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Abstract

Estimating accurate images of the subsurface is one of the end products of seis-

mic data processing. Numerical solutions to the wave equation allow designing

linearized forward operators. The adjoint of the linearized forward operator is used

to image the interior of the earth. The adjoint operator (migration operator) is

sensitive to data sampling and background velocity model. Likewise, migration via

adjoint operators produces low-resolution images of the subsurface. Posing seismic

imaging as an inverse problem leads to a procedure where the inversion of the lin-

earized forward modelling operator can retrieve an image that honours the seismic

observations. Formulating imaging as an inverse problem, besides, allows one to

include model space constraints to improve the quality and resolution of subsur-

face images. This thesis concentrates on the development of efficient and accurate

methods for linearized imaging also called least-squares migration. Developing effi-

cient algorithms for least-squares migration is a vital step in better understanding

the earth’s subsurface structure. However, computational requirements and proper

data conditioning are some of the barriers that prevent least-squares migration from

becoming a routinely used processing workflow. As part of the development of prac-

tical algorithms for least-squares migration, we took advantage of adaptive signal

processing strategies and the computational efficiency of preconditioning techniques.

We develop scalable algorithms for least-squares migration with less memory and
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computation time requirements. Our goal is to achieve similar imaging results with-

out compromising the accuracy of the least-squares migration algorithm. Given

that the least-squares migration method is sensitive to the accuracy of the seismic

source function, the thesis also examines the pervasive problem of seismic source

estimation and provides an algorithm for seismic source estimation that does not

require the traditional minimum phase assumption. Imaging tests with synthetic

data and a real marine dataset (Mississippi Canyon, north-central Gulf of Mexico

south of Louisiana) exemplify the algorithms proposed in this thesis.
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Albert Einstein:

The most practical solution is a good theory.

I dedicate this thesis to my parents, my sister and my brother.
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CHAPTER 1

Introduction

1.1 Overview

Geophysical sensing via the seismic exploration method uses seismic wavefields ac-

quired on the surface of the earth to estimate images of the subsurface. These

images help geoscientists to conduct structural and stratigraphic interpretation of

the subsurface. Seismic images are also required to explore, develop and moni-

tor reservoirs of conventional and unconventional resources. Migration (or Seismic

Migration) is the term often used to designate techniques and methodologies for

imaging the earth’s interior (Claerbout, 1971a). Migration methods are based on

the numerical solution of the wave equation. The process of generating synthetic

data from an earth model is often called forward modelling. In our case, linearized

forward modelling is given by demigration operator. In a nutshell, the input to a

demigration operator is a reflectivity model of the subsurface, and the output is the

seismic data (prestack data 1). Conversely, the input to a migration operator is the

seismic data, and the output is an image of the subsurface reflectivity.

Migration and demigration operators are not an orthogonal pair. In fact, one is the

adjoint 2 of the other. In other words, the application of the demigration operator

to an estimated model of the reflectivity does not predict the recorded data. To

honour the recorded wavefield and to emphasize good features on the expected im-

age of the reflectivity, one can pose imaging as an inverse problem (Chavent and

1Volume of data given as a function of time, source, and receiver coordinates.
2Adjoint of a matrix is the complex conjugate of that matrix.

1
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Plessix, 1999; Nemeth et al., 1999; Duijndam et al., 2000; Kuhl and Sacchi, 2003;

Plessix and Mulder, 2004; Symes, 2008; Kaplan et al., 2010a,b; Kazemi and Sacchi,

2015). The solution to the aforementioned problem is often called least-squares mi-

gration. Least-squares migration permits one to obtain images of the subsurface that

honour the data. Also, it allows one to include regularization constraints into the

formulation of the imaging problem. Regularization constraints incorporate a priori

information about the subsurface or about features that one would like to emphasize

in the reflectivity image. To date, running least-squares migration as a routinary

process in industrial environments has encountered several problems. For instance,

least-squares migration is known for demanding fast computational resources with

massive memory (Marfurt and Shin, 1989; Mulder and Plessix, 2004a,c). Numerical

drawbacks might also prevent the adoption of least-squares migration algorithms.

The latter includes the slow convergence of iterative solvers in the presence of incor-

rect velocity and source signature, appropriate estimation of tradeoff parameters,

and operator mismatch (Nemeth et al., 1999; Fletcher et al., 2016).

1.2 Seismic data

In exploration seismology, for each source, receivers are used to record wavefields on

the surface of the earth. The time series recorded by each receiver is often called

a seismic trace or a seismogram. The group of traces generated by a given shot is

referred to as a common shot gather (Figure 1.1). In a 2D seismic acquisition, one of-

ten works with a couple of hundreds of common shot gathers. These gathers contain

information about the recorded wavefields reflected by subsurface interfaces. The

final goal of seismic exploration is to image earth’s interior and to provide informa-

tion about subsurface geological structures in an area of study. Migration algorithms

are capable of estimating these images. In a nutshell, migration algorithms can be

applied before stacking (prestack migration) or after stacking (poststack migration).

Poststack data are processed seismic data that imitate a data volume acquired with

source-receiver pairs at the same position; sometimes referred to as the zero offset

experiment. Poststack migration occupied a special place in seismic data process-

ing and imaging until the early eighties. Today, accurate migration algorithms for

imaging complex media prefer prestack data. In this thesis, we focus on prestack

migration techniques. In prestack seismic migration we first back propagate the
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receiver side wavefield and forward propagate the source side wavefield. Then, by

cross-correlating, the propagated wavefields at different depths (Claerbout, 1971a)

one forms an image of the subsurface. This process, which originates from pure

physical intuition, can also emerge from a precise mathematical formulation that

adopts linearized wave propagation theory (Stoffa et al., 1990).

Figure 1.1: Schematic representation of the geometry of source and receivers
for a common shot gather (CSG).

1.3 Imaging

Seismic migration aims to produce accurate structural and stratigraphical images

of the subsurface. Different migration methods have been proposed and extensively

studied by applied geophysicists. Migration methods are divided into two broad

categories. The first type is composed of methods based on ray-tracing such as

Kirchhoff migration (Schneider, 1978). Kirchhoff migration methods are computa-
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tionally efficient and are adaptable to non-regular acquisition geometries. Another

category of methods adopts the wave equation to formulate migration as a wave-

field extrapolation process. Although wave equation methods are computationally

expensive, they provide accurate wavefield extrapolation and high-quality images

for complex velocity models. In this approach, one can solve either the one-way

or the two-way wave equation (Gazdag, 1978; Stolt, 1978; Gazdag and Sguazzero,

1984; Stoffa et al., 1990; Baysal et al., 1983; McMechan, 1983; Whitmore, 1983).

In this thesis, we have adopted one-way wave equation theory to solve the acous-

tic wave equation and to design propagators for forward modelling (demigration)

and migration. We also assume that data measurements contain only the pressure

component. Besides, we presume input data that has been properly preprocessed

to eliminate free surface and interbed multiple reflections (Guitton, 2005; Griffiths

et al., 2011; Weglein et al., 2011).

Imaging can be cast as a linear problem. One can imagine that migrating a seismic

dataset is equivalent to multiplying the data (stored in vector form) by a linear

operator or matrix. However, it is important to mention that in most cases it is

not possible to represent a migration algorithm via a matrix that operates on a vec-

tor. Therefore, the action of migration operators on seismic data will be calculated

on the fly via matrix-free operators. Another factor that we should take into con-

sideration is that migration techniques often introduce artifacts on images. These

artifacts arise from the approximations which were made at the time of designing

the migration operators and from the incompleteness of the data.

A substantial number of authors have studied the problem of artifacts in seismic mi-

gration (Gray et al., 2001; Herron, 2000; Gray, 2013). Artifacts can be minimized by

adopting data regularization techniques before imaging (Fomel and Guitton, 2006).

They can also be attenuated by least-squares migration algorithms (Chavent and

Plessix, 1999; Nemeth et al., 1999; Duijndam et al., 2000; Kuhl and Sacchi, 2003;

Plessix and Mulder, 2004; Symes, 2008; Kaplan et al., 2010a,b). In least-squares

migration, one tries to find a reflectivity model that fits the seismic observations.

In general, we adopt constraints to minimize artifacts that are introduced by data

incompleteness, inaccuracies in the velocity model and poor illumination (Kuhl and

Sacchi, 2003). Images estimated via least-square migration honour the recorded

wavefield and show enhanced vertical and lateral resolution when compared to im-
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ages obtained via classical migration methods (Nemeth et al., 1999; Kuhl and Sacchi,

2003; Kazemi and Sacchi, 2015). Last, this thesis investigates least-squares migra-

tion with one-way wave equation operators. One-way operators are computationally

affordable, and they often provide a reasonable approximation to the propagating

wavefield (Mulder and Plessix, 2004b).

In this dissertation, we have designed forward and adjoint operators that are neces-

sary for the least-squares migration. In other words, the migration problem is posed

as a linear inverse problem solved via an semi-iterative method: the method of Con-

jugate Gradient (CG) (Hestenes and Stiefel, 1952). The CG method requires the

iterative application of forward and adjoint operators. We have considered forward

and adjoint operators that are suitable for realistic prestack migration by allowing

for propagation in vertically and laterally varying media. Also, we have constrained

the least-squares migration problem by considering smoothness in the L2 norm of

the reflectivity images. It is important to mention that one could have also explored

non-quadratic constraints as in Wang and Sacchi (2006). However, non-quadratic

constraints lead to non-linear problems that are difficult to solve and, in general,

are too unstable for practical industrial applications.

Although least-squares migration is a powerful technique for minimizing migration

artifacts, its computational cost requires careful analysis. For today’s computer

resources, it is challenging to implement least-squares migration methods in their

full potential for standardized industrial imaging. The calculation of the inverse

of the Hessian 3 dominates the cost of least-squares migration. One could reduce

the cost of inverting the Hessian by approximating its inverse. Several interesting

articles have tried to address the problem mentioned above (Hu et al., 2001; Etgen,

2002; Guitton, 2004; Yu et al., 2006; Lecomte, 2008; Toxopeus et al., 2008; Naoshi

and Schuster, 2009; Kazemi and Sacchi, 2014a). Preconditioning the least-squares

migration algorithm, for instance, also results in a substantial reduction of computa-

tional cost. Preconditioning is adopted to increase the convergence rate of iterative

algorithms such as the Conjugate Gradient method (Rickett, 2003; Symes, 2008;

Nammour and Symes, 2009; Herrmann et al., 2009; Demanet et al., 2012; Guitton,

2004; Kazemi and Sacchi, 2014a; Huang et al., 2016).

3If the forward or de-migration operator is given by A and the adjoint or migration operator is
given by AT , the Hessian is defined via ATA. Strictly speaking, this definition requires linearity.
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1.4 Main contributions

In this thesis we aimed to alleviate the computational cost of least-squares migra-

tion algorithm for large data sets. To date, adoption of least-squares migration

algorithms by seismic data processing companies has been slow. So far, the devel-

oped algorithms could not satisfy the needs of industry. We realized that devel-

oping efficient algorithms for least-squares migration is a vital step for improving

subsurface imaging. High-resolution images of the subsurface with correct ampli-

tude information can be obtained by the use of least-squares migration. However,

the computational cost of least-squares migration makes it unattractive for seismic

data processing in industry processing workflow. Even by improving the compu-

tational power of computers, it is crucial to develop efficient imaging algorithms

as there will always be demand for imaging increasingly dense data acquired over

large extensions. We took advantage of adaptive signal processing strategies and

preconditioning techniques to develop scalable algorithms for least-squares migra-

tion that require less memory and computation time than conventional least-squares

migration algorithms.

We have concentrated on two algorithms for least-squares migration as well as one

algorithm to solve the ubiquitous problem of seismic source estimation. The first

migration algorithm is inspired by work in the field of adaptive signal processing

techniques. The method uses adaptive strategies to overcome the memory limitation

that could occur when running least-squares migration with a large number of shots.

It also links the solutions of blocks of data in a way that the algorithm solves for

the original least-squares problem that one would have computed if all the data

were loaded into memory at once. The latter is used to address the input/output

(I/O) problem that arises when least-squares migration is applied to large data

sets. Data sets are often larger than the memory capacity of the computer. In this

situation, one may not be able to load and use the whole data at once. Recursive

least-squares solutions can offer a solution to the problem above. Groups of shot

gathers are read and used to recursively solve the least-squares migration problem

via an online strategy borrowed from the field of adaptive signal processing (Ng and

Plemmons, 1996). Clearly, the reduction in memory requirement and I/O might

not be considered impressive if one limits this research to 2D problems. However,

recursive least-squares algorithms might have an impact on 3D imaging. These ideas
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could also be adapted to develop (almost) real-time strategies for migrating data

while being acquired. Interesting research ideas associated with recursive solutions

have immediate application to simultaneous real-time acquisition and imaging of

marine data. In other words, acquisition parameters can change as the result of

information provided by images that are updated via an (almost) real-time recursive

least-squares migration algorithm.

The second proposed algorithm entails incorporating preconditioning to least-squares

migration to speed up the convergence of the conjugate gradient method. Precondi-

tioners are matrices (operators) that can cluster the eigenvalues of the matrix that

one would like to invert. We designed three types of preconditioners that are capa-

ble of clustering the eigenvalues of the Hessian operator. The latter improves the

convergence rate of least-squares migration. Consequently, preconditioning reduces

the computational cost of least-squares migration.

Data conditioning for imaging requires the application of a series of processing tech-

niques: signal-to-noise ratio enhancement, attenuation of multiple reflections, and

velocity model building. An estimator of the seismic source function is needed, as

well. Seismic source estimation (also known as wavelet estimation) is a classical

problem in seismic data processing. The wavelet is required to deconvolve the seis-

mic traces, and thereby, to enhance the bandwidth of the seismic data. The wavelet

is also needed to compute the downward propagating source wavefield in shot pro-

file wave equation migration (Berkhout and Verschuur, 2005; Ribodetti et al., 2011;

Fletcher et al., 2016). Having the correct wavelet might not be a critical issue in

classical migration methods via adjoint operators. However, in least-squares migra-

tion one of the steps involves estimating a model that must fit the data. Fitting

the data requires the source wavelet function be estimated a priori and removed

from the data. Alternatively, one can incorporate the source function to the for-

ward (demigration) operator. It is evident that the proposed least-squares migration

algorithms require source processing; this is the main reason we have also studied

the source estimation problem and proposed a new algorithm for blind deconvolu-

tion of seismic data (Kazemi and Sacchi, 2014b). Specifically, we have developed a

multichannel blind deconvolution algorithm that makes no assumptions about the

amplitude and phase spectra of the source signature. In other words, we are avoid-

ing the standard minimum phase wavelet assumption (Robinson and Treitel, 1964).

The model assumes that the wavelet is stationary in time and does not consider
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attenuation in the formulation.

1.4.1 Organization of thesis

Chapter 1 reviews the field of seismic migration and describes the layout of this

thesis.

Chapter 2 investigates the application of the Born approximation and the definition

of the forward (demigration) and adjoint (migration) operators. Particular attention

is given to one-way operators.

Chapter 3 proposes a block row recursive least-squares algorithm to solve the linear

system of equations of pre-stack least-squares depth migration. Recursive estimates

of large systems of equations in the context of least-squares fitting is a common

problem in different fields of study. For example, recursive adaptive filtering is ex-

tensively used in signal processing and control applications (Regalia, 1994; Stearns,

1985). The necessity of recursive solutions to least-squares problems stems from the

need for real-time and fast signal processing strategies.

Chapter 4 investigates the design and application of three types of precondition-

ers. Preconditioning is necessary for improving the convergence of the Conjugate

Gradient method. The Conjugate Gradient method is an algorithm for the solution

of symmetric and positive definite systems of equations. The Conjugate Gradient

method can be regarded as an exact method because it produces the exact solution

in a finite number of iterations. In practical terms, however, it behaves as an iter-

ative solver where the solution of the linear system of equations improves in each

iteration. The speed at which the iterative solution coverages to the true solution

is controlled by the condition number of the system of equations (Shewchuk et al.,

1994; Hestenes and Stiefel, 1952). Preconditioning is adopted to replace the original

system of equations by one with a smaller condition number. Therefore, the speed

of convergence of the algorithm improves. With modern computer resources, least-

squares migration is considered a research problem that only in recent years has

started to be adopted by industry (Salomons et al., 2014). Least-squares migration

could gain acceptance in the industry if one can solve the problem using a small

number of iterations. The latter is often not doable, and therefore, preconditioners

are introduced as an alternative to approximate the Hessian to a form that can

be inverted in a small number of iterations. The thesis introduces three types of
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preconditioners. The first two preconditioners belong to the diagonal scaling cate-

gory, and the third one is a filter-based approach which approximates the Hessian

operator by local convolutional filters.

Chapter 5 describes a new source estimation algorithm. The seismic source must

be provided as an input parameter to the proposed prestack least-squares depth

migration algorithms. In this chapter, we introduce and apply a multichannel blind

deconvolution technique to solve for a multichannel impulse response of the sub-

surface. As a by-product of the algorithm, we can estimate the source signature

which is adopted for least-squares migration. By using the estimated source signa-

ture, the forward modelled data via the forward (demigration) operator will show

similar source signature characteristics to that of the acquired data. The proposed

algorithm is called Sparse Multichannel Blind Deconvolution (SMBD)(Kazemi and

Sacchi, 2014b). The method is a modification of the multichannel blind deconvo-

lution technique often called Euclid deconvolution where the multichannel impulse

response of the earth is estimated by solving a homogeneous system of equations

(Xu et al., 1995; Rietsch, 1997a,b). Classical Euclid deconvolution is unstable in

the presence of noise and requires the correct estimation of the length of the seismic

wavelet. The proposed method, on the other hand, can tolerate moderate levels of

noise and does not require a priori knowledge of the length of the wavelet. SMBD

solves the homogeneous system of equations arising in Euclid deconvolution by im-

posing sparsity on the unknown multichannel impulse response.

Finally, Chapter 6 concludes the dissertation and provides advice about potential

future research directions.



CHAPTER 2

The Born approximation and forward/adjoint pairs

2.1 Introduction

This chapter investigates the derivation of linearized forward and adjoint operators

for shot profile one-way wave equation migration. We will use the Born approxi-

mation to derive the forward modelling operator and the adjoint operator. These

operators are necessary for developing iterative algorithms for least-squares migra-

tion. We will use these operators throughout the thesis.

2.2 The Born approximation: forward/demigration op-

erator and its adjoint

We start with the description of wave motion in an elastic media. The generalized

Hooke’s law connects stress τ and strain ε

τij = Cijklεkl , (2.1)

where indices i, j, k, l can take values from one to three. In general, the stiffness

matrix C has 81 coefficients. Considering symmetries and homogeneity, we can

decrease the number of the elements of the stiffness matrix to two (Sheriff and

Geldart, 1995). For isotropic media, the number of coefficients of the stiffness matrix

10
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reduces to two, which are the well-known Lame parameters: λ and μ. Hooke’s law

for isotropic media reduces to the following expression

τij = λδijεkk + 2μεij . (2.2)

To obtain the equation of motion that describes the propagation of waves in elastic

media, one needs to replace the stress-strain expression in Newton’s second law of

motion. The latter leads to the well-known equation of motion for displacements u

for waves propagating in an elastic media

ρ
∂2u

∂2t
= ∇λ(∇.u) +∇μ.[∇u+ (∇u)T ] + (λ+ 2μ)∇∇.u− μ∇×∇× u+ f , (2.3)

where f is the external force, ρ is the density and ∇ and ∇× indicate divergence and

curl operators, respectively. The first two terms on the right hand side of equation

2.3 contain gradients in Lame parameters which stem from the inhomogeneity of

subsurface materials. Ignoring these gradients and assuming constant density, leads

to a simplified form of equation 2.3

ρ
∂2u

∂2t
= (λ+ 2μ) ∇∇.u− μ ∇×∇× u+ f , (2.4)

or
∂2u

∂2t
= v2p ∇∇.u− v2s ∇×∇× u+ f , (2.5)

where vp indicates compressional velocity and vs denotes shear velocity. Moreover,

one can separate the S-waves and P-waves by applying divergence and curl operators

to equation 2.5 (Dellinger and Etgen, 1990). This leads to equations of motion in

terms of potentials. Volumetric waves obey the wave equation for the scalar potential

θ
∂2θ

∂2t
− v2p∇2θ = fP , (2.6)

similarly, shear waves, obey the equation of motion for the vector potential Ψ

∂2Ψ

∂2t
− v2s∇2Ψ = fS , (2.7)

where θ = ∇.u and Ψ = ∇ × u. In this thesis, we will only focus on equation

2.6. In other words, we will represent the earth by an acoustic and isotropic media

with constant density. We consider each layer to be homogenous, however, we allow
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variation of velocity in the lateral and vertical directions. This assumption is fre-

quently valid for imaging purposes. However, it is clear that a full elastic treatment

is required if our goal is to estimate subsurface material properties (Mora, 1987).

Moreover, our assumptions are not valid for geological structures composed of, for

instance, anisotropic shales, as shown by Vestrum and Muenzer (1997) and others.

We should also point out that the Born approximation assumes that multiples have

been suppressed in the seismograms.

Considering a two dimensional constant density acoustic and isotropic medium with

explosive source at location xs, equation 2.6 in the frequency domain reads

(ω2s2 +∇2)θ = f δ(x− xs), (2.8)

where s is slowness (reciprocal of velocity) and ω is temporal frequency. To start

the analysis one can assume a background smooth velocity (slowness) field that

is known. We can represent the squared slowness and the scalar field in terms of

perturbations and backgrounds as follows

s2 = s20 +m,

θ = θ0 +Δθ,
(2.9)

where s0 and θ0 are background slowness and wavefield, respectively. The parameter

m is the perturbation in slowness-squared. Similarly, Δθ is the perturbation in the

wavefield due to m. The scattering potential m can also be considered proportional

to the seismic reflectivity (Clayton and Stolt, 1981).

By inserting equations 2.9 into equation 2.8 one can now write

(ω2(s20 +m) +∇2)[θ0 +Δθ] = f δ(x− xs), (2.10)

and by using the fact that

(ω2s20 +∇2)θ0 = f δ(x− xs), (2.11)

equation 2.10 simplifies to

(ω2s20 +∇2)Δθ = −ω2m θ, (2.12)
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where Δθ = Δθ(ω,x) and θ = θ(ω,x).

Now, by using the Green’s function G0 satisfying the wave equation corresponding

to the reference medium

(ω2s20 +∇2) G0 = δ(x− xs), (2.13)

the perturbed wavefield can be calculated via

Δθ(ω,x) = −
∫

G0(x, ω;x
′) (ω2m(x

′
)[θ0(ω,x

′
) + Δθ(ω,x

′
])dx

′
. (2.14)

The last equation is non-linear and it can be linearized by reinserting Δθ in the

integral and by keeping first order terms

Δθ(ω,x) ≈ −
∫

G0(x, ω;x
′) ω2m(x

′
) θ0(ω,x

′
) dx

′
. (2.15)

In general, if the explosive source is at position xs and the receivers are at spatial

coordinates xr, equation 2.15 can be written as

d(ω,xr,xs) = Δθ(ω,xr,xs) ≈ −
∫

G0(xr,xs, ω;x
′) ω2m(x

′
) θ0(ω,x

′
) dx

′
, (2.16)

which is the forward wavefield modelling operator. In other words, we have

d(ω,xr,xs) = −
∫

G0(xr,xs, ω;x
′) ω2m(x

′
) θ0(ω,x

′
) dx

′
. (2.17)

The last equation can be written in compressed matrix-times-vector multiplication

form as follows

d = Am, (2.18)

where A is our shot profile forward modelling/de-migration operator, d denotes

the seismic measurements represented by a vector and the vector m stands for the

acoustic potential. Clearly, writing linear operators in matrix-vector form simpli-

fies our notation but it is important to stress that the matrix A is never formed.

Applying A to the vector m is equivalent to applying forward modelling. In other

words, the data d(ω,xr,xs) is computed by operating on a subsurface model m(x).

If A is the forward operator, one can also define the adjoint operator AT which is

the transpose of the matrix A. In function form, the adjoint is given by the following
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Figure 2.1: True point diffractor model representing the reflectivity of the
subsurface.

expression

madj(x) = = −
∫
x′
s

∫
x′
r

∫
ω
(ω2θ∗0(x, ω;x

′
s) G

∗
0(x

′
s,x

′
r, ω;x) d(x

′
r,x

′
s, ω)) dω dx

′
r dx

′
s,

(2.19)

which is equivalent, in matrix-vector form, to

madj = ATd . (2.20)

One can combine equations 2.18 and 2.20 to build a relationship between the adjoint

migrated image and the true scattered potential (reflectivity)

madj = AT Am . (2.21)

The last equation shows that the image obtained via the adjoint operator is not

equal to the true image m unless ATA = I. The latter is not true because AT is

not the inverse of A. However, in classical migration one adopts adjoint operators
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Figure 2.2: Simulation of the recored data using equation 2.17.
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Figure 2.3: Adjoint migrated image using equation 2.19.

for imaging by considering that ATA is close to a diagonally dominant operator

and, therefore, within a scale factor, one can assume that madj ≈ m. One could

also say that madj is a blurred version of m where the blurring operator is given by

the Hessian operator H = ATA. Therefore, the solution of our problem involves

inverting the Hessian operator

m = H−1madj . (2.22)

The latter will be the core of this thesis. However, we stress that the direct inversion

ofH is not possible. Therefore, we will provide a semi-iterative solution that includes

constraints.

2.3 Examples

To have a better understanding of the application of forward and adjoint operators,

we generated a simple model composed of diffractors (Figure 2.1). Now consider

a point source in the middle of the model at the surface. We will try to simulate

the data by using our forward modelling operator (i.e., by using equation 2.17).
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Figure 2.4: Inverted image using equation 2.22.

Receivers are located on the surface with an interval of 10 m and they are all

recording the reflected wavefield generated by the point source in the middle of the

model. Figure 2.2 shows the modelled data for the numerical experiment. The

source function is a Ricker wavelet with a dominant frequency of 30 Hz and time

sampling interval of 4 ms.

Equation 2.19 was adopted to migrate the recorded data. Figure 2.3 shows the

migrated image. As it is evident from the image, the migrated image resembles

the true reflectivity model, but there are amplitude and resolution problems. To

balance the amplitudes and increase the resolution we need to remove the action of

Hessian operator from the migrated image. By using equation 2.22 we can achieve

the goal above. The algorithms for the solution of equation 2.22 will be explained

in next chapter. Figure 2.4 shows the high-resolution image that was obtained after

removing the effect of the Hessian from the migrated image. One can argue that

the inverted model in Figure 2.4 honours the recorded data, shown in Figure 2.2,

better than the adjoint migrated image (Figure 2.3). To prove this behaviour, we

applied equation 2.17 to the migrated and inverted images. Figure 2.5 shows the

predicted data computed by modelling the migrated image and Figure 2.6 depicts

the predicted data obtained by modelling the inverted image. As it is evident from
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Figure 2.5: Predicted data using equation 2.17 and adjoint image as a sub-
surface reflectivity.
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Figure 2.6: Predicted data using equation 2.17 and inverted image as a
subsurface reflectivity.



CHAPTER 2. THE BORN APPROXIMATION 20

the images, the inverted model can better predict the original recorded data.

2.4 Summary

The Born approximation was adopted to derive forward and adjoint operators for

shot profile least-squares migration algorithms. The adjoint and forward pairs are

necessary for communicating from data to model and model to data spaces. These

operators, in the upcoming chapters, are the engines for semi-iterative solutions to

the least-squares migration problem.



CHAPTER 3

Block row recursive least-squares migration1

3.1 Introduction

Seismic migration aims to produce true structural and stratigraphical images of

the subsurface. Different migration algorithms have been studied in the geophys-

ical literature. Migration methods can be divided into two main categories. The

first category contains migration techniques that adopt ray-tracing (e.g., Kirchhoff

migration (Schneider, 1978)). Migration based on the ray-tracing method is compu-

tationally efficient, and it is easily adaptable to a non-regular acquisition geometry.

Another category contains methods that adopt one-way and two-wave wave equation

propagators (wave equation migration methods) . Although wave equation methods

are computationally expensive, they provide accurate wavefield extrapolation and

high-quality images for complex areas. In this approach we solve for one-way or

two-way wave equations (Gazdag, 1978; Stolt, 1978; Gazdag and Sguazzero, 1984;

Stoffa et al., 1990; Baysal et al., 1983; McMechan, 1983; Whitmore, 1983). The

action of these migration operators will be calculated on the fly because it is not

possible to have them in explicit matrix form. Moreover, it is worth mentioning that

each one of the migration techniques has its own artifacts. These artifacts arise from

approximations which were made at the time of designing the migration operators

and also from the lack of optimal data density.

1A version of this chapter has been published in the journal Geophysics. Nasser Kazemi and
Mauricio D. Sacchi (2015). Block row recursive least-squares migration. Geophysics, 80(5), A95-
A101.

21
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These artifacts can be removed by adopting data regularization techniques before

imaging (Fomel and Guitton, 2006). Artifacts can also be attenuated by imple-

menting least-squares migration (Chavent and Plessix, 1999; Nemeth et al., 1999;

Duijndam et al., 2000; Kuhl and Sacchi, 2003; Plessix and Mulder, 2004; Symes,

2008; Kaplan et al., 2010a,b). In least-squares migration, we try to fit the data by

inverting the demigration operator and in general, we adopt constraints to minimize

the artifacts produced by data incompleteness. However, the computational cost as-

sociated to solving a least-squares problem is high and with the present computer

resources it is really difficult to implement the least-squares migration method in

its full potential for industrial applications. In other words, the direct inverse com-

putation of the Hessian is expensive, and we need to approximate its inverse (Hu

et al., 2001; Etgen, 2002; Guitton, 2004; Yu et al., 2006; Lecomte, 2008; Toxopeus

et al., 2008; Naoshi and Schuster, 2009; Kazemi and Sacchi, 2014a). Another way of

reducing the computational cost of least-squares migration is by adopting encoding

methods (Dai et al., 2011; Wei et al., 2010). The other way to look at the problem

is to apply least-squares migration in a recursive fashion. In this approach, we can

implement the technique on a limited memory machine and in a fast way.

Recursive least-squares algorithms are extensively used for adaptive filtering in the

case of dynamic and stationary environments. The main idea is to implement infinite

memory algorithms by solving the problem via introducing one data point at a time

to the system of equations (e.g., adding one row at the time to the data matrix,

or in our case, to the demigration operator). By infinite memory algorithm, we

mean a recursive method that operates at a given time on a small segment of data

but without forgetting the influence of previous segments of data in the current

solution. However, little effort has been made by the geophysical community to

adapt this technique for different practical applications. This is mainly because

recursive least-squares algorithms require actual matrices. In large scale problems

(e.g., migration) everything will be done on the fly and also to add or remove one

row from the system of equations (e.g., demigration operator) has no real physical

meaning. Moreover, the one data point update scheme in the recursive least-squares

approach causes stability issues. To tackle these shortcomings, one can update the

system of equations in blocks by introducing more than one data point at each step,

making the algorithm faster and more stable. This kind of algorithms belongs to the

family of block row or block column recursive least-squares. However, in this family,



CHAPTER 3. RECURSIVE LEAST-SQUARES MIGRATION 23

we need to explore structures in the data matrix to make the algorithms faster and

also update the solution in a way that in the end, we solve for the original least-

squares problem with sufficient accuracy. However, in most practical geophysical

inverse problems we do not have explicit matrices. Of course, there are cases such as

in Autoregressive (AR) filtering applications where one can explore unique structures

in the data matrix to derive highly efficient recursive algorithms. For example,

Naghizadeh and Sacchi (2009) used a rank one update of the recursive least-squares

fitting with an exponentially weighted forgetting factor for f − x adaptive filtering

in the context of seismic interpolation. It is evident that this technique cannot be

applied to least-squares migration.

In this chapter, we propose a block row recursive method to solve the least-squares

migration problem. The method, in essence, is close to the work of Ng and Plem-

mons (1996). We consider recursive least-squares solutions of the wave equation

migration with sliding windows involving several rank K down dating and updating

computations. The least-squares estimator can be found by solving a small least-

squares migration problem in each step, recursively. From the practical point of

view, to name a few, the blocks can be a group of shot gathers, group of frequency

slices or group of offset classes.

The outline of the chapter is as follows. First, least-squares migration will be ex-

plained. Then, we will introduce a block row recursive algorithm. Moreover, we will

discuss some of the practical considerations for the proposed method and compare

the computational cost of the method with full least-squares migration and examine

the efficiency of the proposed method on a simple toy example and the Marmousi

model. Finally, the main conclusions will be summarized.

3.2 Least-squares migration

A data generating model under the action of the demigration operator A can be

written as

d = Am+ n, (3.1)

where d is N × 1 vectorized version of the recorded data at the surface, m is the

migrated model with M × 1 and n is the additive noise and, often, also a term to

absorb waves not modelled by the demigration operator. Using the adjoint operator
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of demigration, one can estimate the migrated model

m̂ = ATd, (3.2)

where m̂ is the adjoint estimated image of the earth and AT is the migration op-

erator. While m̂ can capture the main structures of the true geological model m,

the produced model does not honour the data. In other words, application of the

demigration operator on the migrated image yields a poor data prediction. Also,

the migrated image contains blurring and sampling artifacts. These artifacts come

from the fact that migration and demigration operators are not orthogonal and the

energy of the signal in the complimentary image space of the operator will be zeroed

out. To tackle the problem, we will solve

m̃ = argmin
m

||A m− d||22 + λ ||m||22, (3.3)

where m is desired model, A is demigration operator, d is the recorded data and λ

is a regularization parameter (Nemeth et al., 1999; Kuhl and Sacchi, 2003; Kaplan

et al., 2010b). The cost function of equation 3.3 is convex and has a closed form

solution

m̃ = (ATA+ λ I)−1 ATd. (3.4)

To solve the problem efficiently, researchers take advantage of semi-iterative algo-

rithms such as well-known Conjugate Gradient algorithm (see appendix A.1). We

usually stop the iterations whenever the misfit of the normal equation reaches below

a predefined threshold (for the convergence behaviour of the Conjugate Gradient al-

gorithm see Appendix B.1). However, the computational cost of the least-squares

migration solution can be high and to make the algorithm faster, one can approxi-

mate the Hessian (i.e., ATA) inverse (Hu et al., 2001; Kazemi and Sacchi, 2014a).

In next section, we will propose a sliding window scheme for solving equation 3.3

in a recursive fashion. The main motivations behind the method are: reducing the

computational cost and at the same time producing migrated images that honour

the recorded data using memory limited resources.
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3.3 Block row recursive least-squares migration

In this section we will follow the recursive least-squares solution via rank K up-

dating and rank K downdating procedure introduced by Ng and Plemmons (1996).

However, there are some differences between the proposed method in Ng and Plem-

mons (1996) with our technique. We are not considering near Toeplitz structure for

the data matrix and also in the updating procedure, we propose to use the previous

solution of the block row setup as an initial solution for the next sliding window.

To explain the block row recursive least-squares method, let us consider again the

problem of equation 3.3. In recursive least-squares computations, it is required to

calculate m while observations are successively added to, or deleted from the system

of equations. Suppose we have estimated the model with the first set of measurement

points d0 in least-squares sense

m0 = (AT
0 A0)

−1 AT
0 d0, (3.5)

Now, the question we should ask is that by introducing new data points to the

system of equations, can the best estimate for the combined system A0 m = d0 and

A1 m = d1 be estimated using only m0 and d1? We define a new matrix

P−1
1 = AT

0 A0 +AT
1 A1, (3.6)

then we have

m1 = P1 (A
T
0 d0 +AT

1 d1), (3.7)

note that m1 is the best model for the combined system of equations. At this point

we need to eliminate d0 term from equation 3.7. Let us rewrite equation 3.6 as

P−1
1 = P−1

0 +AT
1 A1, (3.8)

and after few algebraic manipulations, one can show that equation 3.7 changes to

m1 = m0 +P1A
T
1 (d1 −A1m0), (3.9)

where P1A
T
1 is the gain factor. In the case of one data point update we can use the

Matrix Inversion Lemma (MIL) and calculate the gain factor without direct inver-
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sion. In the case of a block wise update (more than one data point update) to apply

fast calculations of the gain matrix, one could explore MIL with QR decomposition.

However, none of these approaches are applicable to least-squares migration. This

is because in seismic migration, linear operators are not given by actual matrices.

However, it is easy to show that if the system of equations satisfies some assump-

tions, we can relax the gaining factor term from equation 3.9 and solve the problem

recursively on overlapping windows via the method of Conjugate Gradients (CG).

Let us explain the method step by step. The least-squares estimator at step i can

be found by solving for the M × 1 vector m(bi) in

m̃(bi) = argmin
m(bi)

||A(bi) m(bi)− d(bi)||22 + λ ||m(bi)− m̃(bi−1)||22, (3.10)

where m̃(bi) is the least-squares solution of the model till block i and d(bi) is the

recorded data corresponding to block i with size Q × 1 and A(bi) is the Q × M

data matrix of block i and Q is the length of sliding window. Figure 3.1 shows the

schematic representation of the setup. To update the solution recursively, we will

add K data points to the system of equations and remove K data points from the

beginning of the previous data vector. We call this step the rank K updating and

downdating (see Figure 3.1 for more information). For this new configuration, one

can use

m̃(bi+1) = m̃(bi) + (AT (bi+1)A(bi+1) + λI)−1 AT (bi+1)[d(bi+1)−A(bi+1)m̃(bi)] ,

(3.11)

to estimate the best model in the least-squares sense that fits the whole system of

equations till step i+1. The second term in equation 3.11 can be interpreted as the

least-squares solution of the unpredicted part of the new data set by the solution

of the previous step. It is worth mentioning that we use CG to solve equation

3.11 and we never calculate the inverse of the Hessian (i.e., (AT (bi+1)A(bi+1) +

λI)−1). Using the previous solution as an initial model for the next block has

some advantages. This warm start for the new sliding window will result in fast

convergence of the CG method. This is mainly because the nearby data points

are highly correlated in the seismic acquisition. It is also good to point out that in

each setup we must use proper preconditioners and regularization term to cluster the

eigenvalues of the partial Hessians around one. Ng and Plemmons (1996) proved the

convergence of this recursive least-squares technique in the probabilistic terms. They
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showed that the method would converge superlinearly with probability one provided

the underlying process satisfies some assumptions. First of all, the input discrete-

time stochastic process should be stationary. Secondly, the auto-covariances of the

kernels in each step should be absolutely summable. This, in turn, will assure the

invertibility of the processes in each windowed setup. Thirdly, the variances between

the auto-covariances of the kernels between different setups should be bounded.

Finally, the stationary process has zero mean. All of these assumptions are valid for

many time series analysis problems but it is not clear if they are fully applicable to

migration. However, in some cases one can show that these assumptions more or less

are valid for migration (e.g., the acquisition system has full aperture and sufficiently

fine sampling in time and spatial directions). Moreover, the physical properties of

the medium such as slowness should be spatially invariant (Stolk, 2000). For this

idealized situation, one can follow research by Gelius et al. (2002), Sjoeberg et al.

(2003) and Lecomte (2008) where it is shown that the action of the Hessian can be

approximated by convolutional operators. Note that this relationship is only valid

for spatially invariant media (i.e., constant slowness in spatial directions).

Nevertheless, the ideas in Ng and Plemmons (1996) can be explored for migration

applications, and we will show that this method works quite well even for a complex

medium. In next section, we will show the efficiency of the proposed method using

a simple toy example and the Marmousi model.

3.4 Practical considerations

It is worth mentioning that in this chapter we assume that the velocity field is known

and there is no need for residual velocity analysis. From the application point of

view, the proposed method can be implemented via different configurations. The

key element to keep in mind is the fact that we need overlapping between consecutive

blocks to assure smooth changes in the Hessians. This method can be applied on a

subset of shot gathers in the context of shot profile migration or in the frequency

domain using a subset of frequency slices with overlap. The subwavefieldset of shots

can be chosen with regular patterns (e.g., in 2D from left to right or right to left).

We cannot use a simple stochastic gradient method with random selection of shot

gathers because we need overlapping blocks. In the frequency domain, one could

start from low frequencies and move to high frequencies. Application of the proposed
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technique using near offsets (near angles) and moving to far offsets (high angles) is

also straightforward. Block row recursive least-squares method can also be extended

to 3D imaging. One has the options of using a subset of shots or offset classes as a

block, provided that a proper migration operator is chosen.

3.5 Computational cost analysis

To compare the computational cost of full least-squares migration and the proposed

block row recursive method let us assume that the number of grid points in one

coordinate direction is n, hence in 2D coordinates, there are O(n2) points. We will

borrow some of the complexity estimates from Marfurt and Shin (1989) and Mulder

and Plessix (2004a) and Mulder and Plessix (2004c). In general, one-way wave

equation has a complexity of O(nsnωn
2) for two-dimensional acquisition system

where ns is the total number of shots and nω is the number of frequency realizations

in data space. Considering the scheme described in Collino and Joly (1995), the

complexity of one-way wave equation in three dimensions increases by the factor

of n (i.e., the complexity is O(nsnωn
3)). Moreover, in the CG method in each

iteration, we need to call migration and demigration operators. Let us say CG will

converge in N iterations. So, the computational cost of the CG method for the 2D

case is about O(2Nnsnωn
2). On the other hand, the cost of block row recursive

least-squares migration in the frequency domain is O(2N̄nsnbn
b
ωn

2) where N̄ is the

average number of iterations per block, nb is the number of blocks and nb
ω is the

number of frequency realizations in each block. In the case of a subset of shot

gathers as a block, the cost will be O(2N̄nbn
b
snωn

2) where nb is the number of shot

gather blocks and nb
s is the number of shot gathers per block. Moreover, to make

the algorithm more efficient, one can image a subset of the model for each block and

reduce the cost even more. Hence, the new cost will be O(2N̄nbn
b
snωnnm) where

nm is the number of grid points of the model in the horizontal direction that covers

the illumination aperture corresponding to the geometry of the subset of shots.

In the case of 3D imaging, the I/O cost can also be drastically decreased. In the

block row recursive approach we need to load the data for each subset of shot

gathers only once, rather than repeatedly as is the case of CG applied to the full

least-squares migration problem when the data size exceeds core storage, which is

routinely the case in 3D imaging.
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3.6 Examples

In the following examples, we used shot profile wave equation adjoint and forward

operators with the split step correction in the context of adjoint, least-squares and

block row recursive least-squares algorithms.

To test the performance of the proposed method, we generated a 2D reflectivity

model (Figure 3.2a) and we used the demigration operator to produce the data set

with a 10 meters shot interval and a 5 meters receiver interval. We used a Ricker

wavelet with a dominant frequency of 30 Hz and the receivers were active for all of the

shots. Then, we applied the adjoint operator to migrate the data set (Figure 3.2b).

Figures 3.2c and d show the least-squares and the block row recursive approach

migrated models, respectively. In the case of the block row recursive approach, we

used 10 consecutive shot gathers in each group, and we deleted 5 shot gathers from

the beginning of the previous windowed setup and added 5 new shot gathers to the

end of the new windowed setup. The stopping criterion, for both methods, was set

to be equal to the drop of the data residual of the first iteration on the order of

106 and the regularization parameter was set to λ = 100. Please note that in the

case of the block row recursive method the stopping criterion was defined for each

block separately. The full least-squares approach converged after 13 iterations, and

in the case of the block row recursive method, the average iteration number per

block was approximate N̄ = 3. Hence, the speed up for this experiment was about

a factor of two. It is worth mentioning that for this experiment all the receivers

were active and we cannot use a second cost criterion (e.g., O(2N̄nbn
b
snωnnm)) for

the block row recursive method. The block row recursive approach did a good job

in recovering the true reflectivity model, and the result is comparable to that of

least-squares migration with the whole data at once. To show how they honour the

recorded wavefield, we used the recovered reflectivity models to predict the data

set. Figure 3.3a shows the true near offset section of the data set and Figure 3.3b

is the predicted near offset section using adjoint migrated model. Finally, Figures

3.3c and d show the predicted near offset sections using least-squares migration

and the block row recursive least-squares migration, respectively. It is clear that

the predicted near offset sections via the least-squares approach and the block row

recursive methods are in good accordance with the true near offset section.

Next, we applied the method to the Marmousi model. It is worth mentioning that
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Figure 3.1: Schematic representation of the block row recursive least-squares
migration algorithm.

a) b)

c) d)

100

200

300

400

D
ep

th
 (

m
)

200 400 600 800 1000
Distance (m)

100

200

300

400

D
ep

th
 (

m
)

200 400 600 800 1000
Distance (m)

100

200

300

400

D
ep

th
 (

m
)

200 400 600 800 1000
Distance (m)

100

200

300

400

D
ep

th
 (

m
)

200 400 600 800 1000
Distance (m)

Figure 3.2: True and migrated reflectivity models. a) True reflectivity. b)
Image obtained via the adjoint operator (classical migration). c) Image
obtained via least-squares migration. d) Image obtained with the proposed
block row recursive least-squares migration algorithm.
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Figure 3.3: True and predicted near offset sections. a) True near offset
section. b) Adjoint predicted section. c) Least-squares predicted section. d)
Block row recursive least-squares predicted section.
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the data set was generated by the finite difference method with a Ricker wavelet

with a dominant frequency of 20 Hz. The data set consist of 240 shot gathers with

25 m shot interval that modelled with an off end survey with receivers to the left

of the source being pulled towards the right. Each shot gather consists of 96 traces

with the smallest offset being 200 m and receiver intervals are 25 m. Figure 3.4

shows the near offset section of the dataset. The non-smooth velocity model of the

Marmousi is shown in Figure 3.5a. Figure 3.5b represents the adjoint migrated image

of the Marmousi data set using shot profile wave equation migration with split step

correction. Figure 3.6a shows the least-squares migrated image of the Marmousi data

set after 15 iterations using split step Fourier migration and demigration operators as

adjoint and forward operators. The stopping criterion for full least-squares solution

was set to be equal to the drop of the data residual of the first iteration of the order

of 103 and the regularization parameter was set to λ = 1. Finally, Figure 3.6b shows

the migrated image produced by the block row recursive approach. In the case of the

block row recursive approach we tested different configurations, and finally, we used

5 consecutive shot gathers in each group, and we deleted 3 shot gathers from the

beginnings of the previous windowed setup and added 3 new shot gathers to the end

of new windowed setup. The stopping criterion for block row recursive approach was

set to be equal to the drop of the data residual of the first iteration on the order of

103 and the regularization parameter was set to λ = 1. Please note that the stopping

criterion was defined for each block separately. The average iteration number per

block was approximately N̄ = 4 and we chose nm to be one-third of the model size in

the horizontal direction. Hence, the speed up for this experiment was approximately

by the factor of six. It is worth mentioning that we obtained the same results using

different configurations. As we mentioned earlier, it is also possible to use a subset of

frequency realizations as a block. To do so, we first apply the algorithm on the low-

frequency band and then we move to mid frequencies without overlapping between

the previous and present frequency block and so on. After doing several tests, we

came to the conclusion that in the case of blocks as frequency realizations we do not

need overlapping between the blocks. However, we use the solution of the previous

blocks (i.e., the migrated model in hand) as a warm start so that we could increase

the convergence rate of the algorithm. Figure 3.7 shows the recursive algorithm’s

performance using frequency blocks. We chose three bandwidths as a low, mid and

high-frequency range blocks. Figure 3.7a depicts the migration result after using

the first block (i.e., low frequency range) and Figure 3.7b represents the result after
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Figure 3.4: True near offset section of the Marmousi model.

recursively updating the model using the previous solution and mid range frequency

block. Finally Figure 3.7c shows the result after using all three blocks. As it is clear

from the figure the recursive result using frequency blocks resembles the result of

a recursive algorithm using blocks of shots. In both cases, the block row recursive

approach did a good job in recovering the true reflectivity model, and the results are

comparable to that of the least-squares migration algorithm. Analyzing the results,

the block row recursive approach did a reasonable job in preserving the amplitude of

the reflectors and removed some of the defocusing problems of the image computed

with the adjoint operator.

To show how they honour the recorded wavefield, we used the recovered reflectivity

models to predict the data set. Figure 3.8a shows the adjoint predicted near offset

section of the data set and Figure 3.3b is the predicted near offset section using the
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Figure 3.5: Velocity field of the Marmousi model and corresponding shot
profile wave equation migrated image. a) True velocity field. b) Image
obtained via migration (adjoint operator).
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Figure 3.6: Comparison of the results of full least-squares migration and the
proposed method on the Marmousi model. a) Full least-squares migrated
model. b) Block row recursive least-squares migration with blocks of shot
gathers.
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Figure 3.7: Block row recursive algorithm using the frequency blocks. a)
Migration result after using low frequency block. b) Migration result after
using low and mid frequency blocks. c) Migration result after using low,
mid, and high frequency blocks.
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Figure 3.8: Adjoint migration and least-squares migration predicted near
offset sections. a) Adjoint predicted section. b) Least-squares predicted
section.

conventional least-squares migrated model. Finally, Figures 3.9a and b show the

predicted near offset sections using block row recursive approach models with shot

and frequency blocks, respectively. It is clear that the predicted near offset sections

via the least-squares approach and the block row recursive methods are in good

accordance with the true near offset section. Moreover, in both cases (i.e., subset

of shots and frequency bands as blocks) the amplitudes are well preserved and also

the detailed features are better predicted than the adjoint predicted dataset and the

results are in good accordance with the true near offset section shown in Figure 3.4.
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Figure 3.9: Block row recursive predicted near offset sections. a) Predicted
section using the reflectivity model inverted via blocks of shots. b) Pre-
dicted section using the reflectivity model inverted via blocks of frequency
realizations.
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3.7 Summary

Recursive estimates of large systems of equations in the context of least-squares

fitting is a common practice in different fields of study. For example, recursive

adaptive filtering is extensively used in signal processing and control applications.

The necessity of solving least-squares problems recursively stems from the need for

fast real-time signal processing strategies. The computational cost of least-squares

solvers can also limit the applicability of this technique in geophysical problems.

We consider a recursive least-squares solution for least-squares wave equation mi-

gration with sliding windows involving several fixed rank downdating and updating

computations. If we use enough data in each windowed setup the spectrum of the

preconditioned system is clustered around one and the method will converge su-

perlinearly with probability one. Numerical experiments are reported in order to

illustrate the effectiveness of the technique for least-squares migration. The method

uses block wise update of the demigration operator via rank K update and down-

date in each setup while the new data points are successively added to the data

vector. In each windowed setup, CG algorithm is used to solve the system of equa-

tions in a least-squares sense. To have fast convergence, the solution of one block

is used as an initial solution for the next block. This warm start will result in fast

convergence of the CG algorithm. This is supported by the fact that nearby blocks

are highly correlated. The results of applying this technique on a simple toy and on

the Marmousi model convinced us that the block row recursive method could be a

practical tool for improving the spatial resolution of migrated images.
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Model domain pre-conditioners for extended least-squares

wave equation migration

4.1 Introduction

Migrating the regularized data (Fomel and Guitton, 2006), or implementing least-

squares algorithms (Chavent and Plessix, 1999; Nemeth et al., 1999; Duijndam et al.,

2000; Kuhl and Sacchi, 2003; Plessix and Mulder, 2004; Symes, 2008; Kaplan et al.,

2010a,b) can alleviate artifacts introduced by acquisition footprint, and the results

will honour the recorded wavefield. However, the computational cost of the least-

squares migration approach can overshadow its merits. Application of least-squares

algorithms on blended data (Dai et al., 2011; Wei et al., 2010; Cheng et al., 2016)

or in a recursive fashion (Kazemi and Sacchi, 2015) are some of the alternative

ways of reducing its computational cost. Authors also tried to approximate the

inverse of the Hessian (Hu et al., 2001; Etgen, 2002; Guitton, 2004; Yu et al., 2006;

Lecomte, 2008; Toxopeus et al., 2008; Naoshi and Schuster, 2009; Kazemi and Sacchi,

2014a), instead of adopting direct inversion methods. Interesting research, aiming

to approximate the inverse of Hessian operator, can be classified under the umbrella

of equation (4.12). The following researchers have tried to approximate the action of

the Hessian via coefficients which are a function of phase and space. For instance,

Claerbout and Nichols (1994) were able to extract information about the inverse

of Hessian from a single application the Hessian on synthetic images. The latter

was also followed by Rickett (2003) and resulted in similar solutions. Later on,

40
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Guitton (2004) introduced a method based on non-stationary convolutions. In his

method, the coefficients are only a function of phase. To have a proper homogeneity

behaviour in phase domain, Symes (2008) invoked space dependent coefficients with

weights that are proportional to the inverse of spatial wavenumbers. Nammour and

Symes (2009) applied angle dependent scaling scheme to approximate the action of

Hessian and its inverse on prestack migrated images. The coefficients, in this case,

are a function of space and angle. Finally, Herrmann et al. (2009) explored the

action of Hessian as a diagonal operator in Curvelet domain and Demanet et al.

(2012) approximated the action of Hessian with coefficients computed by the action

of Hessian on randomized test functions built in Curvelet domain. Demanet et al.

(2012) argue that the randomness of the test functions can capture the action of the

Hessian on a much larger linear subspace than is usually the case with a deterministic

method (i.e., applying the Hessian on an adjoint migrated image). Recently, Huang

et al. (2016) approximated the Hessian via a pseudo-differential scaling operator

which is a function of space and dip.

Using preconditioners can also reduce the computational cost of least-squares mi-

gration. If we define an operator that clusters the eigenvalues of the Hessian and

reduces the condition number of it, that operator is considered an optimal pre-

conditioner. An approximated inverse of the Hessian operator has the potential

of clustering the eigenvalues of the operator. By this logic, we will try to use the

approximated version of the inverse of Hessian operator as a preconditioner to ac-

celerate the convergence rate of least-squares migration. We will use three different

preconditioners. The first preconditioner is built via a row averaging operator ap-

plied to the Hessian. The second preconditioner is designed by exploring the action

of the Hessian operator on random models. Finally, we use the filter-based method

introduced by Kazemi and Sacchi (2014a) to derive a new class of preconditioners.

The filter-based preconditioner, in essence, is close to research proposed by Guitton

(2004) and Nammour and Symes (2009). It considers the action of the partial Hes-

sian operators in the context of shot profile least-squares migration as stationary

convolutional operators. This follows from the fact that each partial Hessian expe-

riences the spatially invariant portion of the medium under its action. Intuitively

speaking, application of these convolutional filters on prestack migrated image will

correct amplitudes and increase the resolution of the partial images.

The outline of the chapter is as follows. First, we formulate the extended least-
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squares shot profile migration. Next, we introduce the three proposed precondi-

tioners and use them to develop an effective Preconditioned Conjugate Gradient

algorithm to increase the convergence rate of least-squares migration. Finally, we

evaluate the performances of the techniques (i.e., least-squares migration with and

without preconditioners) on a synthetic dataset (Sigsbee2a salt model) and a real

dataset from the Gulf of Mexico (Mississippi Canyon, north-central Gulf of Mexico).

4.2 Extended least-squares migration in shot profile do-

main

It is easy to show that extended shot profile wave equation migration with split step

correction operator is linear and can be written in matrix-vector notations. This, in

turn, will help us to define the adjoint operator of migration (i.e., demigration oper-

ator). These two operators are necessary for communicating from data to model and

model to data space in the context of extended shot profile least-squares migration.

To do so, let us consider an extended 2D physical model with length M = nsnznx

and a corresponding prestack dataset in frequency domain with length N = nsnωng,

where nz is the number of samples of model in depth direction, nx is the number

of samples in horizontal direction, ns is the total number of shots, ng is the num-

ber of channels per shot and nω is the number of frequency realizations in data

space. We define the vectorized version of the physical model and the dataset as

m = [m1 m2 . . .mns ]
T and d = [d1 d2 . . .dns ]

T , respectively. Then, shot profile

wave equation migration with split step correction in matrix-vector notation can be

written as follow

m = AT d, (4.1)

where

AT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

. . .

Ans−1

Ans

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T

, (4.2)

and
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AT
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S0,j
0 P0,j

0 S1,j
0 P1,j

0 · · · Sk,j
0 Pk,j

0 · · · Snω−1,j
0 Pnω−1,j

0

S0,j
1 P0,j

1 P0,j
0 S1,j

1 P1,j
1 P1,j

0 · · · Sk,j
1 Pk,j

1 Pk,j
0 · · · Snω−1,j

1 Pnω−1,j
1 Pnω−1,j

0

S0,j
2 P0,j

2 P0,j
1 P0,j

0 S1,j
2 P1,j

2 P1,j
1 P1,j

0 · · · Sk,j
2 Pk,j

2 Pk,j
1 Pk,j

0 · · · Snω−1,j
2 Pnω−1,j

2 Pnω−1,j
1 Pnω−1,j

0
...

. . .
...

S0,j
nz−2

nz−2∏
i=0

P0,j
i S1,j

nz−2

nz−2∏
i=0

P1,j
i · · · Sk,j

nz−2

nz−2∏
i=0

Pk,j
i · · · Snω−1,j

nz−2

nz−2∏
i=0

Pnω−1,j
i

S0,j
nz−1

nz−1∏
i=0

P0,j
i S1,j

nz−1

nz−1∏
i=0

P1,j
i · · · Sk,j

nz−1

nz−1∏
i=0

Pk,j
i · · · Snω−1,j

nz−1

nz−1∏
i=0

Pnω−1,j
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.3)

where AT is an M by N matrix which can be interpreted as the migration operator

and Pk,j
i ’s are nx by nx square block matrices. To be more precise, the Pk,j

i ’s

matrices are receiver side single depth split step operators where i denotes the

depth sample, k is representative of frequency slice and j is the shot number. The

field Sk,j
i is the kth monochromatic downward continued source side wavefield with

the shot j to the ith depth sample. It is worth mentioning that the crosscorrelation

imaging condition is applied in frequency domain by summing over the frequencies

(Claerbout, 1971b; Schleicher et al., 2008).

Moreover, the data generating model under the action of shot profile demigration

operator A can be written as follow

d = Am+ n, (4.4)

where the term n is the noise and, often, also a term to absorb waves not modelled

by the demigration operator. Using the migration operator, which is the adjoint of

de-migration operator, we have

madj = ATd, (4.5)

where madj is the migrated image. While madj can capture main structures of the

true geological model m, the produced model does not honour the data. In other

words, the application of demigration operator on the migrated image yields a poor

data prediction. To tackle the problem, We will minimize the following cost function

J = ||Am− d||22 + μ ||m||22, (4.6)

where μ is a regularization parameter that balances the importance of the misfit
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functional and regularization term. The cost function J is convex and has a closed

form solution

mLS = (ATA+ μ I)−1 ATd, (4.7)

wheremLS is least-squares inverted model. However, the direct inversion of (ATA+

μ I) is not feasible because of of the fact that A and AT are linear operators, not

matrices. The cost J can be minimized via the Conjugate Gradient method. In the

Conjugate Gradient algorithm, we only need the action of A and AT on vectors.

The Conjugate Gradient method is an exact method. However, in practical terms,

it is considered an iterative technique, and we will stop iterations whenever the

changes in the normal system of equations reaches below of a predefined threshold.

While minimizing the cost J via the Conjugate Gradient method produces reason-

able models that honour the recorded data, the computational cost of the Conjugate

Gradient algorithm is high. This fact sometimes forces geophysicists to only use the

adjoint operator. To evaluate the computational cost of this method interested

readers are referred to (Marfurt and Shin, 1989; Collino and Joly, 1995; Mulder and

Plessix, 2004a,c; Kazemi and Sacchi, 2015). One can reduce the computational cost

of the method of Conjugate Gradients by applying preconditioners that can cluster

the eigenvalues of the Hessian operator. In other words, one prefers to solve

J = ||AP−1y − d||22 + μ ||P−1y||22, (4.8)

where m = P−1y, and P is an M ×M preconditioner. Equation 4.8 can be solved

via the Preconditioned Conjugate Gradient algorithm (see Appendix C.1). We will

show that by designing and applying a proper preconditioner P, we can increase the

convergence rate of the Conjugate Gradient algorithm.

In next section, We will introduce three types of preconditioners for approximat-

ing the inverse of the Hessian operator and implement those preconditioners in

the context of extended shot profile least-squares migration. The primary motiva-

tions behind the proposed methods are the reduction of the computational cost of

least-squares shot profile migration and ability to estimate images that honour the

recorded data.
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4.3 Preconditioners

4.3.1 Diagonal scaling via row averaging the Hessian

In this section we will show a simple procedure that results in finding the row aver-

aged version of the Hessian. In other words, we will try to replace the diagonal of

the Hessian with its row averaged values and use it as the diagonal scaling precon-

ditioner necessary for our Preconditioned Conjugate Gradient algorithm. The row

averaging of an M ×M matrix can be computed by multiplying the matrix with an

M × 1 vector of ones

Hra = diag (H 1T ), (4.9)

where diag (∗) operator reshapes the M × 1 vector to M ×M diagonal matrix and

Hra is the row averaged version of the Hessian. To be more specific the entries of

Hra are

Hra = PTP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ara1
ara2

. . .

arans−1

arans

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.10)

where arai = diag ([AT
i Ai] 1

T ). It is worth mentioning that we never build matrices

and everything should be applied on the fly. To do so, this preconditioner can be

easily calculated via application of the forward and adjoint operators on a model

that consists of all ones (1T ).

4.3.2 Diagonal scaling via random trial model

Here, we will attempt to build a preconditioner by computing the action of the

Hessian on a M × 1 random test model rT with identically distributed samples

drawn from a Gaussian distribution

Hra
rand = PTP = diag (H rT ). (4.11)

To calculate the Hra
rand we need to apply forward and adjoint operators on a random

model which is equivalent to the cost of one iteration of the Conjugate Gradient
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algorithm.

4.3.3 Filter-based preconditioner

To overcome the computational cost of calculating the inverse of Hessian (i.e., H =

ATA), several studies have focused on approximating the action of the Hessian via

simple basis functions (Beylkin, 1985; Rakesh, 1988; ten Kroode et al., 1998; Stolk,

2000). By taking advantage of properties of the Hessian, we can represent it as a

compressible pseudo-differential operator (i.e., Stolk (2000))

H m(x) =
∑
k

c(x,k) exp (jx.k) m̂(k), (4.12)

where k is spatial wavenumber vector, j =
√−1 and m̂ is the Fourier pair of m and

c(x,k) are some coefficients in phase-space domain that control the illumination.

The coefficients are smooth if the acquisition system has a full aperture, densely

sampled in time and space and a delta function is implemented as a source wavelet.

Moreover, the physical properties of the medium such as slowness should be spatially

invariant (e.g., Stolk (2000)). For this idealized situation, Gelius et al. (2002),

Sjoeberg et al. (2003) and Lecomte (2008) have shown that the action of the Hessian

can be approximated via convolutional operators. In other words, we can ignore the

spatial dependency of the coefficients

H m(x) =
∑
k

c(k) exp (jx.k) m̂(k). (4.13)

Equation (4.13) can be interpreted as the convolution of the spatially invariant coef-

ficients with the migrated image. Note that this is only valid for spatially invariant

medium (i.e., constant slowness in spatial directions).

In extended shot profile wave equation migration, we need to sort the data in com-

mon shot gathers and migrate each shot gather independently. Hence, in least-

squares extended shot profile wave equation migration the Hessian can be written
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as

H = ATA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

AT
1 A1

AT
2 A2

. . .

AT
ns−1Ans−1

AT
ns
Ans

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.14)

To explain how one can approximate the Hessian in equation 4.14, let us consider

the ith recorded shot gather (e.g., di). The least-squares solution of this dataset is

mLS
i = (AT

i Ai)
−1 madj

i , (4.15)

where madj
i = AT

i di and Hi = AT
i Ai is the ith partial Hessian designed for the ith

shot gather. We will calculate the partial Hessians for all of the shot gathers.

Before doing so, it is worth mentioning that the partial Hessian operators corre-

sponding to different shot geometries are not the same in a spatially variant medium.

However, each partial Hessian operator contains information from the spatially lim-

ited parts of the medium. This, in turn, allows us to use the spatial invariant

behaviour of the medium under the action of each partial Hessian operator. Hence,

we can implement equation (4.13) and approximate each partial Hessian via 2D

convolutional operators.

Let us consider equation (4.15) as a starting point. Equation (4.15) can be rewritten

as follows

mLS
i = Hi m

adj
i 	 Fi m

adj
i (4.16)

where Fi is a 2D convolutional matrix that approximates the Hessian corresponding

to the geometry of the ith shot gather. The Fi filters can be calculated by solving

f̂ i = argmin
fi

||Madj
i fi −mLS

i ||22, (4.17)

where Madj
i is the 2D convolution matrix corresponding to madj

i with a proper

size and fi’s are vectors that can be reshaped to make the appropriate convolutional

filters (i.e., Fi’s). After solving equation (4.17) and building the convolutional filters
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Figure 4.1: True near offset section of Sigsbee2a model.

for all the shots, equation (4.14) can be expressed as

H 	 PTP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F1

F2

. . .

Fns−1

Fns

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.18)

where P is the filter-based preconditioner. Given that the diagonal blocks of P

are built from convolutional matrices, it can be easily inverted in the wavenumber

domain via simple Fourier domain deconvolution.

In next section, we will show the efficiency of the proposed preconditioners in re-

ducing the computational cost of extended least-squares migration in shot profile

domain using the Sigsbee2a model and real data example from the Gulf of Mexico.
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Figure 4.2: Subset of the common image gathers. a) Adjoint. b) Least-
squares without preconditioner.
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4.4 Synthetic example

To evaluate the performance of preconditioners in the context of extended shot

profile least-squares migration we run the algorithms on the part of the Sigsbee2a

model and on real data example from the Gulf of Mexico. For Sigsbee2a model,

we have 335 sources with a spacing of 45.7 m. The signature of the source is a

Ricker wavelet with a dominant frequency of 20 Hz. Sources are moving from right

to left of the model and acquisition system is off end. For each shot gather there

are 348 receivers with spacing of 22.86 m. Figure 4.1 shows the near offset section

of the data. In all of the least-squares results, we choose μ = 100 and run the

algorithm for 15 iterations. The output of our migration algorithm is a cube of

partial migrated images which each of them belongs to a shot gather (i.e., cube’s

coordinates are x, z and shot-number). A slice of the cube passing through a fixed

horizontal location (i.e., x0) will be the common image gather at that location.

Figure 4.2 depicts the subset of the common image gathers of the adjoint and least-

squares migration without preconditioner. The quality of the common image gathers

in the case of least-squares migration are better than the quality of the images

obtained via the adjoint operator. Moreover, the events are more continuous, and the

amplitudes are more balanced comparing to those obtained via the adjoint operator.

Finally stacking all of the common image gathers results in final migrated images

(Figure 4.3). Figure 4.3 shows that the final migrated image computed via least-

squares migration without preconditioner has higher resolution and a more balanced

amplitude response in comparison to images computed via the adjoint operator.

Although the adjoint migrated image can capture the main features of the subsurface

structure, it does not honour the data. In other words, the application of demigra-

tion algorithm on the extended images does not predict the data. Figure 4.4a shows

the adjoint predicted near offset section of the Sigsbee2a model and Figure 4.4b is

the least-squares predicted near offset section. There are amplitude and resolution

problems in the adjoint predicted section comparing to the true near offset section

shown in Figure 4.1. On the other hand, the solution computed via least-squares

migration can predict data that honours the observation.

As we showed earlier, to honour the recorded data and improve the resolution of

common image gathers and the final migrated image, the application of the least-

squares migration algorithms is necessary. However, the computational cost of least-
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Figure 4.3: Migration and least-squares migration of the Sigsbee2a model
after stacking all of the common image gathers. a) Migration or adjoint
operator. b) Least-squares migration without preconditioner. The images
are representatives of scattering potential/reflectivity. The black colour is
for negative reflectivity, red is for positive reflectivity and yellow is for no
reflectivity.
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Figure 4.4: Adjoint and least-squares predicted near offset sections of Sigs-
bee2a model. a) Adjoint. b) Least-squares without preconditioner.
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Figure 4.5: Subset of the common image gathers of preconditioned extended
least-squares migration on the Sigsbee2a model. a) Least-squares migra-
tion with row averaging preconditioner. c) Least-squares with random trail
preconditioner. c) Least-squares migration with filter-based preconditioner.

squares migration can overshadow its improvements. To alleviate this problem, we

now introduce the afore-described preconditioners. To do so, we implemented the

Preconditioned Conjugate Gradient method with the three different preconditioners

that were introduced in previous sections. Figure 4.5 compares the common image

gathers of preconditioned extended least-squares migration results. The common

image gathers are at the same location as the one we showed in Figure 4.2a. Figure

4.5 shows that algorithms improved the amplitude and resolution of events com-

paring to that of the adjoint. Besides, the results are similar to those obtained via

least-squares migration without preconditioning.

However, from the common image gathers we can see that the filter-based method

did a slightly better job than the other two preconditioners. Figure 4.6 shows

the final migrated images of different preconditioned least-squares algorithms after
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Figure 4.6: Final migrated images of Sigsbee2a model after stacking all of the
common image gathers of preconditioned extended least-squares migration.
a) Least-squares migration with row averaging preconditioner. b) Least-
squares migration with random preconditioner. c) Least-squares migration
with filter-based preconditioner.
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stacking all of the common images gathers. It is evident from the images that the

filter-based algorithm was able to increase the resolution of the migrated image. This

is because the filter-based preconditioner approximates the Hessian better than the

other two preconditioners. To show the goodness of fit of the algorithms, we forward

modelled the extended images and compared results. Figure 4.7 represents the

predicted near offset sections of the Sigsbee2a model using preconditioned extended

least-squares migration. Comparing to the prediction computed with the adjoint

operator, preconditioned least-squares migration has honoured the data with high

accuracy.

4.4.1 Figures of merit

We provide three types of measurements to compare the performances of different

approaches. The first figure of merit is the normalized cost. Cost functions are

normalized to the cost of the first iteration. Figure 4.8 compares the convergence

behaviour of the extended least-squares algorithm with and without preconditioning.

The dashed line in Figure 4.8 is the race line. From the race line, we can compare the

number of iterations required by different algorithms to give the same performance

that one might get after the final iteration of least-squares migration without pre-

conditioning. For example, in the case of least-squares migration with row-averaging

preconditioning, the algorithm’s convergence beats least-squares migration without

preconditioning after 5 iterations. It means that by applying the row-averaged pre-

conditioner we can increase the convergence rate by factor of three. The second

figure of merit is a residual panel between the true and predicted near offset sec-

tions using different techniques. Figure 4.9 shows the residual panels between the

predicted and true near offset sections. As it is clear from the figure, the adjoint

method does not honour the data. On the other hand, the least-squares migration

solution is able to fit the data. Moreover, Figurer 4.10 depicts the performances

of different preconditioning techniques in fitting the data. It can be seen from the

figure that all of the preconditoners did a good job in reducing the misfit between

the predicted and true data sections. The third figure of merit is the time that takes

for each method to complete their tasks. One of the measurements of efficiency of

the algorithm is that how fast an algorithm can finish the required computations
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Figure 4.7: Preconditioned extended least-squares predicted near offset sec-
tions of Sigsbee2a model. a) Least-squares with row averaging precondi-
tioner. b) Least-squares with random trail preconditioner. c) Least-squares
with filter-based preconditioner.
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Figure 4.8: Comparison of the convergence behaviour of extended least-
squares algorithms with and without preconditioning for the Sigsbee2a
model.
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Figure 4.9: Adjoint and least-squares predicted residual panel between the
predicted and true near offset sections of the Sigsbee2a model. a) Adjoint.
b) Least-squares without preconditioning.
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Algorithm Tprecon [day] Trace [day] Ttotal [day]

LS without precon 0 32.7 32.7

LS with row avaraging 2.18 10.9 13.08

LS with random trial 2.18 15.26 17.44

LS with filter-based 4.36 17.44 21.8

Table 4.1: Comparing the computation time for different algorithms with
reference to the race line in Figure 4.8 for Sigsbee2a model. All of the times
are computed using the same input parameters and only using one core.
Tprecon is the computation time for building the preconditioner, Trace is the
computation time to reach the race line, and Ttotal is the total computation
time.

using the same resources. We tested the algorithms on a machine with an Intel(R)

Xeon(R) CPU E5-2650 0 @ 2.00GHz processor and all of the algorithms are codes

in C and complied with same compiler. To make a fair comparison all of the input

parameters to the programs were kept the same. Table 4.1 shows the time that it

takes for different algorithms to reduce the cost to the level defined by our race line

in Figure 4.8.

4.5 Real data example

We also applied the algorithms on a 2D marine dataset from the Gulf of Mexico,

Mississippi Canyon dataset. Before implementing prestack depth migration, we

pre-processed the data. We applied free surface multiple suppression so that we are

consistent with the one-way propagation model of our migration operator. We also

build the depth velocity model via semblance analysis and time-to-depth conversion.

Finally, we estimated the source signature by the SMBD method introduced by

Kazemi and Sacchi (2014b). For the Gulf of Mexico dataset, we have 800 sources

with a spacing of 26.67 m. Sources are moving from right to left of the model and

acquisition system is off end. For each shot gather there are 183 receivers with a

spacing of 26.6 m. Figure 4.11 shows the near offset section of the data. In all of

the least-squares results, we choose μ = 100 and run the algorithm for 10 iterations.

We will compare the performances of different algorithms and analyze results in

terms of resolution and amplitude balance of common image gathers corresponding
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Figure 4.10: Preconditioned extended least-squares residual panel between
the predicted and true near offset sections of the Sigsbee2a model. a) Least-
squares with row averaging preconditioning. b) Least-squares with random
preconditioning. c) Least-squares with filter-based preconditioning.
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Figure 4.11: True near offset section of Gulf of Mexico data.

to three portions of the dataset. Figures 4.12, 4.13 and 4.14 depict the subset of

the common image gathers of the Gulf of Mexico images calculated via adjoint and

least-squares migration without preconditioners methods for left, middle and right

portions of the model, respectively. The continuity, amplitude and resolution of

common image gathers in the case of least-squares migration are better than those

obtained via adjoint migration. Stacking all of the common images gathers results

in final migrated image of the subsurface. Again, we compare the results of the

adjoint technique with that of least-squares migration without preconditioners in

Figure 4.15. Comparing Figures 4.15a and b reveals that our least-squares migration

algorithm did a good job, comparing to that of adjoint, in improving the resolution

and balancing the amplitude of the final migrated image.

To reduce the computational cost of the least-squares migration algorithm, we ap-

plied our previously explained preconditioners. Figures 4.17 ,4.18 and 4.19 show the

subset of the common image gathers of the Gulf of Mexico migrated images calcu-

lated via preconditioned least-squares methods for left, middle and right portions of

the model, respectively.
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Figure 4.12: Subset of the common image gathers of extended migrated
algorithm of Gulf of Mexico dataset corresponding to the left part of the
model. a) Adjoint. b) Least-squares without preconditioner.
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Figure 4.13: Subset of the common image gathers of extended migrated
algorithm of Gulf of Mexico dataset corresponding to the middle part of the
model. a) Adjoint. b) Least-squares without preconditioner.
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Figure 4.14: Subset of the common image gathers of extended migrated
algorithm of Gulf of Mexico dataset corresponding to the right part of the
model. a) Adjoint. b) Least-squares without preconditioner.
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Figure 4.15: Adjoint and least squares migrated images of Gulf of Mexico
dataset after stacking all of the common image gathers. a) Adjoint. b)
Least-squares without preconditioner.
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Figure 4.16: Adjoint migration and least-squares migration predicted near
offset sections of Gulf of Mexico data. a) Adjoint. b) Least-squares without
preconditioner.
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Figure 4.17: Subset of the common image gathers of preconditioned ex-
tended least-squares migration applied to a Gulf of Mexico dataset. The
gathers correspond to the left part of the model. a) Least-squares migration
with row averaging preconditioner. b) Least-squares migration with random
preconditioner. c) Least-squares migration with filter-based preconditioner.

Although the results of least-squares migration with and without preconditioners

are similar overall the resolution of filter-based images are slightly better than those

obtained via least-squares migration without preconditioning. This difference is

also noticeable in the final migrated images (Figure 4.20). Figure 4.21 represents

the predicted near offset sections of Gulf of Mexico dataset using preconditioned

extended least-squares migration. As it is clear from the figure, preconditioned

least-squares algorithms honoured the data better than the adjoint operator and

the predicted near offset section show higher correlation with true section shown in

Figure 4.11.
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Figure 4.18: Subset of the common image gathers of preconditioned extended
least-squares migrated algorithms on Gulf of Mexico data corresponding to
the middle part of the model. a) Least-squares with row averaging precondi-
tioner. b) Least-squares with random trail preconditioner. c) Least-squares
with filter-based preconditioner.
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Figure 4.19: Subset of the common image gathers of preconditioned extended
least-squares migration. Gulf of Mexico data corresponding to the right part
of the model. a) Least-squares migration with row averaging preconditioner.
b) Least-squares migration with random model preconditioner. c) Least-
squares migration with filter-based preconditioner.
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Figure 4.20: Final migrated images of Gulf of Mexico data after stacking
all of the common image gathers of preconditioned extended least-squares
migrated algorithm. a) Least- squares migration with row averaging precon-
ditioning. b) Least-squares migration with random model preconditioning.
c) Least-squares migration with filter-based preconditioning.



CHAPTER 4. PRECONDITIONED LEAST-SQUARES MIGRATION 71

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
im

e 
(S

)

2 4 6 8 10 12 14 16 18 20
X (Km)(c)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
im

e 
(S

)

2 4 6 8 10 12 14 16 18 20
X (Km)(b)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
im

e 
(S

)

2 4 6 8 10 12 14 16 18 20
X (Km)

(a)

Figure 4.21: Preconditioned extended least-squares predicted near offset sec-
tions of Gulf of Mexico data. a) Least-squares with row averaging precondi-
tioner. b) Least-squares with random trail preconditioner. c) Least-squares
with filter-based preconditioner.
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Algorithm Tprecon [day] Trace [day] Ttotal [day]

LS without precon 0 23.92 23.92

LS with row avaraging 2.39 9.57 11.96

LS with random trial 2.39 11.96 14.35

LS with filter-based 4.78 16.74 21.52

Table 4.2: Comparing the computation time for different algorithms with
reference to the race line in Figure 4.22 for Gulf of Mexico data set. All
of the times are computed using the same input parameters and only using
one core. Tprecon is the computation time for building the preconditioning
operator, Trace is the computation time to reach the race line, and Ttotal is
the total computation time.

4.5.1 Figures of merit

Again, we provide the aforementioned figures of merit. The first figure of merit is

normalized cost. Figure 4.22 compares the convergence behaviour of the extended

least-squares algorithm with and without preconditioning. The race line marks the

number of iterations that are needed to surpass the performance of the least-squares

migration without preconditioning. The second figure of merit is a residual panel

between the true and predicted near offset sections using different techniques.

Figure 4.23 shows the residual panels between the predicted and true near offset

sections. As it is clear from the figure, the adjoint method does not honour the

data. On the other hand, least-squares approach is able to fit the data. Moreover,

Figure 4.24 depicts the performances of different preconditioned approaches in fitting

the data. It can be seen from the figure that all of the preconditioners did a good

job in reducing the misfit between the predicted and true data sections. The third

figure of merit is the time that takes for each method to complete their tasks. One

of the measurements of efficiency of the algorithm is that how fast an algorithm can

finish the required computations using the same resources. We tested the algorithms

on a machine with an Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz processor. All

of the algorithms are codes in C and compiled with same compiler. To have fair

comparisons all of the input parameters to the programs were kept the same. Table

4.2 shows the time that it takes for different algorithms to reduce the cost to the

level defined by our race line in Figure 4.22.
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Figure 4.22: Comparison of the convergence behaviour of extended least-
squares algorithms migration with and without preconditioning for the Gulf
of Mexico dataset.
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Figure 4.23: Adjoint migration and least-squares migration residual panel
between the predicted and true near offset sections of Gulf of Mexico data.
a) Adjoint. b) Least-squares without preconditioning.
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Figure 4.24: Preconditioned extended least-squares residual panel between
the predicted and true near offset sections of Gulf of Mexico data. a) Least-
squares with row averaging preconditioner. b) Least-squares with random
preconditioning. c) Least-squares with filter-based preconditioning.
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4.6 Summary

We studied the application of preconditioners in the context of extended least-

squares migration in shot profile domain. Three different preconditioners were in-

troduced. Row-averaging and random model preconditioners belong to the category

of diagonal scaling preconditioners. The third preconditioner, named filter-based,

approximates the Hessian via 2D convolutional filters. In other words, we consider

the action of partial Hessian operators in the context of shot profile least-squares

migration as stationary convolutional operators. This follows from the fact that

each partial Hessian experiences the spatially invariant portion of the medium un-

der its action. It is shown that the application of preconditioners can dramatically

reduce the computational cost of least-squares migration algorithms. We tested the

algorithms on the Sigsbee2a synthetic model and a Gulf of Mexico real marine data

example. In both cases the preconditioned least-squares algorithm was effective in

increasing the convergence rate of the conjugate gradient method and in the case of

the filter-based preconditioner, we could see cleaner results with higher resolution

than the results obtained via least-squares migration without preconditioning.



CHAPTER 5

Source signature estimation1

5.1 Introduction

Deconvolution is an important and recurrent topic in seismic data processing. Many

signals and images can be represented via the convolution of an unknown signal of

interest and a blurring kernel. In general, the process that permits to remove the

effects of the blurring kernel on the observed signal or image is called deconvolu-

tion. When both the signal of interest and the blurring kernel are unknown, the

aforementioned process is denominated blind deconvolution (Shalvi and Weinstein,

1990). In seismic data processing, the signal of interest is the impulse response of

the earth and the blurring kernel is the seismic wavelet. In general, the seismic

wavelet is considered unknown and therefore, exploration seismologists are often

faced with a typical blind deconvolution problem (Ulrych et al., 1995). We usually

use convolutional models and statistical deconvolution methods. The difficulty with

statistical deconvolution is that we are essentially trying to solve one equation and

two unknowns (Ziolkowski, 1991). To solve the problem, we need to add more infor-

mation and assumptions. Accordingly, the validity of wavelet estimation depends

on the validity of our assumptions.

In seismic data processing, deconvolution is part of early efforts to enhance reso-

lution of seismic data and an important component of the transition from analog

1A version of this chapter has been published in the journal of Geophysics. Nasser Kazemi and
Mauricio D. Sacchi (2014). Sparse multichannel blind deconvolution. Geophysics, 79(5), V143-
V152.
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analysis of seismic data to digital seismic data processing (Robinson, 1967). Early

work using linear prediction theory solves the seismic blind deconvolution problem

by making two fundamental assumptions: the earth’s reflectivity series (impulse

response of the earth) is a white sequence and the seismic wavelet is a minimum

phase sequence (Robinson and Treitel, 1964). These two assumptions permit to

estimate a causal and stable inverse filter that is applied to the data to estimate the

impulse response of the earth. Many deconvolution methods have been proposed to

overcome the minimum phase assumption. Two early attempts are homomorphic

deconvolution based on the work by Oppenheim and Schafer (1968) and Oppenheim

et al. (1976) and implemented for the first time in exploration seismology by Ul-

rych (1971). A comprehensive theoretical and practical study of the application of

homomorphic systems to deconvolution and suppression of air gun reverberations is

provided in Stoffa et al. (1974) and Buhl et al. (1974). Similarly, practical methods

to implement homomorphic blind deconvolution on real data have been proposed by

Otis and Smith (1977) and, more recently, by Herrera and van der Baan (2012). The

Minimum Entropy Deconvolution (MED) algorithm is another method that avoids

the minimum phase assumption (Wiggins, 1978). MED assumes that the reflectivity

is a sparse sequence. The MED algorithm estimates a non-minimum phase filter by

maximizing a measure of sparsity of the seismic trace (Donoho, 1981). The measure

of sparsity is the varimax norm that is also equivalent to an estimate of kurtosis

(White, 1988; Longbottom et al., 1988). The maximization of the varimax norm,

or the equivalent kurtosis, is analogous to minimization of a measure of entropy.

The latter is coincident with Wiggins’s interpretation of minimum disorder or min-

imum entropy as a synonym of sparsity (Sacchi et al., 1994). The convolution of

the estimated MED inverse filter with the seismogram yields the reflectivity and the

inverse of the MED filter is an estimator of the seismic source wavelet. Practical

algorithms inspired in the MED method have been proposed for seismic data de-

phasing. Maximum kurtosis phase correction, for instance, can be utilized to find

a phase rotation term that maximizes the kurtosis of the seismic trace (Levy and

Oldenburg, 1987). It can be shown that, under ideal conditions, the phase rotation

that maximizes the kurtosis of the seismic trace also de-phases the seismic wavelet

(Longbottom et al., 1988; Cambois and Hargreaves, 1994).

The homomorphic deconvolution, MED and maximum kurtosis phase estimation

methods suffer from a variety of shortcomings. For instance, homomorphic de-
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convolution is inclined to instability due to phase unwrapping and by its inherent

inability to incorporate an additive noise term into its formulation. MED deconvo-

lution often tends to annihilate small reflection coefficients (Ooe and Ulrych, 1979;

Walden, 1985) and can become unstable in the presence of noise and highly sensitive

to operator length (Nickerson et al., 1986). Maximum kurtosis phase estimation is

sensitive to the bandwidth of the wavelet (White, 1988; Xu et al., 2012).

The history of seismic deconvolution is populated by interesting statistical methods

for blind deconvolution. These methods, however, often only work under ideal signal

conditions. For instance, an important excitement was generated by methods based

on fourth-order cumulant matching (Hargreaves, 1994; Velis and Ulrych, 1996) and

homomorphic deconvolution via forth-order cumulants (Sacchi et al., 1996). Fourth

order cumulants are attractive because they can be computed from the seismic

trace and they do preserve the phase of the wavelet when the reflectivity is a sparse

sequence with non-vanishing kurtosis (Sacchi and Ulrych, 2000). However, the con-

ditions for robust wavelet estimation required by cumulant-based methods are not

often satisfied by real seismic data (Stogioglou et al., 1996).

Last, we also mention parametric methods based on maximum likelihood estimation.

These methods attack the blind deconvolution via a two-stage procedure. First the

wavelet is assumed know and the reflectivity is estimated by maximizing likelihood.

Then, the reflectivity is fixed and the likelihood function is maximized with respect

to the wavelet (Mendel, 1983; Kaaresen and Taxt, 1998; Canadas, 2002).

In this chapter we studied a multichannel blind deconvolution algorithm often called

Euclid’s deconvolution. The method was first discussed in the geophysical literature

by Rietsch (1997a) and tested with real data examples in Rietsch (1997b). The

method has been previously investigated by Xu et al. (1995) for blind channel esti-

mation in communication systems. The method has also been utilized to improve

speech recognition by Liu and Malvar (2001). The idea can be summarized as find-

ing common factors of the Z-transform of the source wavelet embedded in a group of

seismograms with different reflectivity sequences. The problem leads to the estima-

tion of the multichannel seismic reflectivity via the solution of homogeneous system

of equations (Rietsch, 1997a; Mazzucchelli and Spagnolini, 2001). In the ideal case,

the eigenvector associated to the minimum non-zero eigenvalue of the homogenous

system of equations is an estimator of the multichannel reflectivity. However, small

level of noise impinges on the correct identification of the eigenvector associated to
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the impulse response of the earth. This problem is examined in detail by Rietsch

(1997a,b).

A variant of Euclid deconvolution was recently utilized by Royer et al. (2012) to

separate source signatures from propagation effects in teleseismic data. Similar ap-

proaches to Euclid deconvolution were also proposed for image restoration (Hariku-

mar and Bresler, 1999; Sroubek and Milanfar, 2012; Harikumar and Bresler, 1999).

Our main contribution is an improvement to Euclid deconvolution to make it appli-

cable to real data processing. The proposed method can tolerate moderate amounts

of noise and does not require a priori knowledge of the length of the seismic wavelet.

In the proposed method, the homogeneous system of equation is satisfied by a sparse

solution (sparse impulse responses). In other words, we are assuming a reflectivity

sequence that is sparse. The problem leads to a non-quadratic minimizing tech-

nique where the solution must be constrained to lie on the unit sphere. We discuss

a steepest descent method that permits to obtain accurate estimates of the seismic

reflectivity and wavelet in the presence of a moderate amount of noise.

5.2 Theory

5.2.1 Multichannel Blind Deconvolution

The earth’s impulse response can be modelled as a linear system (Robinson and

Treitel, 1980). The input-output relationship for this system, assuming a stationary

source wavelet and no noise, can be written as follows

dj [n] =
∑
k

w[n− k]rj [k] , j = 1 . . . J (5.1)

where the multi-channel seismic data is given by dj = (dj [1], dj [2], . . . , dj [N ])T . Sim-

ilarly, the impulse response for channel j is given by rj = (rj [1], rj [2], . . . , rj [M ])T ,

and the seismic source wavelet via the vector w = (w[1], w[2], . . . , w[L])T . We stress

that N = M+L−1. We also remind the readers that convolution can be represented

via the Z-transform as follows

Dj(z) = W (z)Rj(z) , j = 1 . . . J . (5.2)
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By virtue of equation (5.2), it is easy to show that

Dp(z)Rq(z)−Dq(z)Rp(z) = 0 , ∀ p, q . (5.3)

The latter can be rewritten in matrix-vector form as follows

Dp rq −Dq rp = 0, (5.4)

where Dp and Dq in equation (5.4) represent the convolution matrices of channels p

and q, respectively. The combination of all possible equations leads to the following

homogeneous system of equations

A x = 0, (5.5)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D2 −D1

D3 −D1

D4 −D1

...
. . .

D3 −D2

D4 −D2

...
. . .

DJ −DJ−2

DJ −DJ−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.6)

and

x = [r1, r2, r3, . . . , rJ ]
T . (5.7)

The classical formulation of Euclid deconvolution estimates the reflectivity by es-

timating the eigenvector associated to the minimum non-zero eigenvalue of ATA

(Rietsch, 1997a). A small amount of noise in the data makes the solution impractical

for real data applications (Rietsch, 1997b).
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5.2.2 Sparse Multichannel Blind Deconvolution

In the previous analysis we did not consider noise. The addition of a noise term in

our signal model leads to the following expression

Dj(z) = W (z)Rj(z) +Nj(z) j = 1, . . . , J (5.8)

and

Dp(z) Rq(z) − Dq(z) Rp(z) =

Np(z) Rq(z)−Nq(z) Rp(z) , ∀ p, q

or in matrix form,

Dprq −Dqrp = Nprq −Nqrp , (5.9)

The last expression is expressed as follows

Ax = e . (5.10)

We will assume that e is white and Gaussian which is clearly a hypothesis that

permits us to develop an algorithm, but one understands that e is not necessarily

white and Gaussian (Sroubek and Milanfar, 2012). Therefore, we propose to find

a solution x that minimizes the l2 norm of the error term e with the requirement

that x is sparse. To avoid the trivial solution, we must provide an extra constraint

(i.e., xTx = 1). To summarize the problem, we propose to find the solution by

minimizing the following cost function

x̂ = argmin
x

J(x), subject to xTx = 1 (5.11)

where

J(x) =
1

2
||Ax||22 + λRε(x) (5.12)

and

Rε(x) =
∑
i

(
√
x2i + ε2 − ε). (5.13)
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The trade-off parameter λ balances the importance of sparseness of the reflectivity

and data fitting. Rε(x) is the regularization term that promotes a sparse solution.

For estimation of sparse solutions, one could have adopted an l1 norm. However, we

prefer to use the hybrid l1/l2 norm, Rε(x), because it is differentiable and therefore it

enables us to use simple optimization methods based on steepest descent techniques

(Bube and Langan, 1997; Lee et al., 2006; Schmidt et al., 2007; Li et al., 2012).

Figure 5.1 shows the functional Rε for ε = 0.01 and 0.05 and the classical l1 norm.

x

|x |

R ε(x) , ε = 0.01

R ε(x) , ε = 0.05

Figure 5.1: Comparison of the l1 = |x| norm and its approximation Rε(x)
for ε = 0.01 and 0.05.

The constrained optimization problem involves minimizing the following cost func-

tion

L(x) = J(x)− η

2
(xTx− 1), (5.14)

with Lagrange multiplier given by the scalar η. The condition for minimum must

satisfy

∇L(x) = g − ηx = 0, (5.15)



CHAPTER 5. SOURCE SIGNATURE ESTIMATION 84

where g = ∇J(x). Multiplying equation (5.15) by xT and using the condition

xTx = 1 yields

η = xTg . (5.16)

Hence, the projection of the gradient on the sphere is given by

∇L(x) = g − (xTg)x . (5.17)

The steepest descent algorithm can be expressed via the classical update rule xk+1 =

xk−αk hk with normalized gradient hk = ∇L(xk)/|∇L(xk)| where αk is the adaptive

step size and k indicates iteration. A step in the direction of steepest descent might

move xk+1 off the unit sphere. This is illustrated by Figure 5.2a. Therefore, we

prefer to use an educated step that was derived from Rodrigues’ rotation formula

(Murray et al., 1994)

xk+1 = cos(θk)xk + sin(θk)hk . (5.18)

It is easy to show via a few algebraic manipulations that with this expression the

updated solution xk+1 is on the unit sphere (See Appendix D.1). Notice that by

choosing a small angle θk < 0 we obtain the desired small step in the direction of

steepest descent because sin(θk) ≈ θk < 0. In equation (5.18), the effect of the

term cos(θk) is to shrink the current position cos(θk)xk in a way that the updated

solution lies on the unit sphere. This is illustrated by Figure 5.2b. Our problem has

been reduced to a one-dimensional minimization on the sphere. The minimization

is carried out by a simple update of θk that guarantees that J(xk) > J(xk+1) (See

Appendix D.2).

It is important to point out that the steepest descent algorithm must be initialized

by a solution that is close to the final reflectivity. This is because the problem is non-

linear and multi-modal. Our test indicates that starting with the data as an initial

solution always leads to sparse estimate of the reflectivity. The last assessment is

supported because the data is structurally close to the true sparse reflectivity.
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Figure 5.2: Cartoon representation of the classical steepest descent and pro-
posed approach. a) Steepest descent algorithm via classical update rule
xk+1 = xk − αk hk, αk is the step length. b) Proposed steepest descent al-
gorithm via the update rule xk+1 = cos(θk)xk + sin(θk)hk , the step length
is given by sin(θk). In this case the updated position is guaranteed to lie on
the unit sphere.

5.3 Examples

To examine the performance of the proposed method, we introduce two figures

of merit for both the estimated wavelet and the estimated reflectivity series. For

instance, if a true generic signal is denoted by y0 and the estimated signal by y, we

define the quality of the reconstruction, Q, as follows

Q = 10 log
‖y0‖22

‖y0 − y‖22
. (5.19)

Our second figure of merit is the Normalized Correlation Coefficient,

NCC =
yTy0

‖y0‖2 ‖y‖2 . (5.20)

We stress that blind deconvolution algorithms can only determined unscaled versions

of the seismic wavelet and reflectivity series. Therefore all our estimators must be re-
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Figure 5.3: Exploring the importance of trace-off parameter λ in SMBD
method using synthetic data with SNR = 100. a) Trade-off parameter
versus the l2 norm of homogeneous system of equations. b) Trade-off curve
using different values of regularization parameter.

scaled prior to computating Q. For this purpose, the estimated signal y is multiplied

by a scalar α such that ‖y0−αy‖22 is minimum. It is clear that y in equation (5.19)

is replaced by αy. It is also clear that the aforementioned scaling is not needed

for the computation of NCC. We will denote NCCw and NCCx the normalized

correlation coefficients for the wavelet and the reflectivity, respectively. Similarly,

we will use Qw and Qx to indicate the quality of the reconstruction of the wavelet

and reflectivity, respectively.

5.3.1 Simulations

To test the method, we first run a synthetic example with high signal-noise-ratio

(SNR = 100). We run the algorithm for different values of the parameter λ to

explore the trade-off curve. The latter is portrayed in Figure 5.3. With different

experiments we concluded that λ = 4 yields the best result for different levels of

SNR. The true sparse reflectivity is displayed in Figure 5.4a in conjunction with

the data (Figure 5.4b). The sampling interval for this exercise was chosen Δt =

2 ms. We also used a Ricker wavelet of central frequency 40 Hz and a 50 degrees

phase rotation. The estimated reflectivity for this example is shown in Figure 5.4c.

The estimated reflectivity and the seismic traces were used to estimate the seismic

wavelet via multichannel frequency domain deconvolution. The estimated wavelet

and the true input wavelet are shown side by side in Figure 5.4d. In this example, the
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Figure 5.4: Performance of the SMBD method using synthetic data with
SNR = 100. a) True synthetic reflectivity sequences. b) Seismic traces
with SNR = 100. b) Estimated sparse reflectivity sequences. d) True and
estimated wavelets.
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Figure 5.5: Performance of the SMBD method using synthetic data with
SNR = 4. a) True synthetic reflectivity sequences. b) Seismic traces with
SNR = 4. b) Estimated sparse reflectivity sequences. d) True and estimated
wavelets.
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Figure 5.6: Convergence behaviour of SMBD method using synthetic data
with different levels of noise.
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quality of reconstruction for the wavelet is Qw = 14 dB. Similarly, the quality of the

reconstruction for the reflectivity is Qx = 5 dB. Normalized correlation coefficients

for the wavelet and reflectivity are given be NCCw = 0.96 and NCCx = 0.82,

respectively.

We rerun the synthetic example with additive noise SNR = 4. In this case we obtain

a reconstruction quality of Qw = 13 dB and a normalized correlation coefficient

NCCw = 0.89. Similarly, we obtain Qx = 3.8 dB and NCCx = 0.75 for the

reflectivity series. The results for this simulation are shown in Figure 5.5. Finally,

we also provide convergence curves for the algorithm for SNR = 2, 4, 100 in Figure

5.6.

To analyze the stability of the SMBD method under different levels of noise, we

run a Monte Carlo simulation with 20 different realizations of noise and seismic

reflectivity for a given SNR and parameter λ. Each realization of the reflectivity is

similar to Figure 4a. We have been careful is producing realizations with 10 reflectors

each and similar temporal and spatial variability. This was done by taking a random

reflectivity composed of 10 impulses of random amplitude for the first trace and

randomly perturbing the times to generate the reflectivity of the remaining traces.

The amplitude of the reflection coefficients for a given reflector were also allowed to

vary in space by a very small amount. The 20 realizations where used to estimate

20 wavelets and 20 multichannel reflectivity estimators that were used to estimate

averages and standard errors for NCCw, NCCx, Qw and Qx.

At this point it is important to mention that the computation of the standard

error of the normalized correlation coefficients NCCw and NCCx requires special

attention. Normalized correlation coefficients are bounded by unity and therefore,

they are not normally distributed (Weatherburn, 1949). To compute the mean and

standard error of the normalized correlation coefficient, we first apply the Fisher’s

transform to create a new variable F = 1
2 ln[(1 + (NCC))/(1 − (NCC))] that is

distributed almost normally. We can now compute the mean and standard error

of the variable F which are then inverse transformed to obtained the desired mean

and standard error of the normalized correlation coefficient (VanDecar and Crosson,

1990; Herrera and van der Baan, 2012).

The average for 20 realizations of our two figures of merit and their standard de-

viations are shown in Figures 5.7, 5.8 and 5.9 for λ = 1, 4 and 10, respectively.

In these figures, the diamonds (�) are used to indicate NCCw and Qw values for
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Figure 5.7: a) Mean and standard error of normalized correlation coefficients
versus SNR. (b) Mean and standard error of the quality of the reconstruction
versus SNR. These results were obtained by running SMBD on 20 realiza-
tions of reflectivity models that are similar to the reflectivity shown in Figure
5.4a. Diamonds (�) are used to indicate NCCw and Qw values for the esti-
mated seismic wavelet. Similarly, circles (◦) are used to indicate the NCCx

and Qx for the estimated reflectivity. Squares (�) are used to indicate the
NCCx and Qx computed after applying an Ormsby trapezoidal filter to the
true reflectivity and the estimated reflectivity. The trade-off parameter of
the SMBD method is λ = 1. Note that the SNR values are not linearly
spaced.
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Figure 5.8: Similar to Figure 5.7 but with λ = 4.
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the estimated seismic wavelet. Similarly, the circles (◦) were used to indicate the

NCCx and Qx values for the estimated seismic reflectivity. We observe that the

proposed deconvolution scheme performs better at estimating the wavelet than the

reflectivity. The reflectivity is a full band sequence with low and high frequencies

annihilated by the bandpass character of the seismic wavelet. Therefore, recovery

of frequencies outside the natural band imposed by the seismic wavelet fully re-

lies on the sparse reflectivity assumption (Sacchi et al., 1994). Our synthetic data

were sampled at 2 ms and therefore, hoping to recover a full band reflectivity with

spectral contributions from 0 Hz to 250 Hz (Nyquist frequency) is definitely an un-

workable cause. The latter is reflected by the low values of Qx in comparison to

those of Qw. To gain critical understanding of the limits of our algorithm, we also

compute Qx values for bandpassed versions of the true and estimated reflectivity

series. In this case, we utilize a Ormsby trapezoidal filter (Sheriff, 2002) defined by

four corner frequencies 0, 1, 100, 125Hz to restrict the bandwidth of the true reflec-

tivity and estimated reflectivity before computing Qx and NCCx. The results are

also included in Figure 5.7, 5.8 and 5.9 and are indicated with squares (�). One

can observe an improvement in NCCx and Qx when high frequencies are excluded

from the recovered reflectivity.

Finally, Figures 5.10 and 5.11 portray the resulting reflectivity inversion in time

and frequency domain for one realization and for the first seismic trace of a group

of 24 traces. The example also corresponds to a parameter λ = 4 and SNR = 4.

Figure 5.10a presents the seismic trace, Figure 5.10b the true reflectivity series,

Figure 5.10c the full band-reflectivity estimated by SMBD, and Figure 5.10d is

the estimated reflectivity after applying the Ormsby trapezoidal filter. Figure 5.11

shows, in the same order, the power spectral density of the signals portrayed in

Figure 5.10. It is evident from Figure 5.11 that the unfiltered spectra match well

the true spectra up to about 100 Hz.

5.3.2 Real data example

Unfortunately, we do not have an automatic way of estimating the trade-off pa-

rameter λ needed by SMBD. The simulations in the previous section were used to

explore the behaviour of the algorithm in terms of the parameter λ. Based on the

analysis presented in Figures 5.7, 5.8 and 5.9, we have selected λ = 4 because it
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Figure 5.9: Similar to Figure 5.7 but with λ = 10.
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Figure 5.10: a) First trace from one realization of multichannel data similar
to Figure 5.5b. b) True reflectivity series. c) Estimated reflectivity via
SMBD. d) The estimated reflectivity after applying an Ormsby trapezoidal
filter with corner frequencies 0, 1, 100, 125Hz. The simulation corresponds
to values SNR = 4 and λ = 4.
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Figure 5.11: Power spectral density of the data portrayed in Figure 5.10.
a) Seismic trace. b) True reflectivity series. c) Estimated reflectivity via
SMBD. d) The estimated reflectivity after applying an Ormsby trapezoidal
filter with corner frequencies 0, 1, 100, 125Hz.

provided the best reconstruction of the wavelet and reflectivity for a moderate level

of noise (SNR = 4).

Our real data test uses the Gulf of Mexico, Mississippi Canyon dataset. These

data have been extensively used for testing multiple suppression algorithms (see, for

instance, Verschuur and Prein (1999)). SMDB was run on the near offset section of

the Mississippi Canyon dataset. The input data and the estimated sparse impulse

response are shown in Figures 5.12a and b, respectively. We also show details of the

seismic sections before and after deconvolution in Figures 5.13a and b. Notice that

Figure 5.13b is the resulting sparse impulse response estimated by SMDB.

This dataset is contaminated by multiples. Therefore, our blind deconvolution algo-
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Figure 5.12: a) Near offset section of data set from the Gulf of Mexico. b)
Estimated sparse reflectivity.

rithm was used to estimate the full impulse response including multiples rather than

the primary only impulse response (reflectivity). We have run SMBD in windows of

1 second in time and 200 traces with 10% overlap in time and space. The windows

were patched back together to produce Figure 5.12b.

We used the estimated impulse response of the whole near offset section to estimate

the wavelet via a multichannel frequency domain deconvolution. Wavelets computed

from individual windows where similar and this is why we have decided to compute

one wavelet for the whole near offset section. The seismic wavelet is portrayed in

Figure 5.14. We also displayed the estimated wavelet obtained by aligning and

averaging the first break. The resemblance of the two wavelets is remarkable, with

normalized correlation coefficient NCCw = 0.92.
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Figure 5.13: A zoom into the black rectangles marked in Figure 5.12. a)
Before deconvolution. b) After deconvolution.
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5.4 Summary

We have presented an algorithm inspired by Euclid deconvolution that permits us to

estimate the seismic reflectivity without a priori knowledge of the seismic wavelet.

The seismic wavelet is computed as a byproduct of the process via a multichannel

frequency domain deconvolution between traces and estimated reflectivity sequences.

The core of the algorithm is the estimation of the reflectivity by the solution of the

multichannel homogeneous system of equations with sparsity constraints.

An optimization problem that uses the method of steepest descent was developed.

To avoid trivial solutions the reflectivity vector was constrained to have unit norm.

The latter leads to a constrained optimization problem where one attempts to esti-

mate a sparse signal that fits a multichannel homogeneous system of equations and,

in addition, the signal lies on the unit sphere. This optimization problem was solved

by the method of steepest descent with an update rule that keeps current estimates

of the sparse reflectivity on the unit sphere. The method is stable under a variety

of noise levels and for different values of the trade-off parameter λ. We stress that

like in every deconvolution scenario, the method works well when it honours certain

assumptions. In this case, not only the wavelet needs to be stationary for all traces

but the reflectivity must be sparse.

We used both synthetic and real data examples to evaluate the method. Synthetic

examples permitted us to assess the viability of the method in terms of noise. The

method gives reasonable estimates of wavelet and reflectivity series with SNR = 4

and higher. We have obtained workable results for SNR = 2. However, the results

of the method clearly deteriorate when we try to push it to work on data severely

contaminated with noise. We have observed that the quality of the estimated wavelet

is superior to the quality of the estimated reflectivity for the same SNR.

We also applied the method to near offset section of Gulf of Mexico dataset. Our es-

timated wavelet has a remarkable semblance with the wavelet estimated by aligning

and stacking first breaks.

We emphasize that the SMBD method does not consider coherent noise in the

convolutional model. In this regard, we believe that its application to onshore data

will require extensive preconditioning to remove coherent noise. This is likely true

for all blind deconvolution methods.



CHAPTER 5. SOURCE SIGNATURE ESTIMATION 100

Figure 5.14: Estimated wavelet for Golf of Mexico data set. a) Estimated
wavelet using the SMBD method. b) Estimated wavelet obtained by aver-
aging the first beak after alignment.



CHAPTER 6

Conclusions

6.1 Summary

The primary focus of this dissertation was about designing and applying efficient

least-squares migration algorithms. I implemented prestack one-way wave equation

depth migration. In conventional migration (i.e., adjoint migration) the data fidelity

is compromised. In other words, the migrated model does not honour the recorded

wavefield. To honour the wavefield and improve the resolution of migrated image,

application of the least-squares migration algorithms is necessary. However, the

merit of posing migration as an inverse problem encounters several difficulties. First

of all, the computational cost of iterative algorithms is high. The second major issue

is that the designed operators for communications from model to data and data to

the model domain are simplified, and the operators are only able to consider part

of the wavefield. I used one-way wave equation to define the forward/migration and

adjoint/de-migration operators and from there I used the forward/migration and

adjoint/de-migration pairs to solve the least-squares migration problem. The one-

way wave equation only considers acoustic wavefields (i.e., P-P reflections) and it

ignores shear waves, free surface, internal multiples and turning waves. To acquire

an acceptable migrated image, we need to preprocess the data before application of

least-squares migration algorithms.

In chapter 2, I used the Born approximation to define and design the forwards/de-

migration operator.

101
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In chapter 3, I took advantage of adaptive signal processing techniques and solve the

least-squares migration problem in a recursive fashion. This methodology gives us

fast and memory efficient algorithms to handle least-squares migration. The neces-

sity of solving least squares problems recursively stems from the need for fast real-

time signal processing strategies. The computational cost of least squares solvers

can also limit the applicability of this technique in many geophysical problems. I

have considered recursive least squares solutions for least-squares wave equation mi-

gration with sliding windows involving several fixed rank downdating and updating

computations. If we use enough data in each windowed setup, the spectrum of

the preconditioned system is clustered around one and the method will converge

super-linearly with probability one.

Chapter 4 considers the application of preconditioners in the context of least-squares

migration. Preconditioners are operators that can cluster the eigenvalues of the Hes-

sian which ultimately results in improving the convergence of iterative algorithms.

Improving the convergence rate is equivalent to reducing the computational cost of

the algorithm. In other words, by using preconditioners we will need fewer iterations

to reach the predefined accuracy in the migrated image. Preconditioners are used as

an alternative tool to change the linear system of equations is a way that it is easier

for the Conjugate Gradient algorithm to handle the problem. Diagonal scaling of

the Hessian and an approximated inverse of the Hessian are good candidates for

preconditioners. I introduced and applied three different preconditioners. The first

two preconditioners belong to the diagonal scaling category, and the third one is

a filter-based approach which approximates the partial Hessian operators by local

convolutional filters. I showed that these preconditioners are effective operators to

improve the convergence rate of the least-squares migration algorithms.

In chapter 5, I focused on the source signature estimation problem. As we know,

one of the input requirements of pre-stack least-squares migration algorithms is

the source signature. To estimate the source signature from the data, I developed

a Sparse Multichannel Blind Deconvolution (SMBD) method. The method is a

modification of the multichannel blind deconvolution technique often called Euclid

deconvolution where the multichannel impulse response of the earth is estimated

by solving a homogeneous system of equations. Classical Euclid deconvolution is

unstable in the presence of noise and requires the correct estimation of the length

of the seismic wavelet. The proposed method, on the other hand, can tolerate



CHAPTER 6. CONCLUSIONS 103

moderate levels of noise and does not require a priori knowledge of the length of

the wavelet. SMBD solves the homogeneous system of equations arising in Euclid

deconvolution by imposing sparsity on the unknown multichannel impulse response.

Trivial solutions to the aforementioned homogeneous system of equations are avoided

by seeking sparse solutions on the unit sphere. Synthetic examples were used to

judge the viability of the method in terms of noise. In this case of real data (i.e.,

Gulf of Mexico dataset), the estimated wavelet was compared to a wavelet estimated

by averaging first breaks. The estimated wavelet showed a noticeable resemblance

to the average first break with a normalized correlation coefficient of 0.92.

6.2 Future work

In this dissertation, I implemented a pre-stack one-way wave equation migration and

posed the migration as an inverse problem. However, the designed operators only

considered acoustic wavefields and ignored converted wave, free surface multiples

and internal multiples. In the future, one can apply accurate forward/de-migration

and adjoint/migration pairs like those derived for reverse-time migration (two-way

wave equation propagators). The second problem worthy of investigation is the

implementation of different regularization techniques to emphasize good features

in the migrated image. The latter should aim at improving the interpretability of

subsurface images. Moreover, in this thesis, I used an extended imaging approach

that yield common shot index gathers, however, implementing prestack algorithm

with subsurface offset or Poynting vectors (De Bruin et al., 1990; Prucha et al.,

1999; Biondi and Symes, 2004) will result in angle gathers that could lead to more

accurate and interpretable amplitude responses. Last, I would suggest exploring and

extending preconditioning based on the filter-based approach to least-squares elastic

migration (Feng and Schuster, 2017; Ren et al., 2017). Significant results could

be obtained by designing filter-based preconditioning strategies that can alleviate

multi-parameter crosstalk contamination in elastic least-squares migration.
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APPENDIX A

Generalized Conjugate Gradient algorithm

A.1 Generalized Conjugate Gradient algorithm

In this section we show how one can use Conjugate Gradient algorithm to solve

J = ||Am− d||22 + μ ||m||22. (A.1)

Following Hestenes and Stiefel (1952) and Scales (1987) we know how to solve ||
˜
Ax−

˜
d||22. To be able to take advantage of the same algorithm, we concatenate the

operators in equation A.1 so that the new cost function resembles the conventional

least-squares minimization

J = ||
[

A
√
μ

]
x−

[
d

0

]
||22 = ||

˜
Ax−

˜
d||22, (A.2)

where
˜
A =

[
A
√
μ

]
and

˜
d =

[
d

0

]
.

After doing so, the Generalized Conjugate Gradient algorithm for cost function of

equation A.2 reads

where < ∗, ∗ > means inner product. The worst convergence of Conjugate Gradient

algorithm defined as

||ek||
˜
A ≤ 2(

√
C − 1√
C + 1

)k||e0||
˜
A, (A.3)
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Algorithm 1 Generalized Conjugate Gradient algorithm

choose y0,

Put s0 =
˜
d−

˜
Ax0 =

[
d−Ax0

−√
μ x0

]
,

Set r0 = p0 =
˜
AT (

˜
d−

˜
Ax0) = A−T (b−Ax0)− μx0,

Set q0 =
˜
Ax0,

Initialize iteration k = 0,
while (||

˜
Ax−

˜
d||22 > tol) do,

αk+1 =< rk, rk > / < qk,qk >,
yk+1 = xk + αk+1 pk,
sk+1 = sk − αk+1 qk,
rk+1 =

˜
AT sk+1,

βk+1 =< rk+1, rk+1 > / < rk, rk >,
pk+1 = rk+1 + βk+1pk,
qk+1 =

˜
Apk+1,

k ← k + 1,
end while
Set x = xk,

where ek is residual at kth iteration, ||∗||
˜
A =

˜
AT ∗

˜
A and C is the condition number

of
˜
AT

˜
A matrix.



APPENDIX B

Convergence of Conjugate Gradient algorithm

B.1 Convergence of Conjugate Gradient algorithm

Consider a linear system of equations with a data matrix A of n× n. Here we will

solve the least-squares minimization problem represented by equation A.1. Theo-

retically, the number of iterations which Conjugate Gradient algorithm takes till

convergence is equivalent to the number of non-zero and distinct eigenvalues of that

matrix. However, in real world applications with big sparse data matrices, nobody

runs the algorithm till convergence. In practical problems, one can show the con-

vergence behaviour of Conjugate Gradient algorithm by probing the properties of

Krylov subspace. Krylov subspace for CG algorithm reads

Di = {d0,Ad0,A
2d0, . . . ,Ai−1d0},

Di = {r0,Ar0,A
2r0, . . . ,Ai−1r0}.

(B.1)

One can show that the error term has the form

ei = (I+Σi
p=1ΘpA

p)e0, (B.2)

where Θp coefficients are related to βi and γi terms. One can represent the Θp

coefficients as polynomials. In this case, if the eigenvalue spectrum of the data

matrix is in set λ ∈ Λ and we use polynomials Pi(λ), then the convergence of CG
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reads

||ei||A ≤ argmin
Pi

argmax
λ∈Λ

Pi(λ)
2||e0||A, (B.3)

which shows that Conjugate Gradient finds the polynomials in such a way that in-

equality B.3 is minimized. For example, consider the well known Chebyshev polynomials

that can minimize equation B.3 over the eigenvalue spectrum of data matrix (i.e.,

[λmin λmax]). The Chebyshev polynomials of degree i can be expressed as

Qi(ω) =
1

2
[(ω +

√
ω
2
+ 1)i + (ω −√

ω
2 − 1)i]. (B.4)

It can be shown that if we choose polynomials of equation B.3 as

Pi(λ) =
Qi(

λmin+λmax−2λ
λmax−λmin

)

Qi(
λmin+λmax
λmax−λmin

)
, (B.5)

then the convergence of CG reads

||ei||A ≤ Qi(
λmin + λmax

λmax − λmin
)−1||e0||A,

= Qi(
C + 1

C − 1
)−1||e0||A,

= 2[(

√
C + 1√
C − 1

)i + (

√
C − 1√
C + 1

)i]−1||e0||A,

(B.6)

where C is condition number of data matrix. Moreover, by considering the fact that

the term (
√
C−1√
C+1

)i goes to zero as iteration number grows, we finally get

||ei||A ≤ 2(

√
C − 1√
C + 1

)i||e0||A. (B.7)

It is easy to show that if the eigenvalues of matrix A is clustered then CG algorithm

will easily find the polynomials. Figure B.1 shows Conjugate Gradient convergence

as a function of condition number.
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Figure B.1: Worst convergence behaviour of Conjugate Gradient algorithm,
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Generalized Preconditioned Conjugate Gradient algorithm

C.1 Generalized Preconditioned Conjugate Gradient al-

gorithm

In this section we show how one can use Conjugate Gradient algorithm to solve

J = ||AP−1y − d||22 + μ ||P−1y||22, (C.1)

where m = P−1y, and P is an M × M preconditioner. Following Hestenes and

Stiefel (1952) and Scales (1987) we know how to solve the conventional least squares

minimization problem (i.e., ||
˜
Ax−

˜
d||22). To take advantage of the same algorithm,

we concatenate the operators in equation C.1 so that the new cost function resembles

the conventional least-squares minimization

J = ||
[

AP−1

√
μ P−1

]
y −

[
d

0

]
||22 = ||

˜
Ay −

˜
d||22, (C.2)

where
˜
A =

[
AP−1

√
μ P−1

]
and

˜
d =

[
d

0

]
. Note that x = P−1y.

After doing so, the generalized Preconditioned Conjugate Gradient algorithm for

cost function of equation C.2 reads
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Algorithm 2 Generalized Preconditioned Conjugate Gradient algorithm

choose y0,

Put s0 =
˜
d−

˜
Ay0 =

[
d−AP−1y0

−√
μ P−1y0

]
,

Set r0 = p0 =
˜
AT (

˜
d−

˜
Ay0) = P−TA−T (b−AP−1y0)− μP−TP−1y0,

Set q0 =
˜
Ap0,

Initialize iteration k = 0,
while (||

˜
Ay −

˜
d||22 < tol) do,

αk+1 =< rk, rk > / < qk,qk >,
yk+1 = yk + αk+1 pk,
sk+1 = sk − αk+1 qk,
rk+1 =

˜
AT sk+1,

βk+1 =< rk+1, rk+1 > / < rk, rk >,
pk+1 = rk+1 + βk+1pk,
qk+1 =

˜
Apk+1,

k ← k + 1,
end while
Set y = yk,
Calculate x = P−1y.

where < ∗, ∗ > means inner product. The worst convergence of Conjugate Gradient

algorithm defined as

||ek||
˜
A ≤ 2(

√
C − 1√
C + 1

)k||e0||
˜
A, (C.3)

where ek is residual at kth iteration, ||∗||
˜
A =

˜
AT ∗

˜
A and C is the condition number

of
˜
AT

˜
A matrix.

Comparing the concatenated versions of equations A.1 and C.1, it is easy to show

that if the condition number of P−TATAP−1 + μP−TP−1 matrix is smaller than

ATA + μI, then the convergence rate of the Preconditioned Conjugate Gradient

algorithm will be faster than Conjugate Gradient algorithm.



APPENDIX D

Convergence of SMBD algorithm

D.1 Curvilinear line search on the unit sphere

This section proves that curvilinear line search on the unit sphere is equal to the

equation (5.18). In our problem, we need a rotation matrix that preserves the sparse

solution on the unit sphere. This is equivalent to have a rotation matrix Rk

xk+1 = Rk xk, (D.1)

such that ||xk+1||2 = ||xk||2 = 1. Using angle axis representation of rotation matrix

via aka Rodrigues’ formula, we have

Rk xk = xk + sin(θk) (rk × xk) + (1− cos(θk)) (rkr
T
k − I)xk, (D.2)

where rk is rotation axis, θk is rotation angle, I is identity matrix and k is iteration.

We need to choose rk in such a way that it lets the search go in the direction of

the projection of the gradient into the tangent plane on the sphere. Hence, the only

option is rk = xk × hk or in other words

hk = rk × xk, (D.3)

where hk is the normalized projected gradient on the sphere. Note that the length

of rk, xk and hk are equal to one. Now this is easy to show that rotation axis is
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orthogonal to the current solution. Hence, we have

rTk xk = 0. (D.4)

Inserting equations (D.3) and (D.4) into the equation (D.2) yields

Rk xk = sin(θk)hk + cos(θk)xk, (D.5)

as it is required.

D.2 Convergence behaviour of SMBD algorithm

This section proves the convergence of the proposed steepest descent method. For

xk+1 = xk +mk as long as −gT
k mk > 0 it is gradient descent. gk is the gradient of

the cost function at iteration k. In gradient descent the step size should be small

enough to guarantee the convergence. We will use the same concept to prove the

convergence of the proposed technique.

Again, consider the angle axis representation of rotation matrix via aka Rodrigues’

formula

Rk xk = xk + sin(θk) (rk × xk) + (1− cos(θk)) (rkr
T
k − I)xk, (D.6)

by analogy we have

mk = sin(θk) (rk × xk) + (1− cos(θk)) (rkr
T
k − I)xk. (D.7)

It is very interesting that unlike conventional steepest descent, the evolving direction

depends on the step size θk. Now, we need to check if −gT
k mk > 0. We should

emphasize that the steepest descent is valid only for sufficiently small step sizes.

Assuming small angles, we have sin(θ) ≈ θ and (1 − cos(θ)) ≈ 0. Hence, equation

(D.7) simplifies to

mk ≈ θk (rk × xk) = θk hk. (D.8)

Obviously −gT
k θk hk > 0. Hence it is gradient descent. It is worth mentioning that

to satisfy the constraint we used mk = sin(θk) (rk×xk)+(1− cos(θk)) (rkr
T
k − I)xk
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but to prove the convergence of the proposed steepest descent we have mk ≈ θk hk.
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