, the effect of significant residuals on the gradient

also decreases. If α = 1, all outliers have the same weight, and the gradient is mono-

tonic. Norms with monotonic influence functions are the l1 norm, the hybrid l1/l2

norm, and the Huber norm. If α < 1, the influence function decreases as the resid-

uals increase. The effect of the outliers on the solution diminishes as its magnitude

increases. These norms lead to redescending estimators. If the influence function

is asymptotic to zero for atypical errors, the norm is a soft redescending function.

Examples of these functions are the Cauchy norm and the Geman-McClure func-

tion. Finally, if the influence function is equal to zero for sufficiently large outliers,

then the function is a hard redescending estimator. A popular hard redescending

function in geophysics is the bi-weight norm (Beaton and Tukey, 1974).

The following sections describe the contribution of robust statistics in geophysics

and present a robust seismic reconstruction method.

4.2 Robust statistics and its geophysical applications

Seismic traces are composed of reflection information contaminated by noise. Figure

4.2 presents an analysis of the density distribution of the samples corresponding to

two noisy synthetic gathers. Figure 4.2a considers random noise with a signal-to-

noise ratio of 1 dB. Plotted in red is the probability density function of a Gaussian

or normal distribution. From the figure, one can conclude that the random compo-

nent of the noise follows a Gaussian distribution. Figure 4.2b shows the histogram

of traces affected by random and erratic noise. The histogram follows a heavier-

tailed distribution than the Gaussian one, plotted in red. Surveys with heavy tail

distributions require robust estimators.
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Figure 4.2: Density distribution of errors. (a) Random errors fit a Gaussian
distribution. (b) Random and erratic errors cannnot fit the model due to
the heavier tail of the samples.

In seismic data processing, many algorithms rely on the least-squares inversion to

improve subsurface imaging. As seismic data usually presents erratic components,

the least-squares approach is not optimal. Claerbout and Muir (1973) introduce the

theory of robust inversion to seismic data. The authors discuss the design of predic-

tive deconvolution filters for the denoising of multiples. In this context, the multiples

represent the predictable component, and the primaries are the unpredictable com-

ponent of the signal. Predictive deconvolution can separate the predictable compo-

nent from the reflection series. By considering an absolute value criterion instead of

the classic least-squares, the result is less affected by the unpredictable signal, and

the primary reflections stand out. Taylor et al. (1979) study wavelet estimation via

deconvolution. Their work considers an l1 norm that reduces the shortcoming of the

least-squares method. The method was later generalized to the lp norms (Debeye

and Van Riel, 1990; Gholami and Sacchi, 2012). However, it is important to stress

that Taylor et al. (1979) and Debeye and Van Riel (1990) were specifically concerned

with the retrieval of sparse models and not with robust inversion. The problem of

retrieval of sparse models and robust estimation have strong commonalities because,

in both cases, the resulting model or resulting residuals are sparse.

Travel-time tomography aims to reconstruct a velocity model of the subsurface from

observed reflection travel times. It has critical applications in geophysics, but it

is a computationally intensive inverse problem. Scales and Gersztenkorn (1988)

frame the problem within the robust inverse theory and consider a solution via
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conjugate gradients and Iteratively Reweighted Least Squares (IRLS). Bube and

Langan (1997) adopt an l1/l2 norm, which is computationally more tractable than

the l1 norm.

In the velocity analysis problem, Guitton and Symes (2003) estimate the veloc-

ity model parameters from the common midpoint gathers contaminated with non-

Gaussian noise. The authors use the Huber norm combined with the L-BFGS al-

gorithm, a quasi-Newton optimizer, to solve the inverse problem. Ji (2006) solves

the robust inverse problem via a modified conjugate gradient method that incor-

porates weights to guide the gradient vector at each iteration. Ji (2012) includes a

redescending M-estimator to the problem. The solution is obtained via IRLS with

conjugate gradients.

A relatively new application to robust inversion is the Full Waveform Inversion

(FWI) problem, a data-fitting procedure based on full-wavefield modelling. The

main application of FWI is in calculating velocity models of the subsurface (Virieux

and Operto, 2009). Crase et al. (1990) compare the inversion results with three

robust norms, the l1, the myriad norm, and the hyperbolic secant criterion. The

authors use a preconditioned steepest descent to solve the linearized inverse problem.

Brossier et al. (2010) report experiments with l1, Huber, and l1/l2 norms.

In simultaneous-source data separation (also called the deblending problem), seismic

data acquired with simultaneous sources Ibrahim and Sacchi (2014) can be separated

via robust estimation of Radon coefficients. Radon algorithms for this purpose are

based on the l1 error loss and l1 to promote sparsity of coefficients. In a similar

vein, Lin and Sacchi (2020) apply the steepest descent method with a coherence

pass operator defined by the robust Radon transform to obtain deblended, denoised

data. Bahia et al. (2020) consider a robust Fourier thresholding method by imposing

sparsity in the transform that describes the data and robustness on the misfit term.

Classical denoising and reconstruction algorithms cannot handle erratic noise. Trick-

ett et al. (2012) were the first to acknowledge the effects of spatially erratic noise on

rank-reduction filters. Chen and Sacchi (2015) present a denoising algorithm based

on an objective function that minimizes the residuals between the observed data and

an ideal low-rank matrix. The misfit follows Tukey’s bi-weight norm. Sternfels et al.

(2015) discuss a joint low-rank and sparse inversion convex optimization problem.

In this approach, the low-rank data is separated from the sparse erratic noise via

the joint minimization of a nuclear norm term and an l1-norm term, constrained
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by the fit to the incomplete data. The problem is solved via ADMM. Cheng et al.

(2015) and Li et al. (2019) solve the denoising problem via robust principal compo-

nent analysis. Robust projection filters have also been proposed (Chen and Sacchi,

2017).

Robust methods play an essential role not only in the solution of geophysical inverse

problems and in data preconditioning techniques. In both cases, the main goal is to

minimize the influence of erratic noise on the resolution of an inverse problem or in

the solution of denoising and data reconstruction problem.

4.3 Robust rank-reduction reconstruction

This chapter aims to estimate a complete, denoised seismic array D(t,m, n) ,m =

1 . . . , Nx , n = 1 . . . , Ny from an incomplete set of observations, U(t,m, n). The

observed and ideal data are sampled in the same grid to simplify the problem.

The examples consider a 3D dataset, but the algorithm is easily adapted to higher

dimensions. The method approximates a solution by optimizing the cost function

that minimizes the difference between the data and the ideal traces

J = ‖U− SD‖ρ , (4.15)

where S, the sampling operator, equals 1 if the sample was observed and 0 otherwise.

I omitted indices to declutter notation. As I consider an adaptive approach, ‖ · ‖ρ
represents a proper norm for the corresponding dataset. To guarantee convergence,

I constraint the results. Hence, the problem is

min J, subject to ∀ω : Zω ∈ T , (4.16)

where T = {Zω : rank(H[Zω]) = kω}. In the equation, H is the Hankelization

operator applied to each frequency slice of Z and kω is the corresponding ideal rank.

Minimization of Equation 4.16 results in the following iterative algorithm

Z = Dν−1 − sνW
(
U− SDν−1

)
Dν = P[Z] , (4.17)

where P = F−1ARHF represents the Singular Spectrum Analysis (SSA) filter
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applied independently to each frequency slice, R is the rank reduction operator, and

A is the operator that averages along anti-diagonals (Oropeza and Sacchi, 2011).

Finally, W is a diagonal matrix of weights

w(x, α, c) =

(
|x/c|2

b
+ 1

)(d/2−1)

,

where b and d are determined by the selection of α (Equation 4.14).

Hence, the gradient of the objective function ∇J considers a matrix of weights

that depends on the error. Such a matrix down weights atypical samples from the

optimization with a level of rejection controlled by the parameter α.

Algorithm 3 shows the proposed robust reconstruction algorithm. I initialize the

algorithm with the l2 solution. As a stopping criterion, I consider the normalized

Frobenius norm of the gradient of the cost function J. The algorithm stops when

either ‖∇Jν‖/‖∇J1‖ < η or a maximum number of iterations Max Iter is reached.

To find the step size in equation 4.17, I used an inexact Backtracking Line Search

(Nocedal and Wright, 2006).

Algorithm 3 Robust seismic reconstruction via Projected Gradients

1: Input: u (observed data), p (rank), η, Max Iter

2: i = 1
3: while ‖∇J i‖/‖∇J1‖ ≤ η and i ≤ Max Iter do
4: Descent direction: ∇Jρ(ρ,D,U) = W (SD−U)
5: Step size: s = Backtracking(D,∇J)
6: Update: Z = D− s∇J
7: Projection: D = MSSA(Z, p)
8: i← i+ 1
9: end while

4.4 Examples

4.4.1 Synthetic examples

The synthetic examples consider a 3D volume with two linear events and high am-

plitude noise modelled as a Gaussian mixture. A mixture model considers samples
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from partitioned populations, where each subpopulation has a particular probability

density (Brandt, 1998).

The S/Ni quantifies the noise in the input as

S/Ni =
‖dtrue‖22
σ2
N

, (4.18)

where dtrue represents the clean signal, and σ2
N is the variance of the Gaussian

mixture. Considering 0 mean subpopulations, the variance of the Gaussian mixture

equals

σ2
N =

N∑
i=1

pi ∗ σ2
i , (4.19)

where N is the number of subpopulations, pi is the probability of occurrence of a

sample of the i-th subpopulation, and σ2
i is the variance of the i-th subpopulation.

This section presents two synthetic tests. The first test considers erratic noise ran-

domly distributed in the volume. The erratic noise is a Gaussian mixture com-

posed of two subpopulations with 0 mean. The first subpopulation has a dispersion

σ1 = 0.01 and a percentage of occurrence in the range p1 = [0.95 : 0.75]. For

the second subpopulation, σ2 varies from 1 to 8. Following, I decimate 10% of the

traces to examine denoising and reconstruction simultaneously. The ideal rank for

the example is 3, and the step size s is approximated via the backtracking algo-

rithm (Nocedal and Wright, 2006). The output signal-to-noise ratio quantifies the

reconstruction quality of the method

S/No[dB] = 10 ∗ log10

‖dtrue‖22
‖drec − dtrue‖22

(4.20)

where drec represents the recovered data.

Figure 4.3 presents the results of the test. Figure 4.3a evaluates the reconstruction

with α = 1. The reconstruction was acceptable for a low percentage of erratic noise,

with values of S/No above 10 dB. However, when the erratic noise was more fre-

quent or presented higher amplitudes, the monotonic norm did not impose proper

weights on the outliers. Figure 4.3b shows the result for α →-∞. The redescend-

ing property of the influence function allowed for improved overall reconstruction.

Figure 4.4 shows a x-slice of the studied volumes. Figure 4.4a shows the input data

contaminated with high amplitude noise. In this case, σ2 = 2 with 15% of erratic
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Figure 4.3: S/No for a seismic volume affected with erratic noise. (a) Re-
construction with α = 1. The robust norm results in proper reconstruction
only for moderate erratic noise. (b) Reconstruction with α →-∞. A re-
descending norm results in improved reconstruction for increased presence
of high-amplitude erratic noise.

samples. Figure 4.4b shows a slice of the ideal volume. Figures 4.4c and 4.4e show

the results for α = 1 and α→-∞, respectively. Finally, Figures 4.4d and 4.4f show

the residuals between the ideal output traces and the reconstructed volume. As

expected, the redescending norm results in overall improved reconstruction quality.

The following analysis considers the effect of the parameter α in the reconstruction.

The test utilizes the same seismic volume as before, but with 25% of erratic samples.

Figure 4.5 shows the S/No as a function of parameter α. From the results, I conclude

that the redescending influence functions improve the reconstruction capabilities in

the presence of high amplitude noise.

The second test considers the presence of a percentage of erratic traces. The erratic

noise presents σ1 = 0.1 and σ2 between 1 and 10. We modelled cases with a range

of 10% to 80% of noisy traces. Besides, background noise affected all the traces

with a S/Ni = 1.2 dB and 10% of traces were decimated. Figure 4.6 presents the

results of the reconstruction. As in the previous tests, α = 1 results in proper

reconstruction when the erratic noise is moderate. For traces with high amplitude

noise, the algorithm required a redescending norm to obtain accurate results. I

conclude that if more than 30% of traces are affected by high amplitude noise, the

algorithm requires robust redescending norms for proper reconstruction.
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Figure 4.4: X-section of a 3D volume. (a) Input data with erratic noise. (b)
Ideal output traces. (c) Reconstruction with α = 1. (d) Residuals between
ideal output and reconstruction. (e) Reconstruction with α→-∞. (f) Error
between ideal output and reconstruction.
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Figure 4.5: Reconstruction of a seismic volume with erratic noise with flex-
ible selection of robustness. The parameter α determines the shape of the
influence function, and therefore, its robustness to high amplitude errors.
α = 2 represents a non-robust solution. Decreasing values of α result in
increasingly redescending robust norms.
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Figure 4.6: S/No for a seismic volume with traces with erratic traces. (a) Re-
construction with α = 1. The robust norm results in proper reconstruction
only for a moderate number of erratic traces. (b) Reconstruction with α→-
∞. A redescending norm results in improved reconstruction for increased
presence of erratic traces.

Figure 4.7 shows a x-slice of the studied volumes. Figure 4.7a presents the input

data contaminated with high amplitude noise, with σ2 = 9 and 10% of erratic

traces. Figure 4.7b shows a slice of the ideal volume. Figures 4.7c and 4.7d show

the results for α = 1 and α→-∞, respectively. Finally, Figures 4.7d and 4.7f show

the residuals between the ideal output traces and the reconstructed volume. As

expected, the redescending norm results in overall improved reconstruction quality.

4.4.2 Field data tests

The field test considers a 3D onshore data set from a heavy-oil field in the Western

Canadian Sedimentary Basin. Sources and receivers correspond to an orthogonal

survey. The data is NMO corrected and low-pass filtered. A filter was applied to

remove high-frequency noise caused by field operations. I extract one cross-spread

gather and add 10% of erratic traces. The reconstruct is on the CMP domain.

Figure 4.8 presents the results. Figure 4.8a shows the data contaminated by high-

amplitude noise. Figure 4.8b presents the non-robust reconstruction result. This

panel shows that a robust loss function is required to reconstruct the data. Figures

4.8c and 4.8d show the robust reconstruction with α = 1 and α =-1000, respectively.

As the percentage of erratic traces is moderate, both results are acceptable.
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Figure 4.7: X-section of a 3D volume. (a) Input data with erratic traces. (b)
Ideal output traces. (c) Reconstruction with α = 1. (d) Residuals between
ideal output and reconstruction. (e) Reconstruction with α→-∞. (f) Error
between ideal output and reconstruction.
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(d)

Figure 4.8: Reconstruction of a cross-spread gather. (a) Input data with
erratic traces. (b) Non-robust reconstruction (c) Robust reconstruction with
α = 1. (d) Robust reconstruction with α→-∞.

4.5 Conclusions

This chapter introduces a robust algorithm for the reconstruction of seismic volumes

via MSSA. The objective function of the problem is minimized via the Projected

Gradient method. The misfit measures the discrepancy between the recorded data

and the model via a generalized cost function controlled by one parameter, α. For

α = 2, the loss function reduces to the non-robust l2 norm. Conversely, for α = 1,

the cost function is equivalent to a robust l1/l2 norm. Additionally, redescending

estimators are attained for α→-∞.

The proposed robust MSSA was tested with synthetic and a field example. The S/No

quantified the quality reconstruction of the results. I conclude that a robust loss

function is required for a reliable reconstruction of the data. For an increased pres-

ence of outliers, a redescending estimator (α →-∞) provides better reconstruction

results.



CHAPTER 5

Robust Parallel Matrix Factorization

Multidimensional seismic data reconstruction has emerged as a primary topic of

research in seismic data processing. Although there exists a large number of al-

gorithms for multidimensional seismic data reconstruction, they often adopt the l2

norm to measure the discrepancy between observed and reconstructed data. Strictly

speaking, these algorithms assume well-behaved noise that ideally follows a Gaussian

distribution. When erratic noise contaminates the seismic traces, a 5D reconstruc-

tion must adopt a robust criterion to measure the difference between observed and

reconstructed data.

The goal is to propose a robust tensor-completion method for the reconstruction of

5D seismic volumes and to evaluate its output via synthetic and field-data exam-

ples. I adopt robust measures of misfit to minimize the influence of erratic noise

on the reconstructed seismic volume. The main contribution is the addition of a

robust misfit function into the Parallel Matrix Factorization (PMF) algorithm (Xu

et al., 2015), an SVD-free tensor-completion technique for seismic-data reconstruc-

tion. Previous research in the area adopted a nonrobust PMF formulation based

on a l2 measure of fit (Gao et al., 2015, 2017). I also introduce the randomized

QR decomposition in the rank-reduction stage of the PMF algorithm (Halko et al.,

2011). The randomized QR decomposition simplifies parameter selection (rank) in

the PMF algorithm (Chiron et al., 2014; Cheng and Sacchi, 2016).

This chapter is organized as follows. First, it provides a brief overview of the notation

and definitions that are used throughout the article. Then, it formulates nonrobust

91
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and robust PMF tensor-reconstruction methods. Finally, it presents synthetic and

field data examples.

5.1 Method

5.1.1 Prestack seismic volumes are tensors

I consider seismic data in the receiver-source domain. I denote the source coordinates

by (sx, sy). Similarly, I denote the receiver coordinates by (gx, gy). Data acquired

via a 3D seismic acquisition layout is often reorganized in offset-midpoint space

using the transform

mx =
sx + gx

2
, my =

sy + gy
2

hx =
sx − gx

2
, hy =

sy − gy
2

h =
√
h2
x + h2

y , φ = arctan(
hx
hy

) ,

where (mx,my) indicates the inline and crossline midpoint coordinate. The variables

h and φ denote absolute offset (or offset) and azimuth (in radians), respectively.

Similarly, inline and crossline offset are denoted by hx and hy, respectively. The

data tensor is assembled by the following process. First, I read a seismic trace, and

transform it to the frequency domain via the Fourier transform: d(t,mx,my, h, φ)↔
D(ω,mx,my, h, φ). In this sense, I eliminate the time dependency obtaining, for one

temporal frequency ω, a seismic volume that depends on four spatial coordinates. I

also define the 4D desired acquisition geometry on a regular grid as follows

m′x = mmin
x + ∆x (i1 − 1) , i1 = 1, . . . , I1 ,

m′y = mmin
y + ∆y (i2 − 1) , i2 = 1, . . . , I2 ,

h′ = hmin + ∆h (i3 − 1) , i3 = 1, . . . , I3 ,

φ′ = φmin + ∆φ (i4 − 1) , i4 = 1, . . . , I4 ,

where the coordinates (m′x,m
′
y, h
′, φ′) have indexes (i1, i2, i3, i4) associated to them.

The number of midpoints in the inline and crossline directions are I1 and I2, re-

spectively. Similarly, the number of offsets and azimuths are given by I3 and
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I4, respectively. Then, I assign the seismic trace to the closest bin with centre

(m′x,m
′
y, h
′, φ′) and indices (i1, i2, i3, i4). I continue reading traces to form the ten-

sor D(ω)i1,i2,i3,i4 ← D(ω,mx,my, h, φ). After this process, often referred as binning,

the final tensor of observations will contain empty grid points. In the situation

that more than one trace lands on a given bin, I use simple averaging to assign one

observation per bin. Finally, the tensor-reconstruction algorithm is applied to all

frequencies ω ∈ [ωmin, ωmax]. In other words, the regularization algorithm operates

on 4D volumes represented by 4th-order tensors. To gain notational simplicity, I

drop the dependency on frequency in the notation. Hence, for the remaining of the

article, D(ω)i1,i2,i3,i4 ≡ Di1,i2,i3,i4 . Finally, the reconstructed data are transformed

back to the time domain. I remind the reader that the proper frequency-domain

symmetry must be enforced before such transformation.

As a reminder, for each frequency, the regular data tensor D can be unfolded in 4

matrices or modes. The matrices Dk, k = 1, . . . , 4 obtained from the ideal noise-

free and fully sampled tensor D are assumed low-rank. In this context, pk refers to

the rank of the kth unfolding, Dk.Then, the tensor rank is defined via the vector

(p1, p2, p3, p4).

Finally, a few words concerning the jargon used in the field of seismic-data recon-

struction are in order. We adopt the name 5D reconstruction for the regularization

of data that depend on four spatial coordinates and time (Liu et al., 2004; Trad,

2008). In other words, the input patch of data to reconstruct is a 5D volume.

However, when the reconstruction is conducted in the frequency-space domain, the

regularization algorithm operates on 4D volumes that are represented by 4th-order

tensors.

5.1.2 Tensor reconstruction with the l2-norm (Frobenius) misfit

function: Nonrobust PMF method

The examples focus on 5D seismic-data reconstruction, where the completion algo-

rithm is applied to 4th-order tensors in the frequency-space domain. However, the

analysis is provided for the general case of tensors of order N . I adopt the following

linear model to represent the observed data:

P ◦ Z ≈ D, (5.1)
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where ◦ is the Hadamard’s or element-wise product. The Nth-order tensor Z repre-

sents the desired complete data volume. The sampling operator P is an Nth-order

tensor with entries given as follows:

Pi1,i2,i3,...iN =

{
0 if bin i1, i2, i3, . . . iN is empty

1 otherwise .
(5.2)

Therefore, the problem as a linear system of equations where the goal is to estimate

Z, the complete data volume, from D.

Furthermore, I assume Gaussian noise to model the mismatch in expression 5.1.

Therefore, to solve for Z, one needs to minimize the squared Frobenius norm of

the error ‖E‖2F = ‖P ◦ Z − D‖2F with respect to the unknown tensor Z. The prob-

lem is underdetermined, there is an infinite number of solutions that can equally

fit the data. The solution of the aforementioned problem requires a regularization

constraint. In the PMF method, the regularization term is given by a low-rank

constraint. I assume that the unfolded tensors Z(k) = unfold(k){Z} can be approx-

imated by low-rank matrices (Xu et al., 2015; Gao et al., 2015). The retrieval of Z
from D is then posed as a constrained minimization problem where the goal is to

minimize the cost function

J = JM + µJR

=
1

σ2
‖P ◦ Z − D‖2F + µ

N∑
k=1

‖fold(k){Ẑ(k)} − Z‖2F (5.3a)

=
1

σ2
‖P ◦ Z − D‖2F + µ

N∑
k=1

‖Ẑ(k) − unfold(k){Z}‖2F . (5.3b)

The term JM is the misfit function. The scalar σ2 is the variance of the noise. The

second term of the objective function, JR, is the regularization term. The matrices

Ẑ(k) denote the rank pk approximation of the k-mode Z(k) = unfold(k){Z}. The

scalar µ > 0, the trade-off parameter, controls the relative strength of the misfit

term versus the low-rank regularization term. I have also written the regularization

term in two equivalent expressions (equations 5.3a and 5.3b). The latter facilitates

the derivation of the PMF algorithm.

The cost function contains N + 1 unknowns: Z and Ẑk, k = 1, . . . , N . I pose the

estimation of Z from D via an alternating minimization algorithm. I first solve for
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Z considering known matrices Ẑk, k = 1, . . . N . The minimum of J is found by

solving
∂J

∂Z∗
= 0 , (5.4)

where I have adopted complex differentiation to carry out the derivates of the cost

function J with respect to unknowns (Brandwood, 1983; Chen and Sacchi, 2015)

and obtained

Z = (I − αP) ◦ C + αD , (5.5)

where I is an Nth-order tensor with all elements equal to one. The tensor C is given

by

C =
1

N

N∑
k=1

fold(k){Ẑ(k)} , (5.6)

and α is a parameter given by α = 1
1+Nµσ2 . It is evident that the problem is

nonlinear because equations 5.5 and 5.6 are coupled. In other words, the tensor C
depends on low-rank matrices that are computed from the unknown Z.

One also needs to solve for the unknown matrices Ẑk by considering Z known. The

matrices Ẑk, k = 1, . . . , N that minimize equation 5.3b are estimated by invoking

the Eckart-Young-Mirsky theorem (Eckart and Young, 1936; Mirsky, 1960). In other

words, Ẑk is the low-rank approximation of the matrix unfold(k){Z}. The latter

could be computed via the Singular Value Decomposition (Eckart and Young, 1936)

or by any rank-reduction algorithm capable of approximating (in the Frobenius

sense) a matrix by one of lower rank. The rank-reduction stage of the algorithm

adopts a randomized QR decomposition (Halko et al., 2011; Chiron et al., 2014;

Cheng and Sacchi, 2015, 2016). One can show that the random projection adopted

by the randomized QR decomposition provides less tight bounds on the recovery of

the original array than SVD (Liberty et al., 2007; Halko et al., 2011). Further detail

on randomized QR decomposition is given in Appendix C.

Algorithm 1 summarizes the nonrobust PMF method where Rank Reduction is a

user-supplied function to perform the reduced-rank approximation.

5.1.3 Robust PMF method

The preceding section showed the derivation of the PMF tensor-completion iterative

algorithm with the l2 misfit function. The l2 misfit norm of the error tensor is
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Algorithm 4 Low-Rank tensor completion with l2 misfit

1: Input: D,P, µ, σ2, pk,maxiter, tol
2: i = 1,Z i = D, α = 1

1+Nµσ2

3: while ‖Z i+1 −Z i‖2F / ‖Z i‖2F ≤ tol & i ≤ maxiter do
4: for k = 1 : N do
5: Zi(k) = unfold(k){Z i}
6: Ẑi(k) = Rank Reduction{Zi(k), pk}
7: end for
8: Ci = 1

N

∑N
k=1 fold(k){Ẑi(k)}

9: Z i+1 = (I − αP) ◦ Ci + αD
10: i← i+ 1
11: end while

nonrobust. This section redefines the misfit by adopting a robust misfit function. I

consider the l1/l2 norm, a differentiable approximation to the well-known l1 norm.

The l1/l2 misfit function (Bube and Langan, 1997; Lee et al., 2006) is

JM =
∑

i1,i2,...,iN

ρ(Ei1,i2,...,iN )

=
∑

i1,i2,...,iN

√
1 + |Ei1,i2,...,iN |2/σ2 , (5.7)

where it is easy to see that ρ(x) ≈ |x| when σ is small. The scalar σ2 is now the

scale parameter associated with the distribution that induces the measure of the

misfit. If we replace the Frobenius norm in equation 5.3a by equation 5.7 and take

derivatives with respect to the unknown variables Z, we obtain the robust PMF

algorithm

Z = (I − A ◦ P) ◦ C +A ◦ D , (5.8)

where A is a tensor with elements given by

Ai1,i2,i3,...iN =
1

1 +Nµσ2
√

1 + |Ei1,i2,i3,...iN |2/σ2
, (5.9)

with E = P ◦ Z − D and C is given by equation 5.6. Equivalently to the nonrobust

PMF method, I have adopted the randomized QR decomposition to compute the

low-rank matrices Ẑ(k) required to estimate C. Algorithm 2 provides the robust

PMF algorithm where Evaluate Weights is the function that evaluates the tensor
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Figure 5.1: Functionals ρ that can be adopted to measure the error discrep-
ancy in the PMF algorithm. The expressions for ρ(u) are given in Table
5.1.

of weights (see Table 5.1).

Notice the similarity between the nonrobust and robust PMF methods. The tensor

of weights A can be replaced by the constant α to obtain the nonrobust PMF

algorithm (equation 5.5). In the robust PMF method, the tensor of observations D
is weighted by the tensor A. The weights depend on the magnitude of the error E
evaluated at the preceding step of the iterative algorithm. In essence, the outliers

are de-emphasized by the product A ◦ D. The elements of the tensor of weights

satisfy 0 < Ai1,i2,i3,...iN < 1. The condition also applies for the nonrobust case

where 0 < α < 1 for trade-off parameter µ > 0.

In the derivation, I have selected the l1/l2 robust measure of the misfit. Similar

results can be obtained by adopting the Cauchy (Sacchi and Ulrych, 1995) or the

Geman-McClure (Geman and McClure, 1985) criteria. Table 5.1 offers the function

ρ(u) and the associated weights A for the l2-norm misfit and for the robust l1/l2,

Cauchy, and Geman-McClure error norms. Figure 5.1 shows the functional ρ(u) for

the l2-norm, the l1/l2 norm, and the Cauchy and Geman-McClure criteria.
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Estimator Misfit Criterion ρ(v) Weights A(u)

Nonrobust l2 |u|2 1
1+Nµσ2

Robust l1/l2
√

1 + |u|2 1

1+Nµσ2
√

1+|u|2

Cauchy ln(1 + |u|2) 1
1+Nµσ2(1+|u|2)

Geman-McClure |u|2
1+|u|2

1
1+Nµσ2(1+|u|2)2

Table 5.1: Nonrobust and robust misfit criteria adopted for PMF, u = e/σ.
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Algorithm 5 Low-Rank tensor completion with robust misfit

1: Input: D,P, µ, σ, pk,maxiter, tol
2: Z i = D, i = 1
3: while ‖Z i+1 −Z i‖2F / ‖Z i‖2F ≤ tol & i ≤ maxiter do
4: for k = 1 : N do
5: Zi(k) = unfold(k){Z i}
6: Ẑi(k) = Rank Reduction{Zi(k), pk}
7: end for
8: Ci = 1

N

∑N
k=1 fold(k){Ẑi(k)}

9: E i = D − P ◦ Zi
10: Ai = Evaluate Weights{E i, µ, σ}
11: Z i+1 =

(
I − Ai ◦ P

)
◦ Ci +Ai ◦ D

12: i← i+ 1
13: end while

5.2 Examples

5.2.1 Synthetic data

This section evaluates the proposed robust PMF tensor-reconstruction method and

compares the robust solution to the nonrobust PMF solution (Gao et al., 2015). To

do so, I created two volumes of spatial data of size 12× 12× 12× 12 traces and 500

time samples with a time-sampling rate of 2 ms. The first volume was composed

of a superposition of events with linear moveout. The second volume consisted of

events with parabolic traveltime curves. For all the synthetic experiments, I set a

convergence tolerance tol = 0.004 and a maximum number of iterations maxiter =

50 (see Algorithms 1 and 2). The band of frequencies used for reconstruction is 1

to 70 Hz. I evaluate the reconstruction quality via the signal-to-noise ratio of the

solution (or output) in decibels:

S/No[dB] = 10 log10

‖dtrue‖2F
‖drec − dtrue‖2F

, (5.10)

where dtrue and drec indicate the true volume prior to decimation and contamination

with noise and the reconstructed volume, respectively. Note that, even though

the PMF algorithm is executed in the frequency-space domain, the final S/No is

computed with true and reconstructed seismograms in the time domain.
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Volume of linear events

The first volume used to test the robust tensor-completion PMF algorithm is com-

posed of three events with linear moveout. The linear events have been synthesized

using three waves with ray parameters in each spatial dimension given by q1 =

[−0.001, 0.002,−0.003] s/m, q2 = [0.0005, 0.001, 0.0001] s/m, q3 = [−0.001, 0.001, 0.001] s/m,

and q4 = [0.002,−0.0005, 0.001] s/m. The first and second spatial dimensions are

CMPx and CMPy, respectively. Similarly, the third and fourth spatial dimensions

are offset and azimuth. The noise is modeled via a Gaussian mixture that corre-

sponds to a S/Ni = 1.2 dB. The signal-to-noise ratio, S/Ni, is defined by the ratio of

the power of the clean signal to the variance of the Gaussian mixture. We opt for

a Gaussian mixture to mimic erratic non-Gaussian noise. For this purpose, we mix

two series of Gaussian deviates with standard error 0.001 and 10.0 with a probabil-

ity of occurrence Pr = 0.9 for the series with the smallest standard deviation. By

this means, 10% of the samples of the simulated noise are large outliers, and the

remaining are small additive noise. To further complicate the example, I add traces

mimicking sinusoidal noise of central frequency 20 Hz. The sinusoidal traces are

randomly distributed in the spatial volume, and they represent 5% of the total vol-

ume. The volume corrupted with noise is then randomly decimated by an amount

of 60%. The total number of traces before decimation is 124 = 20736. The total

number of traces after decimation is about 8300.

The trade-off parameter µ = 1 is chosen by experimenting with different values

and by picking the value that generates a minimum amount of signal leakage in the

error panel. I use the same trade-off parameter µ for both the l2 nonrobust PMF

and robust PMF solutions. Given that the data is contaminated with non-Gaussian

noise, one cannot find a trade-off parameter that properly minimizes leakage when

adopting the l2 norm. For this particular example, I also set pk = 7, k = 1, 2, 3, 4

where pk is the number of random projections of the randomized QR decomposition

for mode k (Appendix C).

For the robust PMF method, the parameter σ is selected via the following heuristic

expression σ = 0.0001×‖E1(ω)‖F , where E1(ω) is the error at first iteration. In other

words, σ is frequency-dependent. One could have also adopted a test of goodness

of fit to determine µ as in Gao et al. (2017). However, developing such a criterion

is not an easy task for data contaminated with non-Gaussian noise.
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Figure 5.2a shows the data for CMPy 2, 5, 8, and 10, and CMPx in the range 1 to 12.

Offset and azimuth are fixed. Figure 5.2b shows the same traces after contamination

with noise and decimation. The nonrobust l2 reconstruction is portrayed by Figure

5.2c. Similarly, the robust PMF reconstruction is provided in Figure 5.2d. The

corresponding error panels can be found in Figures 5.2e and f, respectively.

Figure 5.3 shows results for the same volume but offset 2, 6, 9, and 12 and CMPx

in the range 1 to 12. In this case, CMPy and azimuth are fixed. Figures 5.3a and

b show the ideal traces and the same traces after contamination with noise and

decimation. Figures 5.3c and e show the nonrobust reconstruction and the error,

respectively. Similarly, the robust PMF reconstruction is provided in Figure 5.3d,

and the error in Figure 5.3f.

It is clear from the previous figures that the nonrobust PMF method is unable to

reproduce the data accurately, then signal leakage is observed in the error panels

(Figures 5.2e and 5.3e). On the other hand, the robust PMF algorithm properly

reconstructs the seismic volume. The reconstruction quality for the nonrobust PMF

algorithm is S/No = 7 dB, whereas the reconstruction quality for the robust PMF

algorithm is S/No = 14 dB.

Volume of parabolic events

Finally, the synthetic experiment is repeated for parabolic events. In this case,

the data has four parabolic events with residual move-out at the last trace of each

dimension given by q1 = [0.08, 0.02, 0.12,−0.04] s, q2 = [0.04, 0.02, 0.04,−0.06] s,

q3 = [0.04, 0.01, 0.016,−0.02] s, and q4 = [0.01, 0.04, 0.02,−0.08] s. Erratic noise

was generated using the parameters described in the preceding example, and the

data is decimated by 60%. I also adopt µ = 0.3 for the nonrobust and the robust

algorithm. Last, in both cases, I adopt pk = 8, k = 1, 2, 3, 4 where pk is the number

of random projections of the randomized QR decomposition for mode k.

Figure 5.4a shows the data for CMPy 2, 3, 6, and 12 and CMPx in the range 1 to 12.

Offset and azimuth are fixed. Figure 5.4b shows the same traces after contamination

with noise and decimation. The nonrobust l2 reconstruction is portrayed by Figure

5.4c. Similarly, the robust PMF reconstruction is displayed in Figure 5.4d. The

reconstruction-error volumes are portrayed in Figures 5.4e and f.
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Figure 5.2: Reconstruction of linear events with data contaminated with
erratic noise, and sinusoidal noise. (a) Original data. (b) Data corrupted
with erratic noise and sinusoidal noise and decimated by 60%. (c) Nonrobust
l2 PMF reconstruction. S/No = 7 dB. (d) Robust PMF reconstruction. The
l1/l2 norm was adopted as a robust measure of misfit. S/No = 14 dB. (e)
Error associated with the nonrobust solution. (f) Error associated with the
robust solution.
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Figure 5.3: Reconstruction of linear events with data contaminated with
erratic noise, and sinusoidal noise. (a) Original data. (b) Data corrupted
with erratic noise and sinusoidal noise and decimated by 60%. (c) Nonrobust
l2 PMF reconstruction. S/No = 7 dB. (d) Robust PMF reconstruction. The
l1/l2 norm was adopted as a robust measure of misfit. S/No = 14 dB. (e)
Error associated with the nonrobust solution. (f) Error associated with the
robust solution.
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Figure 5.5 shows the same 5D volume, but for offsets 2, 3, 9, and 12, and CMPx

in the range 1 to 12. In this case, CMPy and azimuth are fixed. Figures 5.5a

and b show the ideal and noisy traces. Figures 5.5c and e show the nonrobust

reconstruction and the corresponding errors. Finally, Figures 5.5d and f show the

robust reconstruction with the respective error panel.

From the previous figures, it is clear that the nonrobust PMF method is unable to

reconstruct the data correctly, and a signal leakage is observed in the error panel

(Figures 5.4e and 5.5e. For the nonrobust PMF algorithm, the best reconstruction

quality that one can attain is S/No = 16 dB. The reconstruction quality for the

robust PMF method is S/No = 20 dB.

Tests are also carried out with Cauchy and Geman-McClure error criteria (Table

1). Results obtained with these criteria are similar to those obtained via the l1/l2

misfit.

5.2.2 Field-data test

I also test the nonrobust and robust PMF algorithms on a 5D onshore seismic

dataset. The data was acquired to monitor a heavy-oil field in Alberta, Canada.

Sources and receivers were distributed following an orthogonal survey. Their loca-

tions are shown in Figure 5.6. The NMO correction was applied to the data prior

to reconstruction to avoid spectral wrapping in the frequency-wavenumber domain

(Gao et al., 2015). Moreover, a low-pass filter is applied to remove high-frequency

noise caused by field operations. The cutoff frequency of the low-pass filter is 100 Hz.

The data was binned into a 4D spatial tensor by considering the following geometry:

∆x = 5m, total number midpoints in the inline direction = 275

∆y = 5m, total number midpoints in the crossline direction = 161

∆h = 100m, number of offset sectors I3 = 6

Offset sector 1, h[m] ∈ [50, 150)

Offset sector 2, h[m] ∈ [150, 250)

Offset sector 3, h[m] ∈ [250, 350)

Offset sector 4, h[m] ∈ [350, 450)
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Figure 5.4: Reconstruction of parabolic events with data contaminated with
erratic noise and sinusoidal noise. (a) Original data. (b) Data corrupted with
erratic noise and sinusoidal noise and decimated by 60%. (c) Nonrobust l2
PFM reconstruction. S/No = 16 dB. (d) Robust PMF reconstruction. The
l1/l2 norm was adopted as a robust measure of misfit. S/No = 20 dB. (e)
Error associated with the nonrobust solution. (f) Error associated with the
robust solution.
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Figure 5.5: Reconstruction of parabolic events with data contaminated with
erratic noise and sinusoidal noise. (a) Original data. (b) Data corrupted with
erratic noise and sinusoidal noise and decimated by 60%. (c) Nonrobust l2
PFM reconstruction. S/No = 16 dB. (d) Robust PMF reconstruction. The
l1/l2 norm was adopted as a robust measure of misfit. S/No = 20 dB. (e)
Error associated with the nonrobust solution. (f) Error associated with the
robust solution.



CHAPTER 5. ROBUST PARALLEL MATRIX FACTORIZATION 107

Figure 5.6: Survey acquisition geometry. Sources are ploted in red and
receivers in blue. The violet rectangle represents the extent of the CMP
bins that were reconstructed in the test.

Offset sector 5, h[m] ∈ [450, 550)

Offset sector 6, h[m] ∈ [550, 650]

∆φ = 45 degrees, number of azimuth sectors I4 = 8

Azimuth sector 1, φ[◦] ∈ [0, 45)

Azimuth sector 2, φ[◦] ∈ [45, 90)

Azimuth sector 3, φ[◦] ∈ [90, 135)

Azimuth sector 4, φ[◦] ∈ [135, 180)

Azimuth sector 5, φ[◦] ∈ [180, 225)

Azimuth sector 6, φ[◦] ∈ [225, 270])

Azimuth sector 7, φ[◦] ∈ [270, 315)

Azimuth sector 8, φ[◦] ∈ [315, 360].

The fold of the data after binning is shown in Figure 5.7.

I also define overlapping windows or patches in space. This technique is used to

ensure stationarity of the wavefield. Each patch consists of 45 × 45 midpoint bins
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Figure 5.7: Fold map of the data.

with all offset and azimuth sectors. Therefore, I define I1 = 45, I2 = 45, I3 =

6, and I4 = 8 which leads to 4D spatial patches of size 45 × 45 × 6 × 8. The

patches are overlapped by 5 midpoints in both inline and crossline coordinates.

This configuration yields a total of 28 patches that cover the area delimited by the

rectangle in magenta in Figure 5.6.

The reconstruction is performed on every patch. I use one patch to tune the trade-

off parameters and then apply them for the rest of the patches. The frequencies

range from 1 Hz to 100 Hz, and there is a maximum number of 50 iterations per

frequency and a tolerance tol = 0.0005. For the nonrobust PMF reconstruction I

adopt µ × σ2 = 1. For the robust PMF completion I adopt the l1/l2 norm with

parameter µ = 500, and σ is determined as a function of the error at the first

iteration σ = 0.0001 × ‖E1(ω)‖F . In both cases, randomized QR decomposition is

applied with parameter pk = 20, 20, 5, 5. The computational time for one patch in a

desktop computer with an Intel Core i5 processor with a speed of 3.30GHz running

Julia in a single processor is 64 seconds. Individual reconstructed 5D patches are

re-assembled into the 276 × 161 × 6 × 8 midpoint-offsets-azimuth volume. Areas

of overlap are weighted with a cosine taper to avoid windowing artifacts in the

re-assembled volume.

Figures 5.8 to 5.10 show different slices of the volume before and after reconstruc-

tion. Figure 5.8 shows the original data and the reconstructed data via the nonro-

bust and robust PMF algorithms for fixed CMPx 10, offset sector 3 (250-350 m),

and azimuth sector 5 (180-225◦). This particular figure illustrates the attenuation
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Figure 5.8: Reconstructed field seismic data for fixed CMPx=10, offset sector
3, and azimuth sector 5. (a) Original data. (b) Nonrobust PMF reconstruc-
tion. (c) Robust PMF reconstruction.

of coherent high-frequency noise corresponding to the robust PMF reconstruction

(Figure 5.8(c). Figure 5.9 portrays the original data and the nonrobust and robust

PMF reconstructions for CMPy 90, offset sector 4 (350-450 m), and azimuth sector

3 (90-135◦). In Figure 5.10, I change the aspect ratio of the illustration and provide

a 350 ms window portraying the original data and the nonrobust and robust PMF

reconstructions for CMPy 80, offset sector 3 (250-350 m), and azimuth sector 5

(180-225◦). Again, it is clear that the robust PMF algorithm is not only able to re-

cover the observed traces, but it also attenuates erratic noise such as the oscillatory

signals near the position CMPx 150 in Figure 5.10(a).

Figures 5.11 and 5.12 show 3D visualizations of the 5D reconstructed tensor for offset

sector 2 (150-250 m), azimuth 4 (135-180◦), and offset sector 4 (350-450 m), azimuth

4 (135-180◦), respectively. Finally, Figure 5.13 shows the stacked cube for the field

data, nonrobust and robust reconstruction via PMF algorithms. The stack of the

data before reconstruction was properly normalized by fold. Visual comparison

of stacked volumes shows modest improvement on the quality of the seismic, yet

the reconstructed cube could result in improved quantitative interpretation and
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Figure 5.9: Reconstructed field seismic data for fixed CMPy=90, offset sector
4, and azimuth sector 3. (a) Original data. (b) Nonrobust PMF reconstruc-
tion. (c) Robust PMF reconstruction.
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Figure 5.10: Reconstructed field seismic data for fixed CMPy=80, offset
sector 3, and azimuth sector 5. (a) Original data. (b) Nonrobust PMF
reconstruction. (c) Robust PMF reconstruction.
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Figure 5.11: Data for offset sector 2 (150-250 m) and azimuth 4 (135-180◦).
(a) Original data. (b) Nonrobust PMF reconstruction. (c) Robust PMF
reconstruction.

attribute analysis.

5.3 Conclusions

Prestack seismic-data reconstruction can be posed as a tensor-completion prob-

lem. Onshore seismic data are frequently corrupted by erratic noise that does not

obey any particular distribution. I have adapted the Parallel Matrix Factorization

(PMF) method to cope with such erratic noise by incorporating a robust error norm.

Such modification considers differences in the magnitude of the reconstruction er-

ror, which de-emphasizes bad observations and minimizes their influence on the final

reconstructed volume. I have presented results using the l1/l2 error norm, but sim-

ilar results could be attained by adopting the Cauchy and Geman-McClure error

functionals.

The iterative PMF algorithm consists of two stages. In the first step, a new estimate

of the data is calculated via a simple imputation algorithm. In the second step, rank-

reduction is applied to matrices obtained via tensor unfolding of the estimated data

tensor. In the iterative algorithm, new data obtained by the rank-reduction stage

and observations are weighted to generate the current estimate of the reconstructed

data. The nonrobust PMF algorithm does not take into account differences in
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Figure 5.12: Data for offset sector 4 (350-450 m) and azimuth 4 (135-180◦).
(a) Original data. (b) Nonrobust PMF reconstruction. (c) Robust PMF
reconstruction.
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Figure 5.13: Stacks. (a) Original data. (b) Nonrobust PMF reconstruction.
(c) Robust PMF reconstruction.
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the magnitude of the reconstruction error. Therefore it is inclined to introduce

erratic noise back into the reconstructed prestack volume. The proposed robust

PMF algorithm, on the other hand, de-emphasizes bad observations and minimizes

their influence on the final reconstructed volume.

The rank-reduction stage of the PMF algorithm can be implemented by numer-

ous methods. I adopt a randomized QR decomposition as the engine of the rank-

reduction stage. The randomized QR decomposition relaxes the precise determina-

tion of the best rank of the unfoldings, and, therefore, it adds practicality to the

algorithm.

I recognize that numerical experimentation was adopted to drive this research and

reach conclusions; this is a route often chosen in prestack seismic reconstruction.

Numerical tests were the immediate solution to address the ubiquitous parameter

selection problem. Future research entails finding objective criteria for parameter

estimation (trade-off parameter, standard deviation, and tensor rank) for nonrobust

and robust PMF algorithms.

I also tested the proposed algorithm with real data from the Western Canadian

Sedimentary Basin. The field data experiments permit us to conclude that the

proposed algorithm can recover unrecorded seismic traces while attenuating erratic

noise in recorded traces. In addition, the analysis of stacked sections confirms that

the algorithm does not introduce artifacts.



CHAPTER 6

Conclusions

Multidimensional reconstruction can significantly improve seismic data by reproduc-

ing the ideal, regularly sampled seismic wavefield one would have desired to acquire.

It also allows the reconstruction of data gaps and the correct positioning of seismic

traces at the desired output grid. Reconstruction methods are particularly beneficial

for onshore seismic data as they homogenize fold in CMP sectors producing datasets

that contain a regular distribution of offsets and azimuths. The latter is essential

for imaging, AVO/AVA inversion, and the removal of acquisition footprints. These

footprints, observed in seismic time slices, can hamper the interpretation of subtle

geological features.

Geological interpretation of seismic data evaluates time migrated or depth mi-

grated images that have undergone 5D reconstruction before imaging. Despite

the widespread application of reconstruction methods in exploration seismology,

many industrial applications of 5D reconstruction consider Fourier inversion meth-

ods. Reduced-rank methods as engines for 5D reconstruction are not as popular

as methods based on Fourier kernels, albeit been investigated for about ten years.

Reduced-rank filtering has been adopted mainly for denoising. This thesis investi-

gates and provides solutions to several shortcomings of reduced-rank reconstruction

methods, including irregularly sampled seismic data and the reconstruction of data

contaminated with erratic noise.

The classical MSSA assumes input data deployed on regular grids, yet seismic data

are usually irregularly sampled in the spatial domain. Although seismic processing
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flows often tolerate binning (nearest neighbour interpolation) errors, there are sit-

uations where an emphasis on accurate input trace coordinates should prevail. I

reformulated the MSSA method to honour the real spatial coordinates of seismic

traces. The new method, I-MSSA, solves an optimization problem with a rank con-

straint. The I-MSSA algorithm provides a tool for coping with data regularization

when one does not want to apply binning to input datasets. For example, when

processing the cross-spread gathers of a seismic volume. Chapter 3 presented a case

study with a workflow to process these subvolumes of seismic data.

Another problem that lacked detailed investigation is the reconstruction of data

contaminated with a non-Gaussian error distribution or, in general, erratic noise

of unknown distribution. Random and erratic noise contaminates onshore seismic

data. Bursts of energy appear at isolated locations, making a good portion of the

seismic traces unusable. Rather than eliminating traces, I proposed using robust

norm minimization of the erratic error combined with rank-constraints to develop

a robust SSA method (Chapter 4). The scheme can be extended to other interpo-

lation methods that rely on regular grids, presenting a solution to the off-the-grid

processing problem when the engine for denoising or reconstruction assumes regular

sampling.

Similarly, in Chapter 5, I introduced a robust tensor completion method to recon-

struct data contaminated with erratic noise. The algorithm generalizes the PMF

method proposed for 5D data completion to data containing traces contaminated

with non-Gaussian noise. The scheme provides a fast method for rank-reduction to

apply robust PMF in realistic field data scenarios as those presented in Chapter 5.

To do so, I replaced matrix factorization or the SVD (the two methods PMF often

used) with a randomized QR decomposition that reduces the computation time of

rank-reduction applied to unfolded tensors.

Below is a detail of the contributions and a summary of each chapter.

Chapter 2 reviews the formulation of low-rank approximation and reconstruction

via low-rank considerations. The chapter introduces the algebra and some typical

formulations of the problem and demonstrates that seismic data can be approxi-

mated via low-rank arrays. This chapter provides a comprehensive introduction to

a student pursuing research in this area. The latter was my primary goal in adding

Chapter 2 to the thesis.
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Chapter 3 explores the extension of MSSA to datasets with irregular coordinates.

MSSA assumes that seismic data has a regular geometry. In reality, given the com-

plexity of the operations and financial constraints, field data is usually acquired with

some level of randomness. Conventional processing workflows include binning as a

preprocessing step for seismic reconstruction via MSSA. Binning is not an optimal

process as it introduces amplitude and phase errors in the input traces. Chapter 3

introduces I-MSSA, a new reconstruction method that honours the real coordinates

of traces. The method formulates reconstruction as an inverse problem, where the

misfit includes a mapping operator that relates irregular coordinates to an ideal

output grid. For each frequency slice, I-MSSA enforces the low-rank condition via a

projection operator implemented as an SSA filter. I tested the method with synthetic

and field examples. Despite achieving slightly notable improvements, I-MSSA offers

a novel way of solving the rank-reduction reconstruction problem for off-the-grid

data. Binning of input datasets constructs intermediate data volumes, discarding or

averaging multiple traces that correspond to the same bin and populating with null

traces where the bin is empty. Binning also introduces phase and amplitude errors

to the dataset. I-MSSA eliminates the increased requirement of computation and

memory introduced by binning. More importantly, it considers the complete set of

data without discarding or averaging samples. These features of I-MSSA were my

primary motivation for pursuing this line of research.

Chapter 4 introduces robust norms in seismic reconstruction via rank-reduction

algorithms. The chapter reviews traditional robust norms used in geophysical ap-

plications and introduces a generalized function that regulates its shape via a con-

tinuous parameter. The generalized function provides flexibility to the inversion.

Afterwards, I present a scheme that minimizes robust measures of fit combined

with rank-constraint principles. The method allows a robust adaptation of the SSA

scheme. This chapter also evaluates the requirements for monotonic or redescending

norms in seismic reconstruction. I tested the algorithm via synthetic and field data

and concluded that redescending estimators provide adequate reconstruction in the

presence of a high percentage of non-Gaussian errors. However, seismic data typi-

cally presents low percentages of erratic traces. Therefore, monotonic norms, such

as the Huber norm, generally provide acceptable results. Chapter 4 explores foun-

dational concepts in robust statistics and provides a cornerstone for the algorithms

presented in the following chapter.
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Chapter 5 presents a robust implementation of PMF for seismic reconstruction.

PMF reconstructs the signal by approximating the tensor unfoldings to low-rank

matrices. The algorithm estimates the solution via an alternate least-squares ap-

proach that results in two steps. The first step calculates the data via an imputation

algorithm, and the second step applies rank-reduction to the unfoldings of the es-

timated data tensor. The nonrobust algorithm introduces erratic noise back into

the estimated volume in each iteration. I propose a robust PMF that down weights

high amplitude observations to limit their influence in the solution. The algorithm

results in a similar engine to PMF, but the imputation scheme includes weights de-

fined by the considered robust norm. The scheme also considers a randomized QR

decomposition as the rank-reduction engine. The randomized approach alleviates

the computational strain and relaxes the determination of the best rank for the

unfoldings. I tested the algorithm with synthetic and field data. Tests showed that

the algorithm attenuates noise and recovers missing samples. The stacked sections

of field data also showed that the algorithm does not introduce artifacts.

6.1 Software libraries

Many of the results presented in this thesis were compiled on my GitHub account

github.com/fercarozzi. The libraries are developed in julia language (Bezanson

et al., 2017) and perform multidimensional reconstruction of seismic data with the

algorithms previously described. In addition, I have used SeismicJulia (Stanton

and Sacchi, 2016) to model synthetic experiments and read, write and process field

datasets. My contribution to developing SeismicJulia included maintenance, devel-

opment and documentation of the libraries.

6.2 Recommendations and future research directions

The bulk of my work considers methods that operate in the f -x domain. In other

words, the data are initially transformed from the time domain to the frequency

domain. Next, processing and inversion are carried on all frequency slices, hon-

ouring Fourier symmetries. Finally, after all the frequency slices of the volume are

simultaneously processed, the inverse Fourier transform is adopted to transform the



CHAPTER 6. CONCLUSIONS 119

results back to the time domain. I have not investigated the application of tensor

completion methods to volumes in the time-space domain as this is not a typical

approach for seismic data processing. However, I recognize the possibility of obtain-

ing exciting results when processing the data in the time domain with algorithms

based on tensor-reconstruction principles.

The previous is not advised for the I-MSSA algorithm as it structures the problem via

trajectory matrices. In essence, one extract patches of seismic data and assimilate

those patches into Hankel matrices. To demonstrate the predictability of seismic

signals in the t-x domain is not straightforward. Therefore, these volumes should

not be loosely considered low-rank in the t-x domain.

Another recommendation for future work is to consider the recent advancement of

machine learning applications to seismic reconstruction. Some impressive results

were obtained after considerable training (Mandelli et al., 2018). Machine learning

methods in collaboration with data augmentation techniques will play an essential

role in seismic data reconstruction in the future. However, generalizing reconstruc-

tion algorithms, or finding models that operate on diverse sets of onshore data, is

still an unsolved problem. Also, numerically modelling data that mimics realistic

noisy onshore surveys is challenging. The latter might impose severe limitations on

building datasets for training. However, this seems to be a contemporary problem

in machine learning not restricted to geophysical applications.
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APPENDIX A

Low-rank approximation in seismic data

This section describes the mathematical principles that validate the reconstruction

of seismic data via low-rank constraints. Chapter 2 shows the mathematical sup-

port for a 2D section with one linear dipping event. This appendix generalizes the

concept. First, I introduce the 2D case with R linear events with distinct dips. Fol-

lowing, I consider a 3D volume with R linear events. Both cases form a trajectory

matrix, or block-Hankel matrices to obtain a low-rank array. Next, I generalize

to the multidimensional case. The full seismic wavefield depends on 5 dimensions,

four space coordinates and the time coordinate. The principle of low-rankness of

block-Hankel matrices is well-founded in the multidimensional case. However, the

approach does not fully employ the data redundancy. Therefore, we consider rank-

reduction approximation on the data tensor (Kreimer and Sacchi, 2012; Stanton

et al., 2012; Stanton and Sacchi, 2013).

2D linear events

Following the scheme from the introduction, we now evaluate a section with R

linear events with distinct dips. In frequency space, one can represent the section

as a superposition of plane waves

Sn(ω, x) =
R∑
r=1

Wr(ω) exp−iωprn∆x .

133
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Considering Nx consecutive equally spaced records, and dropping the dependency

on frequency

S = ZW (A.1)

where S = (S1 S2 · · · SN )T , W = (W1W2 · · · WR)T , and

Z =


exp−iα1 exp−iα2 · · · exp−iαR

exp−i2α1 exp−i2α2 · · · exp−i2αR

...
...

. . .
...

exp−iNxα1 exp−iNxα2 · · · exp−iNxαR

 ,

where each column of matrix Z is called a steering vector with elements zl,m =

exp−ilαm , l = 1, · · · , Nx m = 1, · · · , R, and αm = ωopm∆x. Assuming that the R

dips are distinct and the number of events is smaller than the number of traces, the

R columns are linearly independent. Then, the matrix is of rank R and any row is

a linear combination of R other rows. In particular, row R+ 1 is(
exp−i(R+1)α1 exp−i(R+1)α2 · · · exp−i(R+1)αR

)
=

(PR PR−1 · · · P1)


exp−iα1 exp−iα2 · · · exp−iαk

exp−i2α1 exp−i2α2 · · · exp−i2αk

...
...

. . .
...

exp−iRα1 exp−iRα2 · · · exp−iRαk

 .
(A.2)

Multiplying both sides by vector W results in a linear recursive relation

SR+1 = (PR PR−1 · · · P1)


S1

S2

...

SR

 . (A.3)

One can obtain the elements of (PR PR−1 · · · P1) from the previous equation if the

dips are known.
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Let us now consider the trajectory matrix for data S with Nx channels

H =


S1 · · · SR SR+1 · · · SK

S2 · · · SR+1 SR+2 · · · SK+1

...
. . .

...
. . .

...

SLx · · · SR+Lx−1 SR+Lx · · · SNx

 , (A.4)

where Lx and K follow the same criteria as for the one dip case. Considering the

recursive relation described in equation A.3,

H =


S1 · · · SR

∑R
r=1 PrSR+1−r · · ·

∑R
r=1 PrSK−r

S2 · · · SR+1
∑R

r=1 PrSR+2−r · · ·
∑R

r=1 PrSK+1−r
...

. . .
...

. . .
...

SLx · · · SR+Lx−1
∑R

r=1 PrSR+Lx−r · · ·
∑R

r=1 PrSNx−r

 . (A.5)

The columns R + 1 to K of the Hankel matrix are a linear combination of the

previous R columns. Therefore, the rank of the trajectory matrix equals R, the

number of distinct dips in the signal. Figure A.1 shows a seismic section with 3

dipping linear events and the singular values of the corresponding Hankel matrix

for frequency index 20.

3D linear events

Considering a 3D seismic volume with R distinct events, one can model the signal

as

s(t, x, z) =

R∑
r=1

w(t− prx− qrz) , (A.6)

where t represents the time domain, and x, z represent the space domain. As in the

previous section, w(t) is a pulse. Considering the 1D Fourier transform, from the

time domain to the frequency domain, the signal is

S(ω, x, z) =

R∑
r=1

Wr(ω) exp−iwprx−iwqrz (A.7)

where ω = 2πf is the temporal frequency. Each term in equation A.7 represents a

sinusoidal or monochromatic plane wave, a special solution to the wave equation.
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Figure A.1: Seismic data is low rank. (a) 2D seismic section with three
dipping linear event. (b) The rank of the corresponding Hankel matrix
equals three.

Analyzing one frequency ω0, and assuming regularly sampled data, the signal at one

channel is

Sm,n =
R∑
r=1

Wr exp−iαrm−iβrn (A.8)

where xm = m∆x, zn = n∆z, αr = ω0pr∆x, and βr = ω0qr∆z.

In the case of M ×N channels, one can describe the volume as a matrix

S = YWZ , (A.9)

where

Y =


y11 y12 · · · y1R

y21 y22 · · · y2R

...
. . .

...
. . .

...

yM1 yM2 · · · yMR


W = diag(W1,W2, · · · ,WR)
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Z =


z11 z12 · · · z1N

z21 z22 · · · z2N

...
. . .

...
. . .

...

zR1 zR2 · · · zRN

 ,

with ymr = exp−iαrm, and zrn = exp−iβrn. Provided that the number of channels,

M and N are larger than the number of distinct events R, rank(S) ≤ R. Besides,

rank(S) = R if and only if the ranks of Y and Z are both equal to R. That is, the

events have distinct dips in each direction.

Let us now consider the trajectory matrix for data S

H =


S1 S2 · · · SM−K

S2 S3 · · · SM−K+1

...
. . .

...
. . .

...

SK SK+1 · · · SM

 , (A.10)

where

Sm =


Sm1 Sm2 · · · Sm(N−L)

Sm2 Sm3 · · · Sm(N−L+1)
...

. . .
...

. . .
...

SmL Sm(L+1) · · · SmN

 . (A.11)

The trajectory matrix H is a K × (M −K + 1) Hankel block matrix, and Sm is a

L × (N − L + 1) Hankel matrix. In the case when L = 1 and K = M , the block

Hankel matrix equals equation A.3. Then, the 2D case is a particular case of the

multidimensional analysis.

Similar to equation A.9, one can describe the Hankel block matrix as

H = BLWBR , (A.12)

where BL =
(
ZL ZLYd · · · ZLYK−R

d

)T
, BR =

(
ZR YdZR · · · YM−K

d ZR

)T
, Yd =

diag(yr1),

ZL =


z11 z21 · · · zR1

z12 z22 · · · zR2

...
. . .

...
. . .

...

z1L z2L · · · zRL

 ,
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ZR =


z11 z12 · · · z1(N−L)

z21 z22 · · · z2(N−L)
...

. . .
...

. . .
...

zR1 zR2 · · · zR(N−L)

 .

The rank of the Hankel block matrix equals R if and only if the rank of ER and EL

equal R. Following Yang and Hua (1996) and Hua (1992), the previous condition

is valid if M − R + 1 ≥ K ≥ R and N − R + 1 ≥ L ≥ R, and only if KL ≥ R

and (M − K + 1)(N − L + 1) ≥ R. Figure A.2 shows a 3D seismic volume with

3 dipping linear events and the singular values of the corresponding Hankel matrix

for frequency index 20.
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Figure A.2: Seismic data is low rank. (a) 3D seismic section with three
dipping linear event. (b) The rank of the corresponding Hankel matrix
equals three.

Multidimensional seismic data

The full seismic wavefield has four spatial dimensions in addition to time. One can

describe the spatial coordinates combining the locations of the sources and receivers,

or midpoints and azimuths. Even though such high-dimensionality presents visual-
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ization challenges, the low-rank properties of the data remains valid. Therefore, one

can apply the block Hankel matrix principles to reconstruct the full wavefield.

However, rank-reduction on four dimensional data is computationally expensive and

does not benefit from the data redundancy and relations in the different dimensions.

Multidimensional algebra exploits such capabilities. Therefore, we embed the seis-

mic dataset in a tensor.

A seismic volume with R linear events and four spatial coordinates can be modeled

as

s(t, x1, x2, x3, x4) =

R∑
r=1

w(t− p1rx1 − p2rx2 − p3rx3 − p4rx4) (A.13)

where pjr are the ray parameters for the R events in xj , j = 1, 2, 3, 4. Considering

the 1D Fourier transform from time to the frequency domain

S(ω, x1, x2, x3, x4) =
R∑
r=1

Wr(ω) exp(−iαrn1 − iβrn2 − iγrn3 − iεrn4) (A.14)

where W (ω) is the frequency dependent amplitude of the events, ω is the frequency,

αr = ωp1r∆x1, βr = ωp2r∆x2, γr = ωp3r∆x3, εr = ωp4r∆x4, and xj = nj∆xj ,

j = 1, 2, 3, 4.

As a simplification, one can evaluate the model for one frequency ω0. Dropping the

frequency dependency and adopting W (ω0) = 1

Si1,i2,i3,i4 =
R∑
r=1

ari1 ◦ bri2 ◦ cri3 ◦ dri4 , (A.15)

where vectors a, b, c, and d represent exp−iαri1, exp−iβri2, exp−iγri3, and

exp−iεrαi4, respectively. Equation A.15 resembles a CP decomposition with R

terms.

Following Kolda and Bader (2009) and Kreimer et al. (2013), one can form the
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unfoldings of tensor S as

S(1) = A (D ◦C ◦B)T

S(2) = B (D ◦C ◦A)T

S(3) = C (D ◦B ◦A)T

S(4) = D (C ◦B ◦A)T . (A.16)

Focusing on the mode-1 unfolding,

S(1) = A (D ◦C ◦B)T

= A ([d1 ⊗ c1 ⊗ b1 · · ·dR ⊗ cR ⊗ bR])T . (A.17)

The Kronecker product of dr ⊗ cr ⊗ br, r = 1, · · · , R is a vector. Therefore, it has

rank 1. Assuming that the R events have different dips, then each of the products

is linearly independent from the rest and the rank of the matrix equals R. Likewise,

matrix A represents R independent events resulting in rank R. Considering the

properties of the unfoldings,

rank
(
S(1)

)
≤ min (rank (A) , rank (U)) (A.18)

= min(R,R) = R , (A.19)

where U = ([d1 ⊗ c1 ⊗ b1 · · ·dR ⊗ cR ⊗ bR])T . Then, the rank of the mode-1 un-

folding of S equals the number of unique events. The proof for the other unfoldings

follow the same scheme, with a change in the order of the products. Therefore, S
has 4-ranks equal to the number of independent. Figure A.3 shows the singular

values corresponding to the unfoldings of a 5D seismic volume with 3 dipping linear

events.

Besides, Kreimer et al. (2013) shows that the low-rankness of the tensor holds for

events with variable dips, for example, parabolic events. The concept holds for

decomposable events, that is, events separable in the spatial directions.

The previous analysis presents the bases of seismic reconstruction via rank-reduction.
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Figure A.3: Seismic data is low rank. Singular values of the unfolding of the
modes of a 5D seismic volume.(a) Mode 1 unfolding. (b) Mode 2 unfolding.
(c) Mode 3 unfolding. (d) Mode 4 unfolding.



APPENDIX B

Interpolation algorithms

The I-MSSA algorithm recovers a regular seismic volume from a set of observations

that are located off-the-grid. To do so, it represents off-the-grid data as a linear com-

bination of observations in the desired regular grid. In particular, we describe two

operators, bilinear interpolation and 2D Kaiser window tapered sinc interpolator.

The interpolator estimates a value in an arbitrary location as a linear combination

of gridded data. The irregular data in the observation grid is U(ri), where ri is the

observed coordinate of the sample. Likewise, the regular data is given by D(ξk),

where ξ is a coordinate in the regular mesh.

We assume that the point ri is surrounded by tabulated points ξi that belong to

the regular grid. The data in the observation grid takes the form

U(ri) =
∑
k∈Ni

WkD(ξk) . (B.1)

The above is the forward interpolation operator where several gridded samples D(ξk)

synthesize one off-the-grid sample via a weighted sum. The adjoint interpolation

operator is a spraying operator (Claerbout, 1992) that distributes weighed copies of

the off-the-grid sample to grid coordinates

D̃(ξk) = WkU(ri) k ∈ Ni . (B.2)

142
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The explicit form of the 2D bilinear interpolation operator is given by

U(ri) = (1− t)(1− u)D(ξx1 , ξy1) + t(1− u)D(ξx2 , ξy1)

+ tuD(ξx2 , ξy2) + (1− t)uD(ξx1 , ξy2) , (B.3)

where

t = (rx − ξx1)/∆ξx , (B.4)

u = (ry − ξy1)/∆ξy) , (B.5)

where ∆ξx and ∆ξy are the x and y grid intervals, respectively. Therefore, the

weights depend on the distance of the observation point to the regular coordinate.

The adjoint operator distributes the data value in the four grid points. We describe

the forward and adjoint operators in Algorithm 6.

Algorithm 6 Bilinear interpolator operator

1: Input: r, ξ
2: if adj = true, Input = U , Output = D̃
3: if adj = false, Input = D, Output = U
4: for k = 1 : Nu do
5: ia← floor((rxk − ξox)/∆ξx) + 1; ib← ia+ 1
6: ja← floor((ryk − ξoy)/∆ξy) + 1; jb← ja+ 1
7: if 1 < ib ≤ Nx and 1 < jb ≤ Ny then
8: t← (rxk − ξxia)/∆ξx
9: u← (ryk − ξyja)/∆ξy

10: if adj = true then
11: D̃(ξxia , ξyja)+ = (1− t) (1− u)U(k)

12: D̃(ξxib , ξyja)+ = t (1− u)U(k)

13: D̃(ξxib , ξyjb)+ = t uU(k)

14: D̃(ξxia , ξyjb)+ = (1− t)uU(k)
15: else
16: U(k) = (1 − t)(1 − u)D(ξia, ξja) + t(1 − u)D(ξib, ξja)+

+tuD(ξib, ξjb) + (1− t)uD(ξia, ξjb)
17: end if
18: end if
19: end for

A bilinear interpolator is very practical, but also simple. A more accurate interpola-

tor for seismic data processing is the Kaiser window tapered sinc interpolator. The
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weights of the 2D interpolator are given by sinc function of limited spatial support

(Fomel, 2001)

W (x) =sinc(πx)
I0

(
a
√

1− x2
)

I0(a)
, (B.6)

where I0 represents the zero-order modified Bessel function of the first kind, a is a

parameter that needs to be empirically estimated, and x is the argument which is

either t or u given by equations B.4 and B.5. Algorithm 7 shows an implementation

of the Kaiser window tapered sinc interpolation for the 2D case.

Algorithm 7 2D Kaiser window tapered sinc interpolator

1: Input: r, ξ, assume a 7 point operator in x and y.
2: if adj = true, Input = U , Output = D̃
3: if adj = false, Input = D, Output = U
4: for k = 1 : Nu do
5: ia← floor((rxk − ξox)/∆ξx) + 1;
6: ja← floor((ryk − ξoy)/∆ξy) + 1;
7: for i : ia− 3 : ia+ 3 do
8: for j : ja− 3 : ja+ 3 do
9: t← (rxk − ξxi)/∆ξx

10: u← (ryk − ξyj )/∆ξy
11: if adj = true then
12: D(ξxi , ξyj )+ = U(k)W (t)W (u)
13: else
14: U(k)+ = D(ξxi , ξyj )W (t)W (u)
15: end if
16: end for
17: end for
18: end for
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Randomized QR

An essential component of the PMF algorithm is the rank-reduction step. In the

original algorithm, rank-reduction of unfolded matrices was implemented via iter-

ative matrix factorization (Xu et al., 2015). The latter is equivalent to applying

rank-reduction to unfolded tensors via the SVD. In this appendix, we summarize

the randomized QR decomposition adopted for rank-reduction, used throughout our

work.

To simplify the notation we denote Z any of the matrices Z(k), k = 1, . . . , N . Let

us consider Z of size N1 ×N2, and Ω a matrix of size N2 × p with columns formed

by random normal vectors of unit variance. The first step of the randomized QR

decomposition is to decrease the size of the original matrix Z by multiplication with

the random matrix Ω to form a new matrix

M = Z(k)Ω . (C.1)

Notice that M is size N1 × p. Halko et al. (2011) demonstrated that M captures

most of the information in the range of the matrix Z. In other words, the columns

of M span a subspace of the image of the matrix Z. Next, we compute the reduced

QR decomposition of M to obtain an orthonormal basis Q and an upper-triangular

matrix R such that

QR = M . (C.2)

The low-rank approximation of the matrix Z is computed by applying the projection
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operator QQH to Z:

Ẑ = QQHZ . (C.3)

By adopting the randomized QR algorithm, we gain computational efficiency in

comparison to applying SVD or iterative matrix factorization. The efficiency arises

from the reduction of the size of the original matrix Z by the random projection.

However, this gain in computational performance is not the primary motivation for

adopting the randomized QR decomposition. SVD computes the low-rank approxi-

mation closest to Z in the Frobenius sense. Incorrect knowledge of the actual rank

of Z can lead to a suboptimal reconstruction. On the other hand, the random pro-

jection adopted in the randomized QR decomposition provides less tight bounds on

the recovery of Z. This concept is shown with an example. In Figure C.1 we show

S/No for synthetic examples consisting of 5D volumes of parabolic events contam-

inated with non-Gaussian noise as described in chapter 5. We have computed the

S/No in decibels as a function of rank and decimation for SVD and randomized QR

decomposition for the robust PMF algorithm. Figure C.1 shows that the region

where the PMF algorithm is capable of retrieving high-quality solutions is broader

for the randomized QR decomposition than for the SVD algorithm. Similar results

were also reported by Chiron et al. (2014) and Cheng and Sacchi (2016). In essence,

the randomized QR decomposition is less sensitive to the precise knowledge of the

rank of the matrix Z than the SVD decomposition. Last, it is necessary to men-

tion that results associated to rank-reduction via iterative matrix factorization (Xu

et al., 2015) are equivalent to those obtained with the SVD.
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Figure C.1: Reconstruction quality measured via S/No for simulation with
varying amount of data decimation and rank or number of random projec-
tions. (a) Robust PMF with rank-reduction implemented via SVD; rank
p. (b) Robust PMF with rank-reduction implemented via randomized QR
algorithm; number of random projections p .


	Introduction
	Seismic Data Reconstruction
	Review of previous work
	Rank reduction in seismic reconstruction

	Erratic noise in seismic data
	Main motivation of this work
	Contributions
	Outline of the thesis

	Rank Reduction
	Representing seismic data with low-rank arrays
	Matrix completion
	Preliminaries
	Low-Rank Matrix Approximation
	Low-rank Matrix Completion 

	Tensor Completion
	Preliminaries
	Tensor Decompositions and rank
	Low-Rank Tensor Completion


	I-MSSA
	Method
	Preliminaries
	The MSSA filter and MSSA reconstruction
	The I-MSSA via the PGD method 

	Examples
	Synthetic Examples
	Field data tests

	Discussion
	Conclusions

	Robust norms in seismic reconstruction
	M-estimators
	Robust statistics and its geophysical applications
	Robust rank-reduction reconstruction
	Examples
	Synthetic examples
	Field data tests

	Conclusions

	Robust Parallel Matrix Factorization
	Method
	Prestack seismic volumes are tensors
	Tensor reconstruction with the l2-norm (Frobenius) misfit function: Nonrobust PMF method
	Robust PMF method

	Examples
	Synthetic data
	Field-data test

	Conclusions

	Conclusions
	Software libraries
	Recommendations and future research directions

	Bibliography
	Low-rank approximation in seismic data
	Interpolation algorithms
	Randomized QR

