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Abstract

This thesis advances seismic imaging and inversion, crucial for identifying hydrocarbon

prospects and understanding the Earth’s internal structure by retrieving rock parameters

from seismic data. Facing challenges such as solution non-uniqueness, slow convergence,

and high computational demands, this work integrates deep learning frameworks, classi-

cal regularization theory, and two-way wave equation propagators. We develop iterative

and non-iterative deep learning methods, such as interlacing convolutional neural networks

(CNNs) within traditional Least-Squares Reverse Time Migration (LSRTM) schemes, and

employing deep autoencoders to refine inverse problem spaces, enhancing resolution and

speeding up convergence. Additionally, Sparse Full Waveform Least-Squares Reverse Time

Migration (Sparse FWLSRTM) is introduced, combining sparse regularization with the full

wavefield vector reflectivity modeling engine to substantially improve imaging quality under

complex geological settings. Furthermore, the thesis explores seismic broadband deconvolu-

tion using deep learning to derive full-band reflectivity from band-limited data, integrating

learned null space components for better data consistency and resolution. Collectively, these

methodologies significantly enhance the fidelity and efficiency of seismic imaging, merging

advanced machine learning techniques with traditional approaches to offer a robust toolset

for geophysical prospecting in challenging subsurface environments.
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CHAPTER 1

Introduction

Seismic imaging and inversion are pivotal techniques for geophysicists, enabling them to

uncover valuable hydrocarbon prospects and delve into the Earth’s inner structure. These

methods involve retrieving rock parameters and creating detailed subsurface images from

recorded seismic data. At their core, they tackle a large-scale inverse problem: inferring an

unknown model (or image)—a discrete representation of the subsurface, typically with up to

a billion unknowns—from indirect and noisy measurements, known as observed data. The

underlying inverse process reverses the causality direction of a known physical phenomenon

embodying the seismic experiment, which derives observed data from a subsurface model.

This is typically accomplished using a forward operator that simulates how seismic waves

travel through the subsurface, interact with different geological structures, and then return

to the surface, where they are recorded by receivers.

Solving the forward problem lays the foundation for approaching the corresponding inverse

problem. Researchers have pioneered a variety of algorithms based on different approxima-

tions of a particular wave equation (Tarantola, 1984a; Woodward, 1992; Kühl and Sacchi,

2003; Sava and Biondi, 2004). The methods grounded in the two-way wave equation stand

out for their enhanced precision in simulating wave propagation physics beneath the surface

through a partial differential equation (PDE). This accuracy is especially beneficial in com-

plex geological settings characterized by pronounced velocity contrasts and steep structural

dips, where more simplistic methods might struggle to provide reliable results. In such con-

texts, a comprehensive treatment of wave phenomena is crucial for enhancing resolution and

achieving higher imaging fidelity. This means that finer details within the subsurface can

be resolved, leading to clearer and more detailed structures, which is crucial for identifying

potential resources and understanding geological formations.

By the same token, the seismic imaging industry has leaned heavily on the principle of
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acoustic approximations, treating the Earth as a fluid medium that exclusively supports the

propagation of primary waves. This principle, rooted in the observation that both acoustic

and elastic approximations yield indistinguishable travel times for primary waves, has shaped

the standard approach to seismic data processing and imaging (Aki and Richards, 2002).

Despite the oversimplified view of Earth’s layers as shear-resistant fluids, this conception

accurately predicts the arrival times of primary waves and provides an approximation of

amplitude decay resulting from geometric spreading. Therefore, even though the acoustic

approximation may technically employ an inexact model of Earth’s physics, it consistently

achieves remarkable success in seismic imaging applications where elastic assumptions are

still computationally prohibitive. Building on this foundation, the majority of this thesis

aims to leverage the acoustic approximation framework derived from the two-way wave

equation, seeking to further advance subsurface imaging techniques.

Unlike the forward problem, solving the inverse problem is an unstable and inconsistent

process. This instability arises because the subsurface can only be accessed from one side,

that is, from the surface and/or a very limited number of well locations, with finite-aperture

receiver arrays, leading to inadequate coverage in certain areas. Hence, there is not enough

information in the data to uniquely determine a plausible subsurface model. As a matter

of fact, many different subsurface models can result in identical surface measurements,

a challenge that introduces a non-trivial null space—a family of model components that

have no effect on the data—into the problem, and highlights the severe ill-posed nature of

seismic inversion. This issue is exacerbated by the fact that the seismic sources used in field

recordings are band-limited, restricting deep exploration and diminishing detail resolution

due to the frequency gap. Moreover, the observed data is prone to noise and can only be

partially reproduced due to approximation errors in the adopted forward modeling with

respect to the true physics of the seismic experiment, which further complicates the task

of model estimation. In the realm of seismic imaging, this translates into results with non-

illuminated (shadow) regions, inconsistent amplitudes, imaging artifacts and low resolution.

A partial solution to address the inherent ill-posedness of inverse problems involves integrat-

ing prior information about the image space to achieve unique and enhanced results. Due

to the problem size in seismic inversion, this integration is typically realized through regu-

larization strategies within PDE-constrained optimization methods applied to least-squares

imaging formulations. These methods iteratively minimize a cost function indicating the dis-

crepancy between measured and predicted data derived from the established forward model,

which is often a linear operator. Desirably, the null spaces of the regularizer and the forward

operator should not overlap to reduce the null-space ambiguity. Moreover, the regularized

reconstruction is deterministic, producing a single subsurface model that approximately fits

the noisy seismic data, among various possible models. It is important to note that under

specific conditions, this optimization problem can also be framed within a Bayesian context.
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In this probabilistic interpretation, the solution that minimizes the optimization problem

aligns with the maximum a posteriori (MAP) parameter estimate.

Additionally, preconditioning is a common technique employed alongside or in lieu of regu-

larization. This involves encoding additional information into the solution space by enforcing

features in specific mathematical bases. From a linear algebra perspective, preconditioning

the system derived from the inverse problem formulation enhances its spectral properties,

leading to accelerated convergence due to the improved distribution and clustering of large

eigenvalues (Saad, 2011). Therefore, optimization methods will require fewer iterations to

minimize the cost function. Moreover, the exclusive use of preconditioning allows for the

avoidance of explicitly including extra regularization into the cost function, which saves the

time needed to determine an appropriate trade-off parameter. When using popular semi-

iterative solvers, the number of iterations also play the role of regularizing the data fitting

process. A carefully chosen stopping point ensures that the iteration halts before the smaller

singular values can significantly affect the solution (Hanke and Hansen, 1993).

Traditionally, regularization and preconditioning in seismic imaging have relied on hand-

crafted operators, employing techniques such as sparsity enforcement or the application of

Tikhonov and Total Variation methods (e.g. Anagaw and Sacchi, 2012). These methods

aim to establish structured priors based on predefined notions of what constitutes a plausi-

ble subsurface model. However, despite their utility, regularized iterative approaches often

struggle with the complicated nature of seismic data, leading to unrealistic reconstructions

that fail to capture complex subsurface parameter statistics, slow convergence rates, and

significant computational burdens due to the high costs of applying imaging operators. Al-

though hand-designed priors can mitigate some artifacts, they often fall short in capturing

realistic details and can be challenging to define due to their domain-specific nature.

To address these challenges, there has been a significant shift towards the use of learned-

based operators, driven by advancements in deep learning technologies. These modern

methods utilize extensive training data to learn complex prior distributions, enabling a

more nuanced exploration of underlying geological features. In this thesis, leveraging deep

learning frameworks, in particular through the application of Convolutional Neural Networks

(CNN), we explore how seismic imaging can benefit from adaptive learning directly from the

data itself. This results in tailored reconstruction schemes that dynamically adjusts to the

specific intricacies of each dataset. Under the premise that we can use machine learning to

extract this information from data efficiently, we develop solid protocols that integrate deep

learning frameworks to solve complex geophysical inverse problems in imaging. Specifically,

by combining theoretical concepts of wave propagation phenomena, seismic data processing,

high-performance imaging techniques, and novel ideas arising from the field of deep learn-

ing, we study how data-driven and model-based methods can achieve substantial evolution
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in seismic reflectivity imaging techniques, offering faster convergence and more accurate

reconstructions of the subsurface.

As a starting point and for the sake of clarity, the next section presents the fundamental

mathematical expressions of wave-equation-based seismic imaging. The remaining of this

introduction briefly explains the novelty and the main contributions that this thesis brings

to the field.

1.1 Seimic imaging

Model-based reconstruction approaches use the forward and adjoint operators of the imaging

problem directly in the inversion algorithm, with a regularization scheme that implements

handcrafted operators based on prior knowledge about the model space, or whose parameters

are learned by a trainable operator from a dataset in a training phase. These methodologies

are crucial in enhancing the fidelity of seismic images by ensuring that the adjustments made

to the subsurface model are both accurate and reflective of the true geological structures.

The ultimate goal of seismic imaging is to retrieve a high-resolution image of the subsurface

reflectivity. This process is conducted using reflection migration algorithms that utilize a

previously estimated background velocity model and recorded data as inputs. Depth mi-

gration algorithms geometrically relocate the recorded seismic measurements to the depth

locations where the reflection events originated in the subsurface, effectively collapsing the

wavefronts to enhance the image of structures, provided that the background velocity model

is sufficiently accurate. Demigration, on the other hand, reverses this process, taking an im-

age and predicting how it would appear in recorded seismic data. In acoustic wave-equation

imaging techniques, velocity is commonly used as the model parameter. In this context,

the subsurface reflectivity model can be defined as the high-wavenumber velocity pertur-

bation (Tarantola, 1984a). Therefore, we employ the acoustic wave equation to represent

the underlying physical phenomena that links the mentioned reflectivity parameter to the

observed reflection data.

In this section, we briefly describe the theory behind wave-equation-based seismic imaging.

We begin by writing the scalar wave equation for both continuous and discrete cases. Next,

we establish the linearized versions of the scalar wave equation and construct the associated

forward and adjoint Born operators. These constitute the essential operators used in imaging

techniques such as Reverse Time Migration (RTM) and the convex optimization problem

known as Least-squares Reverse Time Migration (LSRTM), discussed in Chapters 2, 3, and

4 of this thesis.
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1.1.1 The acoustic wave equation

The wave equation can be written in its acoustic isotropic (i.e., scalar) form as the following

PDE:
∂2p(x, t)

∂t2
− v2

p(x)ρ(x)∇ ·
(

1

ρ(x)
∇p(x, t)

)
= s(x, t), (1.1)

where x denotes an observation point with Cartesian coordinates (x, y, z) in a three-dimensional

space, p(x, t) is the pressure wavefield, vp(x) is the seismic velocity field, ρ(x) is the density,

s(x, t) is the source wavefield, ∇ is the gradient operator, and ∇· is the divergence. Un-

der the assumption of a spatially constant density function ρ, we can further simplify the

wave equation and characterize the subsurface by a single parameter, namely the squared

slowness m = 1/v2
p, becoming

m(x)
∂2p(x, t)

∂t2
−∇2p(x, t) = s′(x, t), (1.2)

with s′ = s/v2
p. This simplification allows a more computationally efficient way to model

seismic wavefields.

In chapters 2 and 3 of this thesis, we restrict ourselves to the setup of constant-density

acoustics. In chapter 4, we present a reparameterization of equation 1.1 in terms of the

acoustic velocity and vector reflectivity variables. We also limit our analysis to 2D acoustic

models, but the ideas presented hereafter apply in principle to virtually any class of earth

models.

One common additional assumption is to consider the source term as a point source described

by a distinct source signature w(t). For example, one can express the source term in equation

1.2 as

s′(x, t) = δ(x− xs)w(t), (1.3)

where δ signifies the Dirac delta, and xs denotes the location of the source. In practice,

the wavefield variable p is not known across all subsurface points; rather, it is captured by

receivers like geophones or hydrophones. The recorded data d(xr, t) are defined by

d(xr, t) =

∫
Ω

δ(x− xr)p(x, t)dx, (1.4)

where xr is the coordinate of the receivers and Ω signifies the propagation domain.

To synthetically model the wave equation, the previously stated PDEs are discretized using

an explicit finite-difference (FD) approach. For the constant density acoustic wave equation,

a central-grid finite-difference technique is usually employed, leading to the expression

[
MD2

t −∇2
]
p = s, (1.5)
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where D2
t is a second-order central-difference operator in time, ∇2 denotes a high-order finite

difference representation of the Laplacian operator, and M is a diagonal matrix that depends

on the squared slowness vector m ∈ RNn . The vectorized pressure wavefield p and the source

vector s are both part of RN with N = Nn ×Nt, being Nn = Nx ×Ny ×Nz the number of

grid-points of the discrete spatial dimensions, and Nt is the number of time samples. The

process that describes the propagation of the source vector in the computational domain

can be encapsulated as

p = A−1(m)s. (1.6)

Here, A(m) represents a square matrix containing the operator
[
MD2

t −∇2
]
, which can

be inverted with a forward substitution strategy when initial time-boundary conditions are

defined. Finally, we can represent the discretization of the delta function in equation 1.4 for

a single-source experiment as

d(m) = Prp(m), (1.7)

with d ∈ RNr×Nt as the discrete observed data vector, and Pr ∈ R(Nr×Nt)×N acting as a

”projection-onto-receivers” operator. Nr represents the number of receivers. Acoustic data

modeling for a multi-source experiment can be easily extended as
d1

...

dNs

 =


Pr1p1(m)

...

PrNs
pNs

(m)

 , (1.8)

where Pri and pi refer to the sampling operator and simulated wavefield vector for the i-th

source, respectively.

1.1.2 Migration and demigration operators

The industry-standard approach for seismic reflection imaging and inversion relies upon the

linearized model of acoustic single scattering, which results from applying a suitable first-

order perturbation approximation to the acoustic wave equation. Finding the linearized

form of equation 1.2 facilitates the linear mapping of wave velocity perturbations to seismic

data perturbations. Once the linearized acoustic wave equation is discretized, its adjoint

form can be derived, establishing a linear relationship between data perturbations and wave

velocity perturbations. This connection enables imaging through two-way wave-equation-

based algorithms like RTM and the inversion of wave velocity and reflectivity models from

seismic data using Full Waveform Inversion (FWI) and LSRTM, respectively.
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To express the linear operators, we start with a key and widespread assumption of seismic

migration and linearized waveform inversion: the true velocity model, parameterized in

terms of the squared slowness, mtrue, admits a scale separation as a sum of a low-wavenumber

component (the true background model), m0, and a high-wavenumber component (the true

reflectivity model), δm, so that the following equation holds

mtrue(x) = m0(x) + δm(x). (1.9)

Respectively, the full pressure wavefield for a single-source experiment, p, can be decomposed

as the sum of a background wavefield, p0, and a perturbed wavefield, δp,

p(x, t) = p0(x, t) + δp(x, t), (1.10)

such that we can rewrite the acoustic wave equation as

[m0(x) + δm(x)]
∂2[p0(x, t) + δp(x, t)]

∂t2
−∇2[p0(x, t) + δp(x, t)] = s′(x, t). (1.11)

Expanding equation 1.11 and considering that

δm
∂2(p0 + δp)

∂t2
= δm

∂2p

∂t2
(1.12)

≈ δm∂2p0

∂t2
(1.13)

via Born’s approximation, results in the following system

m0(x)
∂2p0(x, t)

∂t2
−∇2p0(x, t) = s′(x, t), (1.14)

m0(x)
∂2δp(x, t)

∂t2
−∇2δp(x, t) = −δm(x)

∂2p0(x, t)

∂t2
. (1.15)

This approximation assumes that the reflections are due to local discontinuities of the

medium only, and the effect of multiple reflections will be neglected.

Similar to equation 1.4, the registered scattered wavefield at the receivers position is ex-

pressed as

δd(xr, t) =

∫
Ω

δ(x− xr)δp(x, t) dx. (1.16)

Discretizing equations 1.14 to 1.16, we define the linear operator that connects a squared

slowness perturbation vector ∆m ∈ RNn with a perturbation in the data space ∆d ∈ RNm
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as follows:

∆d = PrA
−1(m0)P̈0(m0)∆m, (1.17)

= Pr∆p (1.18)

where m0 ∈ RNn is the background squared slowness, and P̈0 ∈ RN×Nn is a matrix rep-

resenting the discretization of the term −∂
2p0(x,t)
∂t2 . This matrix is derived from taking the

second derivative and scaling the solution p0 in equation 1.14, often referred to as the source

or background wavefield in migration jargon, obtained through the solution of the system

p0 = A−1(m0)s. (1.19)

The discrete scattered wavefield can be obtained by following an analogous process via

the finite-difference and forward-substitution approach but using the product between the

squared slowness perturbation and the scaled background wavefield as the source term,

which results in

∆p = A−1(m0)P̈0(m0)∆m. (1.20)

The linear mapping between perturbations in the model and data space can be explictly

obtained by rewriting equation 1.17 as

∆d = L∆m, (1.21)

with L ∈ RNm×Nn defined as

L = PrA
−1(m0)P̈0(m0), (1.22)

commonly known as Born modeling or demigration operator. Dropping the non-linear

dependency on the background model for notation simplicity, we can write the adjoint

of the Born operator, also known as the RTM operator, LT ∈ RNn×Nm , as

LT = P̈T
0 (AT )−1PT

r . (1.23)

Equations 1.22 and 1.23 are applied throughout this thesis (unless otherwise noted) as the

algorithms to generate seismic pressure data from seismic images (demigration) and create

seismic images from the observed reflection data (migration). The latter is accomplished by
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solving

mRTM = LTd

= P̈T
0 (AT )−1PT

r d

= P̈T
0 q (1.24)

Breaking down the individual terms that result in equation 1.24, it is possible to obtain

a physical interpretation of how the adjoint of the Born operator can produce an image

of the subsurface. This system is equivalent to a cross-correlation operation between two

wavefields. The first wavefield is the previously introduced scaled source wavefield P̈0. The

second wavefield, q ∈ RN , is usually known as the receiver or adjoint wavefield, and it is

given by the solution of the system

ATq = PT
r d. (1.25)

As noted in equation 1.25, the receiver wavefield originates by injecting the recorded re-

flections with the adjoint sampling operator, PT
r , and propagating them backwards in time

with the adjoint operator of the acoustic wave equation, AT =
[
MD2

t −∇2
]T

, which can be

obtained via the adjoint-state method (Plessix, 2006a). The key to this imaging technique

is that, ideally, the two wavefields only generate a non-zero image where they meet exactly

at the same point in time and space (Claerbout, 1985). In the continuous case, we can write

mRTM(x) = −
∫
T

∂2p0(x, t)

∂t2
q(x, t)dt, (1.26)

making the image generation process explicit through the time and space zero-lag cross-

correlation between the two wavefields. As extensively advocated in the literature, the

true high-wavenumber reflectivity image can be more accurately estimated using LSRTM

for a fixed background model m0. This linearized inversion algorithm approximates the

pseudo-inverse of the Born forward operator. It mitigates issues such as the degradation of

amplitude and the presence of low-frequency artifacts commonly associated with the adjoint

operator. A detailed explanation of this method will follow in the subsequent chapters.

1.2 Thesis contributions and overview

This thesis contributes to understanding the advantages and limitations of model-based and

data-driven deep learning approaches to the seismic imaging problem, with a special focus

on Convolutional Neural Networks (CNN). The main contributions of each chapter are as

follows:
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• In Chapter 2, we explore the application of learned iterative reconstruction methods

to LSRTM on synthetic and real data sets. We demonstrate the potential and limita-

tions of supervised single-pass post-processing and cascade-like schemes for CNN-based

projection approaches in data-driven LSRTM inversion. We develop a lightweight

and practical CNN architecture, therefore omitting the need for over-parameterized

networks, considering the physics of seismic migration using the least-squares misfit

gradient and the current reflectivity estimate. We also explore how data-driven reflec-

tivity reconstructions can be used as warm-starts for the CGLS algorithm, obtaining

an improved reflectivity model in fewer iterations than traditional LSRTM.

• The first part of Chapter 3 proposes a model-space self-supervised learned precondi-

tioner for data-domain iterative LSRTM. The experimental method uses a deep CNN

autoencoder to learn the mapping between migrated and re-migrated images in seis-

mic data. This method is proposed to approximate the inverse Hessian, which is then

used to re-parameterize the reflectivity model into a low-dimensional space. This ap-

proach facilitates a more efficient solution of the linearized waveform inversion, thereby

accelerating the convergence of LSRTM and reducing computational costs.

• The remaining of Chapter 3 explores a novel non-iterative self-supervised approach to

improve RTM images using deep-learning-based preconditioning in the data space. By

employing a CNN that is trained on input-output pairs of observed and demigrated

data, the method applies non-linear filters directly to the migrated data. This ap-

proach balances image quality with computational efficiency, eliminating the need for

the iterative computation typical of LSRTM.

• Optimal RTM-based imaging and inversion algorithms are often contingent upon per-

fect seismic data acquisition and the premise that the seismic wave propagation con-

forms strictly to an acoustic wave equation without density variations. These as-

sumptions, however, are only sometimes congruent with the complexities encountered

in practical scenarios. Chapter 4 introduces Sparse Full Waveform Least-Squares Re-

verse Time Migration (Sparse FWLSRTM), an innovative approach to seismic imaging

that incorporates sparse regularization to enhance the quality of seismic data imaging.

By comparing Sparse FWLSRTM with traditional LSRTM methods, we demonstrate

the former’s superior capability to delineate geological reflectors with higher precision

and reduce imaging artifacts and sidelobes, even when faced with highly decimated

data and imprecise velocity models. Moreover, we show how FWLSRTM, with its pa-

rameterization based on vectorized reflectivity, can resolve a broader range of seismic

events, including refractions, diving waves, and reflections, offering a superior fit for

complex data compared to traditional methods without the need for an explicit den-

sity model. We outline the theoretical framework for Sparse FWLSRTM, including the
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derivation of misfit gradients and the application of sparse regularization techniques.

Through various experiments and comparisons, we illustrate the potential of Sparse

FWLSRTM as a robust tool for seismic imaging in complex geological settings.

• Chapter 5 devises the application of learned range-nullspace decomposition methods

for reflectivity inversion. In the training stage of this supervised framework, access to

feasible physical projections onto the range and null spaces of a known forward oper-

ator is required. Due to the high computational costs in estimating such projections

using Born operators, we explore the application of such networks in a less computa-

tionally expensive but still ubiquitous problem in seismic exploration: the recovery of

a full-band reflectivity time series from band-limited zero-offset seismic traces. The

proposed approach combines classical regularization theory with a learned deep range-

nullspace decomposition. Namely, our method extends the learned post-processing

approach by learning how to improve an initial reconstruction with estimated missing

components from the null space of the forward operator, which, in our case, are the

missing frequency components of the reflectivity. At the same time, we incorporate

a denoising neural network that acts exclusively on the range space, approximately

guaranteeing data consistency. Numerical experiments show that the proposed method

naturally enforces a high-resolution prediction consistent with the low-resolution in-

put seismic traces. We also compare the proposed technique with a classical thin-bed

reflectivity estimation method on synthetic data and two real data sets.

11



CHAPTER 2

Least-squares reverse time migration via deep

learning-based updating operators 1

2.1 Introduction

Seismic migration workflows are the cornerstone of subsurface structural imaging. From

the family of migration techniques implemented in such workflows, Reverse Time Migration

(RTM) (Baysal et al., 1983; Whitmore, 1983) is considered the most effective algorithm for

imaging complex geological settings. Its superiority in providing accurate subsurface images

stems from the fact that it uses the adjoint of the linearized two-way wave equation, which

is a more accurate approximation of the wave propagation phenomena than its asymptotic

or one-way counterparts, thus imposing no limitations on the dip angle of reflectors (Etgen

et al., 2009). Despite being a sophisticated migration method, RTM images often suffer from

backscattering low-frequency noise (Dı́az and Sava, 2016), incomplete illumination due to

defocusing velocity anomalies (Buur and Kühnel, 2008), and artifacts produced by a coarse

source-receiver sampling and corrupted data (Zhang and Sun, 2009), thereby exposing the

limitations of using adjoint (rather than inverse) operators to map from seismic data to

reflectivity models.

Least-squares migration (LSM) (Lailly and Bednar, 1983; Nemeth et al., 1999) seeks to over-

come the limitations of adjoint formulations by posing seismic migration as a linear inversion

problem, where a generalized inverse approximates the exact inverse of the modeling opera-

tor. Under the assumption of a sufficiently correct background velocity model and adequate

1A version of this chapter has been published as a journal article: Torres, K., and M. D. Sacchi, 2022,
Least-squares reverse time migration via deep learning-based updating operators, Geophysics, 87, no. 6,
S315–S333.
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preconditioning of the data, LSM can reduce migration artifacts, remove acquisition marks,

compensate for illumination, and increase the resolution of seismic sections (Lambaré et al.,

1992; Kühl and Sacchi, 2003; Schuster, 2017). When least-squares migration uses the RTM

engine to perform demigration/migration sequences for imaging, we call it least-squares re-

verse time migration (LSRTM) (Dai et al., 2012; Wang et al., 2017b). LSRTM delivers true

amplitude images and sharpens the subsurface reflectors (Dong et al., 2012).

Conventional LSRTM implementations use iterative methods to obtain a reflectivity model

that minimizes the l2-norm misfit, defined in either the data domain, where the input is

the recorded data, or the image domain, where the input is the migrated image (Fletcher

et al., 2016; Schuster and Liu, 2019). Additionally, due to the ill-posed nature of the LSM

problem, a regularization term is frequently incorporated into the misfit to impose a priori

information on the model (such as sparseness or other structure constraints) and stabilize

the inverted solution (e.g. Clapp, 2005; Wang et al., 2005; Wang and Sacchi, 2007a, 2009;

Dutta, 2017; Witte et al., 2017; Li et al., 2020a). Regularized LSRTM methods often pro-

duce acceptable results but can be challenging to deploy in practice due to the difficulty

of hyperparameter selection and the high computational cost of iteratively evaluating the

forward and adjoint operators. Moreover, the selection and design of an appropriate regu-

larization term remain highly nontrivial for complex reflectivity distributions, where a poor

choice could compromise the correctness of the inversion. Such limitations open the way to

a new generation of methods.

With the recent advent of deep learning (LeCun et al., 2015), machine learning techniques

have emerged as powerful alternatives for solving seismic inverse problems with remarkable

empirical success. One common approach in the field of velocity model building is to use

deep neural networks (DNN) to directly approximate the data-to-model inverse mapping in

an end-to-end fashion (e.g. Araya-Polo et al., 2018, 2019; Yang and Ma, 2019; Li et al., 2020b;

Liu et al., 2021a; Vantassel et al., 2021). Although this approach circumvents the need for

iterative reconstruction, it relies exclusively on vast amounts of sometimes elusive training

data to achieve high-quality results and good generalization properties. It also scales poorly

for models with a large number of trainable parameters due to memory limitations—an

issue analogous to explicit matrix-based formulations of seismic imaging problems (Yao and

Jakubowicz, 2016).

For these reasons, alternative strategies aim to combine data-driven applications with tra-

ditional inversion processes, often by substituting parts of the original computations or by

adopting an unrolled implementation of an iterative algorithm. For instance, a category

of deep learning methods bypasses the need for labeled datasets by using partial differen-

tial equation kernels to guide the unsupervised training of physics-based neural networks

(PBNN), in which the seismic records are regarded as the training data, and the subsur-
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face parameters are estimated through Convolutional (Biswas et al., 2019) or Recurrent

(Richardson, 2018; Sun et al., 2020) Neural Networks. Alfarraj and AlRegib (2019) and

Sun et al. (2021) extend PBNN to a hybrid approach that considers a weighted sum be-

tween model and data misfits as the components of the loss function, with the ability to

learn from partially labeled data in semi-supervised training. These techniques highlight

the benefits of integrating machine-learning operations with known deterministic physical

models in the form of forward and backward wave propagation codes.

In recent years, deep learning also has been implemented into LSM workflows. Liu et al.

(2020c) show that the iterative solution of the image-domain LSM problem with sparsity

constraints resembles a forward pass through a multilayered neural network, establishing

analogies between the filters and feature maps of a Convolutional Neural Network (CNN) and

the migration Green’s functions and reflectivity coefficients. Kaur et al. (2020) approximate

the effect of the inverse Hessian on post-stack migrated images by training a Generative

Adversarial Network (GAN) using the background velocity model as a conditioner. Most

recently, Vamaraju et al. (2021) employs mini-batch gradients and adaptive learning rate

optimizers to improve the resolution and reduce the computational burden of conventional

pre-stack LSRTM. Further implementations of learning-based techniques in seismic imaging

include using a CNN to suppress cross-talk artifacts from dip-angle gathers in elastic RTM

images (Lu et al., 2020) and training CNNs as structural (Cheng et al., 2020) or denoising

(Liu et al., 2020a) preconditioners to assist in the LSM inversion. For a comprehensive

review of deep learning methods in other geophysical applications, we refer the reader to Yu

and Ma (2021a), and Adler et al. (2021a).

Exploiting the universal approximation property of CNNs (Hornik et al., 1989) and the

fact that they can learn structural features of images from representative examples, we

introduce a supervised strategy that interfaces CNN-based machine learning with pre-stack

LSRTM, which we have baptized as Deep-LSRTM. This scheme can be regarded as a deep

learning extension of the conventional projected gradient-descent method since it substitutes

the projection operators with sets of CNNs, learning an update function at each iteration.

Our approach incorporates the linearized modeling and migration wave operators into the

reconstruction process, evolving in response to the data-misfit gradient and allowing for

interpretability in the network design. By detaching the forward and adjoint mappings

from the learning step, Deep-LSRTM favorably reduces the networks’ parameter complexity

and the amount of training data, and also improves robustness and generalizability (Boink

et al., 2019; Maier et al., 2019). The efficiency of the method is twofold: once trained, the

proposed networks can predict accurate reflectivity models within only a few iterations, and

secondly, it implicitly learns the step size and the effect of regularization from the training

data. We emphasize that Chen et al. (2021a) have explored a similar idea based on learning

generalized projection mappings in the context of blind high-resolution inversion of post-
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stack data; however, to the best of our knowledge, this is the first fully iterative application

of learned updating projections on seismic pre-stack LSRTM.

In the following sections, we will first describe how the theory of constrained LSRTM con-

nects with Deep-LSRTM. Then we will present the proposed network architecture and the

supervised training procedure, where we use 900 reflectivity models derived from folded and

heavily faulted pseudo-random velocity distributions as true labels. After training, we eval-

uate the performance of Deep-LSRTM on three synthetic examples and compare it against

a single-step learned reconstruction and a conventional LSRTM solved by the conjugate

gradient least-squares algorithm (CGLS) (Hestenes and Stiefel, 1952). We also use field

data from the Gulf of Mexico to test how a direct implementation of our method and a

modification that includes transfer learning perform on a dataset with characteristics not

perfectly represented by the training samples. We observe that our workflow produces high-

resolution migration images comparable to traditional LSRTM but drastically reduces the

required number of iterations. Finally, we present the conclusions and directions for future

work.

2.2 Method

2.2.1 Least-squares reverse time migration

The forward problem of seismic imaging can be represented in a compact matrix notation

by

d = Lm, (2.1)

where d denotes the M × 1 vector of modeled data, m is the N × 1 vectorized reflectivity

or model perturbation, and L is the M × N matrix that describes a linearized forward-

modeling operator dependant on the acquisition geometry, the source wavelet, and a known

background model of the medium (e.g., velocity) (Tarantola, 1984b). In this work, L defines

the forward (or demigration) operator that encapsulates the first Born approximation of the

acoustic two-way wave equation for a medium without density variations (Lailly and Bednar,

1983). Theoretically, RTM uses the adjoint of the Born modeling operator to migrate the

pre-processed observed seismic data dobs

mmig = LTdobs, (2.2)

where mmig is the migrated image, an estimate of the true model perturbation (Xu and

Sacchi, 2018). Seismic imaging is plagued by noisy data and a non-trivial null space due

to bandwidth, illumination, and offset limitations. Thus, LSRTM is formulated as a linear
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ill-posed inverse problem aided by regularization. Regularized LSRTM entails finding the

reflectivity model that minimizes the mismatch between observed and modeled data in a

least-squares sense and is consistent with the available prior knowledge. This amounts to

solving the following unconstrained optimization problem

min
m

{
J(m) + λR(m) =

1

2
||Lm− dobs||22 + λR(m)

}
, (2.3)

where J(m) is the data-misfit function, || · ||2 is the l2-norm that implicitly designates

summation over time samples, receivers and sources, R(m) represents any generic regular-

ization/penalty term that encodes knowledge about the structure of the model, and λ > 0

is the damping parameter that controls the trade-off between the data misfit and the regu-

larization term. Depending on the smoothness and convexity properties of the regularizer, a

myriad of specialized optimization methods have been developed to obtain optimal solutions

to different variants of equation 2.3. For instance, a common strategy consists in minimizing

a non-quadratic norm on some sparsity-promoting representation of the reflectivity model

or its gradient, which can be solved with proximal algorithms or the iterative-reweighted

least-squares method (Wang and Sacchi, 2007b; Liu et al., 2021b). Although non-quadratic

regularization approaches lead to high-resolution images, they still require many iterations,

and using large regularisation weights might result in excessive smoothing and underesti-

mated property values. Obtaining an optimal λ is also a cumbersome task and it is generally

estimated by a trial-and-error approach. The more rigorous L-curve procedure is not feasi-

ble for industrial-scale LSRTM problems as it demands the solution of the inverse problem

multiple times (Calvetti et al., 2000).

In the particular case of R(m) = 1
2 ||m||22 (i.e. assuming zero-order quadratic regularization),

equation 2.3 leads to the classical LSRTM with damping. The latter has closed-form solution

given by

m = [LTL + λI]−1LTdobs, (2.4)

which is equivalent to the image-domain LSRTM formulation

m = H−1mmig. (2.5)

Due to the prohibitive cost of explicitly inverting and storing the Hessian matrix plus

prewhitening given by H = LTL + λI, the operators L and LT are constructed in implicit

form rather than as matrices, and equation 2.4 is solved iteratively or by approximating the

Hessian by a manageable size operator (Gao et al., 2020a). Considering a simple gradient

descent scheme, we can calculate reflectivity updates by

mk+1 = mk − α∇(J(mk) + λmk), (2.6)
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where

∇J(mk) = LT (Lmk − dobs)

= LT r
(2.7)

denotes the gradient of the data misfit with respect to the model parameters, r is the data

residual, α > 0 is the step length, and k is the iteration number. In practice, we can find

stable solutions to the LSRTM problem with the more efficient CGLS algorithm, which

allows us to use an analytical step length, weighted l2-norms, and quadratic regularization

(Kühl and Sacchi, 2003).

Constrained LSRTM via gradient projections

A different approach to regularized minimization arises when the prior knowledge is intro-

duced in the form of projected constraints (Peters et al., 2019). In such a case, the inverse

problem can be rephrased as

min
m∈C

{
J(m) =

1

2
||Lm− dobs||22

}
, (2.8)

where C ⊂ RN is a closed, non-empty convex set with desired physical constraints. When

an efficient method for projecting onto C is available, we can use the projected gradient

descent method (PGD) as a cost-effective algorithm to iteratively solve equation 2.8

mk+1 = PC
(
mk − α∇J(mk)

)
, (2.9)

with the projection operator formally defined by

PC(x) = arg min
m∈C

{1

2
||m− x||22

}
, (2.10)

which translates into finding the closest m ∈ C to a given input model update x. In practice,

a variety of techniques might be employed as projections. For example, Cheng et al. (2016)

use PGD with the Singular Spectrum Analysis filter (SSA) (Oropeza and Sacchi, 2011) as

the projection operator to perform pre-stack LSM for blended data, where a deblending

constraint is imposed in the shot-index common image domain to separate the coherent

multiples from source cross-talk.

Since PGD converges at a linear rate under a constant step size, authors have explored

the application of the projected gradient method to seismic waveform inversion (e.g. Becker

et al., 2015; Xiang et al., 2016; Peters et al., 2019). In general, convergence properties of

PGD are given for convex projections. However, as pointed out by Peters et al. (2019),
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one can use non-convex projections and rely on empirical testing to examine convergence

properties.

2.2.2 Deep-LSRTM: LSRTM via learned updates

We build the Deep-LSRTM framework upon recent research that suggests that unrolling

classical model-based techniques with learned projection networks trained from data may

significantly optimize inverse problem formulations (e.g. Gregor and LeCun, 2010; Chang

et al., 2017; Meinhardt et al., 2017; Putzky and Welling, 2017; Zhang and Ghanem, 2017). In

general, learned projection formulations avoid the explicit computation of regularized con-

straints. Instead, neural network architectures with K prescribed blocks are constructed,

where each block mimics one iteration of a model-based gradient method. Naturally, the

PGD scheme presented in the previous section inspires us to replace the projection operator

PC(·) or any generalized projection that improves the current model update by a neural

network PΘ(·), parametrized by the set of trainable weights Θ = [θ0, ..., θK−1]. With this

analogy established, we arrive at our Deep-LSRTM formulation, which has appeared in the

non-geophysical literature (Adler and Öktem, 2017; Hauptmann et al., 2018). Specifically,

we modify the iterative solution of the PGD method (equation 2.9) with CNN updates,

designed to encode the prior knowledge represented by the complex distribution of a train-

ing data manifold. We choose a CNN-based architecture because the convolution kernels

and weight sharing structures allow the learned operators to exploit spatial correlations,

naturally enforcing a regularization effect.

Deep-LSRTM iteratively estimates reflectivity updates using the following expression:

mk+1 = Pθk(mk,∇J(mk)), k = 0, ...,K − 1, (2.11)

where each Pθk ⊂ PΘ : RN ×RN → RN is an updating function trained to map the pair of

inputs (mk,∇J(mk)) to a single model update mk+1 that has similar characteristics to the

training instances. Passing through the multiple set of blocks PΘ is analogous to executing

the PGD algorithm with a finite number of K iterations. As can be inferred from equation

2.11, we let the updating operators learn how to combine the current model iterate with the

gradient of the data-misfit term instead of explicitly computing a step length. The model

features are also implicitly learned from the dataset during training rather than imposed

as constraints or regularizing terms. This is a differentiating factor compared to traditional

LSRTM, where it is often complicated to choose optimal projection or regularization strate-

gies capable of expressing desirable geological and structural elements. Deep-LSRTM also

avoids introducing model-dependent tuning parameters.

Compactly, we define each updating operator as N stacked 2D convolutional layers and
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Figure 2.1: Unrolled diagram of the implemented iterative learned network for the
first two iterations.

non-linear activation functions (see Appendix A). Additionally, we incorporate concatena-

tion operators, residual connections, and batch normalization (Ioffe and Szegedy, 2015) to

increase the expressivity of the network and to help gradient propagation in the training

phase.

Figure 2.1 illustrates the first two iterations of the Deep-LSRTM framework. Different from

end-to-end implementations, our approach does not need to learn the forward or adjoint

operators. This would add complexity in terms of learnable parameters and poses hardware

difficulties when working with large images. Instead, the wave operators are computed

through the data-misfit gradient ∇J(mk) using equation 2.7 before feeding each updating

block. This allows using shallower network architectures, which are less prone to over-

fitting and require less training data. Moreover, as empirically showed in Adler and Öktem

(2017), and Putzky and Welling (2017), interweaving explicitly known operators in learned

reconstruction schemes provides more detail to the solution and reduces the training error.

The information passed through the data misfit gradient indicates where the seismic image

needs improvement to fit the observed data, progressively refining the model at each iteration

(Zeng et al., 2017). This means that, within the limitations of operator mismatches, ∇J(m)

partially reconstructs the measurable components, whereas PΘ attempts to recover the null

space components (limited aperture and missing frequencies), similar to the regularizer in

classical optimization techniques.

In our approach, the inputs contain artifacts and illumination deficiencies. The admissible

model update is the one that has reduced artifacts and boosted resolution. Hence, we train

the network parameters to make efficient projections by minimizing a loss function between

the predictions and the training dataset. Typically, in small scale deep learning inversions,

all the parameters of unrolled schemes are trained jointly for all iterations (i.e., end-to-

end). This provides an optimal set Θ̂ for the predefined maximum number of K iterations

(Monga et al., 2021), provided that the ground-truth solutions to the optimization problem

are available. Considering the mean squared error (MSE) loss, this yields the following
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optimization problem

Θ̂ = arg min
Θ

1

=
=∑
i=1

||mi
K −mi

true||22,

= arg min
θ0,...,θK−1

1

=
=∑
i=1

||(PθK−1
◦ ... ◦ Pθ0(mi

0,∇J(mi
0)))−mi

true||22,
(2.12)

where = is the total number of training instances, and mi
true indicates the ground-truth

model of the i-th training instance. To solve equation 2.12, stochastic gradient methods

commonly used in machine learning, compute an approximation of the MSE loss gradient

with respect to the network parameters. For large-scale problems such as Deep-LSRTM, this

approach is unfeasible since the loss gradient also requires the computation of ∇J(mk) for

each evaluation of the loss function (i.e., multiple calls of L and LT per training instance). To

make Deep-LSRTM computationally feasible, we adopt a greedy training approach (Haupt-

mann et al., 2018), which is grounded in optimization but produces a solution that is only

iterate-wise optimal. The greedy training defines a minimization problem for each individ-

ual set of parameters θk, preventing the gradients from flowing between the updating blocks

by optimizing

min
θk

1

=
=∑
i=1

||mi
k+1 −mi

true||22 = min
θk

1

=
=∑
i=1

||Pθk(mi
k,∇J̃(mi

k))−mi
true||22. (2.13)

Compared with equation 2.12, equation 2.13 only requires one call of L and LT per training

instance at each iteration k. In this framework, to increase network capacity, each Pθk
shares the same architecture as the other updating operators, but each operator has its

own set of learned parameters. The updating operators are trained sequentially, and the

parameters are fixed after training, meaning that the outputs predicted by an updating

block Pθk−1
from a previous iteration will be part of the dataset used to train Pθk in the

next iteration. Finally, to gain substantial improvements in the imaging step, we substitute

the raw data-misfit gradient by a preconditioned version (Xu and Sacchi, 2018), given by

∇J̃(mk) = DPmLTPdr (2.14)

where Pm is the illumination compensation operator that includes diagonal weights pro-

portional to the inverse of the source-side wavefield, Pd is a linear filter that eliminates the

diving wave energy from the data residuals, and D represents the 2D Laplacian filter, which

removes low-frequency noise from the gradient.
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Figure 2.2: The proposed network architecture for each learned updating operator
Pθk , based on an encoder-decoder scheme. The number of channels is shown below
each convolutional layer. ReLU and BN refer to the rectified linear unit function
and the Batch Normalization function, respectively.

2.2.3 Network design

We propose to assemble each updating operator Pθk with the network architecture shown in

Figure 2.2, following an encoder-decoder sequence. The encoding part uses two consecutive

convolutional layers with a ReLU function to extract features from the two input branches

containing mk and ∇J(mk). These branches do not share intermediary layers until they

are merged by a concatenation operator, which fuses the independent feature maps on the

channel axis, followed by a Batch Normalization layer (BN). BN along the channel axis

is needed to equalize contributions from the merged branches because the feature maps

extracted from mk have a different scale than those from ∇J(mk). This is crucial for

successful training as it avoids the vanishing gradient problem in backward propagation (Ioffe

and Szegedy, 2015). The encoder step ends with another convolutional layer that extracts

information from the fused feature maps. Subsequently, the decoder part reassembles the

feature maps by gradually decreasing the number of channels. The last convolutional layer

does not use a ReLU function as the reflectivity updates can be positive or negative. We also

add a skip connection between the input layer containing mk and the output layer, forcing
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the network to learn residual updates (i.e., it learns to compute an update perturbation

to the initial reconstruction). Since there is a high structural correlation between inputs

and output, learning a residual mapping seems intuitively easier than learning the direct

mapping (He et al., 2016).

In more detail, we use convolutional kernels of size 3×3 for all the convolutional layers. For

the first iteration, we initialize the parameters following He et al. (2015). For subsequent

iterations, while there is no sharing of parameters across blocks, we use the trained weights

of the previous iteration to initialize the weights of the next iteration to speed up the training

process. All the layers use a stride of size one and are zero-padded such that all feature

maps have the same size as the inputs. We obtain an optimal hyperparameter setting

using a simple trial and error procedure. Different network components (such as filter size,

number of filters, type of activation function, batch size, and learning rate) are changed, and

the final network architecture is determined based on the validation dataset performance.

We stress that these settings rely purely on empirical experimentation without any robust

mathematical proof; thus, other hyperparameters combinations and similar architectures

could produce similar results.

2.2.4 Dataset and training procedure

The training samples determine the features that the network learns. In a Bayesian con-

text, the training dataset selection becomes crucial because it defines the prior distribution.

Nonetheless, the main limitation of applying supervised deep learning methods in geophys-

ical imaging problems is the lack of databases with realistic and generalized ground-truth

labels. Consequently, we prepare a synthetic dataset generating 1200 pseudo-random reflec-

tivity models, acknowledging that the restricted nature of the training instances will affect

the quality of the reconstruction. In this work, the reflectivity model is expressed as velocity

perturbations in squared slowness units. Therefore, the ground-truth labels are derived from

velocity distributions that mimic fractured and folded sedimentary structures ranging from

1500 to 5500 m/s (Figure 2.3). Velocity, folding amplitude, and fault size are set to increase

with depth gradually, and all instances have a variable number of layers. Each model has a

fixed grid size of 400× 200 points with a regular grid spacing of 10 meters. For migration,

we calculate the background field of every velocity model using a 2D Gaussian filter with

standard deviations from 2 to 6 grid points chosen from a discrete uniform distribution

(equivalent to the range of 10 to 50 m in intervals of 10 m). In the following numerical ex-

amples, we separate 900 reflectivity models for training, 100 models for validation, and 200

models for testing. The validation set is used to optimize hyperparameters while training

and the test models were used to evaluate inference performance.
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Figure 2.3: (a, b, and c): Three examples of synthetically generated velocity distri-
butions. (d, e, and f): Ground-truth reflectivity samples derived from the velocity
models in the first column.
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Since the pre-stack LSRTM gradient requires observed seismic data in the shot-gather do-

main, we generate the shot gathers by simulating an acquisition on every model before

starting the training process and store them on disk. Even for such a small dataset, includ-

ing the data-misfit gradient is the most demanding part of our algorithm during training,

and therefore we consider acquisitions with a reduced number of sources. Specifically, the

numerical simulations of wave propagation for each sample model involve a fixed-spread

geometry with only 15 shots spanning from 100 m to 3900 m in the horizontal direction and

30 m in depth, and 400 collocated receivers evenly placed at 30 m in depth and 10 m spac-

ing. Due to the coarse source distribution, aliasing artifacts are expected in the migrated

images. The seismic data are computed using a Time Domain Finite Differences (TDFD)

wavefield propagator with a surface absorbing boundary condition to simulate data with

removed surface-related multiple. Each shot is recorded for 2.2 s with a time sampling of 1

ms, resulting in 2200 time steps of modeling time. A 20 Hz Ricker wavelet is used as the

seismic source signature.

To further decrease the computational burden, we perform the gradient calculation step

on a multi-GPU cluster with four NVIDIA GeForce RTX 2080 Ti computing processors

to generate gradient images simultaneously. All the models and their corresponding data

(i.e., the observed seismic data, the background velocity models, and the seismic modeling

parameters) are distributed among the devices using four threads, such that each GPU

calculates the data-misfit gradient associated with a different model in parallel. Due to

the relatively small size of the models and the number of time steps required to propagate

the wavefield to all parts of the domain, we calculate each gradient using the traditional

adjoint state method, storing the forward wavefield within the GPU. With this configuration,

computing a demigration/migration sequence for 15 sources on each model takes about 25

s. Compared to the cost of multiple forward and backpropagation calls of the gradient step,

the optimization of equation 2.13, is negligible.

Finally, we only consider the updating operator of the first Deep-LSRTM iteration for hy-

perparameter selection, supported by the observation that the first iteration is the one that

performs a more severe transformation.

After hyperparameter tuning, we set the maximum number of iterations to K = 5, as

further increasing the number of blocks does not lead to better reconstructions. We train

each updating operator with the Adam optimizer (Kingma and Ba, 2014a) to minimize

equation 2.13, using a learning rate of 0.001, a batch size of 2, and 111 epochs, where an

epoch is defined as one pass through the training data. Training five iterations of Deep-

LSRTM takes about 8 hours in the multi-GPU cluster previously mentioned. Furthermore,

we do not use data augmentation or other standard training techniques such as dropout

or max pool layers. With such configuration, this architecture leads to a total of 341,441
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trainable parameters per updating operator.

Algorithm 1 and 2 describe the complete Deep-LSRTM training and inference processes,

respectively. Equally to conventional LSRTM algorithms, we assume a zero reflectivity

vector (m0 = 0) as the initial guess.

Algorithm 1 Deep-LSRTM (Training)

Inputs: Dataset =, initial reflectivity estimates mi
0, diagonal preconditioners Pi

m, ob-
served data di, number of iterations K

Set k = 0
while k < K do

ri = (Lmi
k − di) . Compute residuals for all models

∇J̃(mi
k) = DPi

mLTPdr
i . Calculate preconditioned LSRTM

gradients for all models
if k > 0 then

Initialize θk with θk−1

end if
minθk

1
=
∑=
i=1 ||Pθk(mi

k,∇J̃(mi
k))−mi

true||22 . Train Pθk until stopping criteria

mi
k+1 = Pθk(mi

k,∇J̃(mi
k)) . Update reflectivity for all models

k = k + 1
end while
Output Trained parameters Θ = [θ0, ..., θK−1]

Algorithm 2 Deep-LSRTM (Inference)

Inputs: Trained parameters Θ, initial reflectivity estimate m0, diagonal preconditioner
Pm, observed data d, number of iterations K

Set k = 0
while k < K do

r = (Lmk − d) . Compute residuals
∇J̃(mk) = DPmLTPdr . Calculate preconditioned LSRTM

gradient
mk+1 = Pθk(mk,∇J̃(mk)) . Update reflectivity
k = k + 1

end while
Output mK

Figure 2.4 shows the loss curves of the training and validation datasets versus the number

of epochs after five iterations of Deep-LSRTM. It is clear that the error of both datasets

reduces drastically in the first epochs of the first iteration and then gradually stagnates until

the next iteration takes place. A similar pattern between training and validation losses with

no signs of over-fitting indicates good generalization properties of the model. Furthermore,
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Figure 2.4: The normalized training and validation loss functions versus the number
of epochs for the Deep-LSRTM architecture.

the continued decrease in both losses with each iteration verifies the benefits of the iterative

scheme.

2.2.5 Transfer learning for real applications

A crucial assumption in supervised deep learning algorithms is that the testing data must

be in the same feature space and have the same distribution as the training data (Pan and

Yang, 2010). However, when dealing with applications to real data, such condition is hard to

ensure if the training dataset is only composed of synthetically generated samples. Hence,

a direct application of the trained network usually will not produce satisfactory results

because seismic data can have dramatically distinct features than those represented by the

synthetic samples. To mitigate this out-of-distribution problem and enable the successful

implementation of Deep-LSRTM to real data, we resort to the transfer learning strategy

based on model fine-tuning (Park and Sacchi, 2020).

We devise a three-step workflow for a limited set of available measurement data. First, we

pre-train the updating operators using Algorithm 1 and the synthetically generated training

samples described in the previous section. The objective of the pre-training stage is to build

a good prior for the targets of interest. Then, we set apart a reduced number of shots from
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Figure 2.5: Architecture of the residual U-net adopted in this study. The number
at the bottom of each convolutional layer indicates the number of channels. I refers
to the original image size.

the real observed data to obtain ground-truth samples by solving the inverse problem via

preconditioned CGLS. We perform fine-tuning by re-training each updating operator with a

lower learning rate and fewer epochs, using the pre-trained weights as the initial state. As a

result, we have a network model that can be used to predict the target region’s reflectivity.

The updated parameters are finally tested on a different group of shots to obtain the final

image.

2.2.6 Single-step image post-processing via U-net reconstruction

We compare the iterative Deep-LSRTM with a two-step CNN-based post-processing tech-

nique, where first the seismic data are migrated to form an initial reconstruction, and then

we train a modified version of the U-net (Ronneberger et al., 2015a) architecture to re-

move artifacts from the RTM images. It represents an efficient non-iterative alternative to

Deep-LSRTM because it does not require multiple computations of the data-misfit gradient,

making the input-output demands considerably lower, so it is cheaper to train.

This second formulation substitutes equation 2.5 with

m = ΛΦ(mmig) (2.15)

where ΛΦ : RN → RN is an image-to-image transformation represented by the modified U-

net network shown in Figure 2.5, and m is the filtered reflectivity image. We recognize that

equation 2.15 is close in spirit to image-domain LSM methods that attempt to approximate

the effect of the inverse Hessian in a single iteration (Guitton, 2004).
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Figure 2.6: The normalized training and validation loss functions versus the number
of epochs for the U-net architecture.

The U-net can be described as a multi-scale convolutional auto-encoder. The encoder part

of the network decomposes and resizes the image through a series of down-sampling (max-

pooling) layers to capture more extensive features, akin to wavelet decomposition. The

spatial features are then up-sampled via transposed convolutions to reconstruct the final

image. Moreover, a series of multilevel skip connections between the encoder and decoder

parts helps preserve the different ranges of structures and avoids vanishing gradients (Ron-

neberger et al., 2015a). Compared to the original U-net architecture, the modified U-net

implemented in this study includes an additional skip connection between input and output

layers for residual learning and a reduction from five to three scales to work with smaller

images and fewer trainable parameters (517,409 in total). Similar to Deep-LSRTM, this

architecture is a residual network because of the extrinsic skip connection. For consistency,

our U-net is also trained with Adam optimizer maintaining the same hyperparameter config-

uration as in the previous section. Figure 2.6 shows the loss curves for this method, where

we also see a decrease of the loss functions with the number of epochs and training and

validation losses with close behavior.

We train the parameters of the U-net architecture by minimizing the MSE loss

min
Φ

1

=
=∑
i=1

||mi
mig −mi

true||22, (2.16)
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where the training data pairs correspond to RTM images mmig and ground-truth reflectivity

models mtrue.

2.3 Numerical examples

This section reports the results of Deep-LSRTM reconstruction in four different scenarios.

The first three scenarios explore a direct implementation of Deep-LSRTM on synthetic mod-

els. In the first three scenarios, transfer learning was not used. The fourth scenario entails a

field dataset where we use both a direct implementation of our method and the modification

that includes the transfer learning component. In our numerical examples, we also consider

LSRTM solutions computed by the preconditioned CGLS algorithm and the results obtained

by the U-net reconstruction for baseline comparisons. To make fair comparisons between

iterative methods, we run the same number of iterations (five) for Deep-LSRTM and CGLS

algorithms (unless otherwise stated) and use the same data and model space precondition-

ers. The terms preconditioned LSRTM and conventional LSRTM are used interchangeably

henceforth, referring to the inversion via the preconditioned CGLS method. In order to

avoid the inverse crime, all the observed data of the synthetic examples are generated with

the solution of the discretized acoustic-wave equation instead of Born acoustic modelling

(Tarantola, 1984b). We use Tensorflow (Abadi et al., 2015) for the numerical implementa-

tion of the CNN architectures. To quantify the imaging performance of each algorithm, we

compute the peak signal-to-noise ratio (PSNR) (Huynh-Thu and Ghanbari, 2008) and the

Structural Similarity Index (SSIM) (Wang et al., 2004) (see Appendix A).

2.3.1 Example 1: test dataset

The first scenario examines the reconstruction of the test dataset. The test samples were

generated in the same way as the training and validation samples but were not included in

the training phase. Hence, this experiment showcases the performance of Deep-LSRTM on

models that have the same prior distribution as the training samples. Table 2.1 presents

a quantitative comparison of the different reconstruction methods for noiseless data. Even

though the U-net approach can produce good quality images, the quantitative measures

indicate that Deep-LSRTM delivers more competitive results for this dataset. On average,

both learned methods perform better than the preconditioned CGLS algorithm. Figure

2.7 shows the results obtained for one sample of the test dataset (Figure 2.7a). For this

model, the migration velocity field was obtained by convolving the true velocity with a 50

m standard deviation 2D Gaussian filter (shown in Figure 2.7b). Figure 2.7c displays the

RTM section after illumination compensation and filtering by a Laplacian operator. The
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Example 1 - test dataset
Method PSNR (db) SSIM
CGLS 24.81±0.82 0.65±0.089
U-net 31.63±0.74 0.77±0.041

Deep-LSRTM 34.91±0.38 0.87±0.029
Table 2.1: Quantitative measures for the reconstruction of the test dataset. PSNR
and SSIM scores are computed in comparison to the ground-truth labels (average
results ± standard deviation over 200 different samples).

adjoint image contains a strong acquisition footprint and unresolved areas at deeper parts

of the model because of limited aperture. The preconditioned CGLS result (Figure 2.7d)

shows slightly increased illumination and frequency content, but its main contribution after

five iterations is the partial attenuation of the near-surface artifacts.

In contrast, Deep-LSRTM (Figure 2.7e) considerably improves the amplitude balance, the

structural continuity, and the resolution of the image in comparison to the CGLS result for

the same number of iterations. Moreover, it satisfactorily learns to remove the acquisition

footprint at the top layers. The residual U-net (Figure 2.7f) also delivers a good-quality

reconstruction but tends to smear out the reflectors at shadow regions (an example is the

anticline structure marked by the blue rectangle in Figure 2.7), and the sharpening of steep

faults is limited (indicated by the red rectangle in Figure 2.7). We particularly notice

that the deconvolution effect of the post-processing approach degrades in regions where

the RTM image has poor illumination, which indicates a strong dependence between the

U-net reconstruction and its inputs. On the other hand, the superior deconvolution effect

of the iterative learned approach in this example seems to highlight the benefits of residual

imaging. By comparing the gradients of the first and last iterations in Figure 2.8, we can

observe that the magnitude of the gradient decreases with iterations due to a better match

between observed and calculated data, which is a reassuring, albeit expected, result.

Figure 2.9 shows a comparative analysis between the conventional LSRTM and the proposed

method by means of the relative model error defined as

e(mk) =
||mk −mtrue||2
||mtrue||2

, (2.17)

which is calculated for the inversion results of the sample model in Figure 2.7. Since both

algorithms use the zero reflectivity vector as initial guess, they share the same resulting

error for the initialization at k = 0. The conventional LSRTM converges to a relative model

error of 0.36 after 20 iterations. In contrast, Deep-LSRTM achieves a considerably faster

convergence to a smaller error value of 0.15 in just 5 iterations.
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Figure 2.7: Imaging results for a sample of the test dataset in experiment 1. (a) True
reflectivity, (b) migration velocity model, (c) RTM image, (d) CGLS and (e) Deep-
LSRTM methods after five iterations, respectively, and (f) the U-net reconstruction.
The red and blue rectangles exemplifies reconstruction at poorly illuminated step
faults and anticline structures, respectively.
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between the preconditioned LSRTM and Deep-LSRTM.

2.3.2 Example 2: cropped Marmousi

The following scenario comprises a more complex setting extracted from the central part

of the Marmousi model (Martin et al., 2006a). The purpose of this test is to explore the

generalization capacity of Deep-LSRTM to environments whose distributions differ from the

ones used at training time. Similar to the first experiment, Figure 2.10a shows the true re-

flectivity model, and Figure 2.10b displays the background velocity, computed with a 50 m

standard deviation 2D Gaussian filter. Figure 2.10c shows the RTM image, which possesses

unfocused reflectors at the deeper part of the model and strong source-sampling aliasing arti-

facts that are uncorrelated with the geology, manifested as spurious tails. The least-squares

method improves the content of high-frequency features, so the preconditioned CGLS image

shows higher resolution with deblurring capability, especially at the shallow layers. While

the learned approaches offer increased resolution in deeper parts of the model, it can be no-

ticed that, once again, the focusing properties of the U-net reconstruction (Figure 2.10) are

limited by the RTM result. In this case, the U-net also introduces jittered high-frequency

noise at the top layers. We attribute this behavior to the high structural complexity of

the Marmousi model in the near-surface region compared to the less complex training sam-

ples. In this regard, the iterative learned approach achieves better generalization properties

showing enhanced continuity of the reflectors and not introducing high-frequency artifacts

at the top layers. Our qualitative assessment is supported by the PSNR and SSIM scores,
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Figure 2.10: Imaging results for the cropped Marmousi model. (a) True reflectivity,
(b) migration velocity model, (c) RTM image, (d) CGLS and (e) Deep-LSRTM
methods after five iterations, respectively, and (f) the U-net reconstruction.

presented in Table 2.2, where Deep-LSRTM attains superior performance.

Learned reconstructions as warm-starts for CGLS

Exploiting the adaptability of the preconditioned CGLS algorithm, we illustrate the possibil-

ity of efficiently improving the results attained by the learned methods based on warm-start

reconstruction. Warm-start enables the preconditioned CGLS method to initialize the recur-

sive updates with an initial reflectivity guess m0 6= 0 provided by the user. Using the learned

reconstruction results as feasible solutions to warm-start conventional LSRTM can help ob-

tain an optimal solution in a reduced number of iterations. Figure 2.11a and Figure 2.11b

display the results of five CGLS iterations (considering again a coarse source acquisition

of only 15 shots) employing the Deep-LSRTM reconstruction and the U-net reconstruction

as warm-start models, respectively. In general, the results show enhancement in the recov-

ery of model features not entirely reconstructed by the networks, especially at shallower
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Example 2 - cropped Marmousi
Method PSNR (db) SSIM
CGLS 27.46 0.47
U-net 28.37 0.53

Deep-LSRTM 29.87 0.65
Warm-started CGLS

CGLSU-net 29.96 0.58
CGLSDeep-LSRTM 30.37 0.69

Table 2.2: Quantitative measures for the reconstruction of a cropped version of
the Marmousi model. PSNR and SSIM scores are computed in comparison to the
ground-truth label.

regions, which yields higher PSNR and SSIM scores in both cases (see Table 2.2). Figure

2.11b also exhibits a reduction of the spurious high-frequency artifacts present in the initial

U-net result. The convergence plot of the least-squares data misfit shown in Figure 2.12

verifies that warm-starting the CGLS algorithm with deep learning results produces faster

convergence than conventional LSRTM, with the inversion started with the Deep-LSRTM

result decreasing slightly faster when compared with its U-net counterpart.

All of the tested methods cannot completely remove the remaining migration artifacts in

the image, specifically in the central part of the model. We anticipate that increasing the

number of sources can mitigate such artifacts at the expense of longer turnaround times.

2.3.3 Sensitivity to background model errors

Conventional LSRTM is highly sensitive to wrong background models by limiting its capacity

to flatten and focus events at regions with significant velocity errors. In light of the lack of

robustness of DNN-based inversion methods to slight variations in the reconstruction process

(Antun et al., 2020), we test the proposed learning approaches against background models

calculated with different degrees of spatial smoothing. The test is performed on the same

setup as the previous section using the Marmousi model. To further explore the influence

of the velocity in the inference process, we also consider a variant of the Deep-LSRTM

architecture that makes direct use of the background velocity field. Although the migration

velocity is already embedded in the forward and adjoint operators, this modification is

designed to help recover missing information in the model space by explicitly introducing

the background velocity as a third complementary branch. In other words, before the

evaluation step, we train the modified Deep-LSRTM architecture to take inputs of the

form (mi
k,∇J̃(mi

k),vi0), where vi0 is the fixed migration velocity model of the i-th training

sample. Explicitly using the migration velocity model as an extra input, yields the modified
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Figure 2.11: Results after five iterations of the warm-started CGLS algorithm using
(a) the fifth iteration of the Deep-LSRTM method and (b) the U-net reconstruction,
as initial guesses, respectively.
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optimization problem

min
θk

1

=
=∑
i=1

||Pθk(mi
k,∇J̃(mi

k),vi0)−mi
true||22. (2.18)

Figure 2.13 shows the PSNR metric for all the methods considering a background velocity

model smoothed with a 2D Gaussian filter of standard deviation varying from 50 to 110 m in

intervals of 10 m. We observe a general degradation of the reconstruction quality as smooth-

ing increases for all the techniques under consideration. It can be noticed that providing

a correct velocity model as direct input in the modified Deep-LSRTM architecture helps

recover reflectors that are undetectable by the adjoint operator. This result is displayed in

Figure 2.14a. However, for background velocities with high levels of smoothing not seen

during training, both the post-processing U-net and the original Deep-LSRTM architec-

ture are more robust than the three-branch Deep-LSRTM version, which deteriorates much

quicker. Figure 2.14b shows the artifact-prone prediction of the modified Deep-LSRTM with

a smoother velocity model.

Lastly, we test the reconstruction of our method using a migration velocity model with

5% faster velocity everywhere. Figures 2.15a, 2.15b, 2.15c, and 2.15d show the results of
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Figure 2.13: Comparison of reconstruction quality for the learned approaches on the
central part of the Marmousi model using migration velocity models with different
levels of smoothing.

the RTM, 20 iterations of conventional LSRTM, the U-net method, and five iterations of

Deep-LSRTM, respectively. While all the methods fail to correctly position the reflection

events due to significant inaccuracies on the velocity model, it is apparent that Deep-LSRTM

provides a result with better spatial resolution than the traditional LSRTM, which produces

a blurred and incoherent image, and a superior capability to filtering spurious artifacts

compared to the learned post-processing technique.

2.3.4 Sensitivity to random noise

We examine the robustness of the learned approaches concerning additional noise in the

seismic data. Accordingly, we synthetically contaminate the observed data with different

levels of normally distributed random noise. Figure 2.16 displays the evolution of PSNR

scores of the reconstructions for different levels of signal-to-noise ratio (SNR). Interestingly,

the residual U-net proves to be more robust for the addition of noise variations, whereas

Deep-LSRTM degrades faster under decreasing signal-to-noise (S/N) ratios. We attribute

this behavior to the higher number of parameters and multi-scale architecture of the U-net,

which has been proven efficient in removing and detecting artifacts in images.
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Figure 2.14: Modified Deep-LSRTM architecture results: (a) Reconstruction with
a 50 m deviation 2D Gaussian filter. (b) Reconstruction with a 110 m deviation 2D
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Figure 2.16: Robustness study of the learned methods against noisy data recon-
struction. The horizontal axis indicates the level of signal-to-noise ratio (SNR).

39



2.3.5 Sensitivity to dominant frequency and grid spacing

To further investigate the generalization ability of the proposed workflow in terms of other

relevant parameters, we experimentally quantify the prediction performance regarding vari-

ations in the dominant frequency of the modelling Ricker wavelet and the grid spacing. We

perform these tests on the Marmousi example. The results are presented in Table 2.3. We

see a general degradation of the prediction results for values that are different from the

baseline (i.e. fdom = 20Hz, h=10 m) since all the experiments from the training dataset

used a fixed value for the dominant frequency and fixed grid spacing. We can notice less

degradation in the prediction performance for values closer to the baseline configuration.

The phenomenon of training generalization still requires further research since it may be

influenced by a variety of other factors not considered in this study (e.g. the subsurface

complexity of the training models and the number of training samples).

fdom = 10 Hz fdom = 15 Hz fdom = 20 Hz
h = 10 m 26.75 28.47 29.87
h = 15 m 28.75 28.91 26.61
h = 20 m 29.52 26.62 26.59

Table 2.3: PSNR (dB) scores of Deep-LSRTM for different configurations of domi-
nant frequency fdom and grid spacing h tested in the Marmousi example. The filled
cells designate the values of fdom and h used for the training stage.

2.3.6 Example 3: Sigsbee2a model

For our third example, we use the resampled Sigsbee2a model (Paffenholz et al., 2002), a

challenging salt model with 12 km in horizontal distance and 4 km in depth with a grid

interval of 10 m (Figure 2.17a). We simulate an off-end acquisition geometry where the

positions of the receivers move with the positions of the sources from left to right at zero

depth. The data set consists of 100 observed shot records with 5 s recording time and 183

evenly spaced hydrophones. The maximum and minimum offsets are 4874 m and 100 m,

respectively. The wavelet frequency and time sampling are kept the same as the training

data.

The high-velocity contrast and irregular shape of the intruding salt body challenge the gen-

eralization of our trained networks, which have not seen complex examples with salt during

training. Figure 2.17 shows the inversion results for the Sigsbee2a example. For comparison,

we include the results after 20 iterations of the preconditioned LSRTM (Figure 2.17b), and

the U-net post-processing approach (Figure 2.17c). The result after five iterations of our
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Figure 2.17: Imaging results for the Sigsbee2a model. (a) True reflectivity, (b)
LSRTM image, (c) U-net image, (d) Deep-LSRTM image.

iterative network is displayed in Figure 2.17d. The predicted Deep-LSRTM image produced

good results, particularly on the faulted sedimentary region at the leftmost part of the

model. We believe this is because the samples used for training are closer to representing

the full space solution on this specific region of the model by correctly describing all features

of interest. We also observe improved reconstruction performance at the shallow layers and

at the top of the salt region, where we have the best illumination in the model compared

with the other two methods.

To show how Deep-LSRTM copes with severe illumination issues in sub-salt areas, Figure

2.18 presents a close-up view of a shadow zone region (indicated by the dashed red box) near

the top left flank of the salt body. Structures in this shadow zone produce events with very

little or no illumination, and they cannot be modeled using Born modeling and restored

using LSRTM (Figure 2.18b). In contrast, the regularization performance of our method is

remarkable, showing better continuity than the LSRTM inversion after 20 iterations, from

which we can identify the reflectors under the salt overburden. In addition, there is better

focusing on the two point diffractors located beneath the salt (indicated by yellow arrows).

To further address illumination loss challenges, we present a close-up view of a deeper sub-

salt region in Figure 2.19. While none of the methods achieves a perfect amplitude balancing
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Figure 2.18: A close-up comparison of the reconstruction methods for the Sigsbee2a
example. (a) True reflectivity. (b) conventional LSRTM image after 20 iterations.
(c) U-net image. (d) Deep-LSRTM image. The red dashed box indicates a shadow
zone region near the top left flank of the salt body. The yellow arrows indicate two
point diffractors under the salt body.
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Figure 2.19: Close-up view of the reconstructions for the bottom right region of
the Sigsbee2a model. (a) True reflectivity. (b) conventional LSRTM image after 20
iterations. (c) U-net image. (d) Deep-LSRTM image. The yellow arrows indicate
regions where it is challenging to image the bottom reflector due to illumination
limitations.

of the bottom reflector near the sub-salt areas (indicated by yellow arrows), we observe

higher spatial resolution and sharper events in the predictions of the learned approaches

compared to those of the LSRTM image.

The Sigsbee2a example exhibits three essential points about the proposed method. First,

Deep-LSRTM works in the image domain rather than the data domain, and therefore it is

robust against changes in the acquisition geometry. Second, since the architecture of the

projection operators is fully convolutional, our technique can also handle inputs of different

sizes than the ones used in training. Moreover, input image size has no bearing on the

number of trainable parameters; they are determined by the number of hidden layers and

feature maps. Finally, although our framework is trained on a simulated dataset containing

only simple structures with shallow depths, it remains applicable to more complex data

featuring salt bodies and regions with severe illumination loss. We attribute this behavior

to the iterative nature of the algorithm, which leads to more accurate inversion results

because it incorporates a feedback mechanism that promotes consistency with the physics

of the problem. We stress that our method may not perform well for all sorts of data.

However, this experiment demonstrates that the reconstructions may still be acceptable for

some testing data that differs from the training set.
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2.3.7 Example 4: Gulf of Mexico data set

The last example comprises the implementation of our method on a 2D Gulf of Mexico

(GOM) marine line, known as the Mississippi Canyon data set (Dragoset, 1999). Such

a data set is useful to test the generalization capability of our learned iterative approach

on true Earth models with inevitably inaccurate migration velocities and hugely different

structures than those learned during training. The velocity model used for migration is

shown in Figure 2.20a (Guitton et al., 2012), containing a shallow salt body in a deep water

environment. The model is discretized in a regular grid with 2908×350 points, corresponding

to a distance of 29.08 km and a depth of 3.5 km with 10 m of grid spacing. The acquisition

setup is off-end, with 809 sources and 180 receivers per shot moving from left to right at the

surface. Receiver and shot spacing is 26.67 m. The farthest offset is 4875 m, and the nearest

offset is 100 m. The seismic data underwent surface-related multiples elimination prior to

imaging. To decrease the computational cost, we selected only 179 evenly separated shots

of the original 809 shots for migration, 133 m apart. The shot decimation also introduces

truncation artifacts, which can be used to assess how successful the proposed method is

at reducing acquisition artifacts (Rocha et al., 2018; Guitton, 2012). Figure 2.20b shows

the RTM result. The strong velocity contrast around the top of the salt produces strong

amplitude, low-frequency artifacts in this model region.

Furthermore, sub-salt events suffer from uneven illumination, visible migration artifacts,

and limited resolution. Figure 2.20c shows the LSRTM result after 20 iterations of pre-

conditioned CGLS, which provides a noticeable improvement in the image, displaying more

bandwidth content, reduced artifacts, and better-resolved reflectors, especially near and be-

neath the salt body. Figure 2.20d shows a direct implementation of Deep-LSRTM, which

produces an artificial enhancement of the amplitude in depth. However, the output syn-

thesized by the learned iterative approach still displays patterns seen in the training set,

clearly indicating the risk of performing learned reconstructions on data that have undergone

a significant distributional shift. We use the previously discussed transfer learning scheme to

improve this result further. The reference model used as the ground-truth image is extracted

using a different group of 60 shots from the same dataset with source spacing of 400 m and

performing 20 iterations of the preconditioned CGLS. Then, we retrain the weights of each

updating operator with only 20 additional epochs and a reduced learning rate of 1e-5. The

result of Deep-LSRTM after transfer learning is shown in Figure2.20e. Transfer learning

has a significant impact on the predictions of the learned iterative approach. Interestingly,

the outcome of the updated networks has better preservation and continuity of reflectors at

the top of the salt and produces a cleaner image with fewer low frequency content than the

conventional LSRTM result. This might be because the original weights were trained with

clean labels, so Deep-LSRTM already possesses a filtering effect by learning how to remove
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Figure 2.20: Gulf of Mexico field data example. (a) Migration velocity field. (b)
RTM result. (c) LSRTM result. (d) Deep-LSRTM without transfer learning. (e)
Deep-LSRTM after transfer learning.
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migration artifacts efficiently (Yosinski et al., 2014). Deep-LSRTM is also more efficient in

removing unwanted artifacts product of significant velocity errors as illustrated in Example

2.

Since there is no label for the real data case to validate the results, we show the wavenumber

spectra for the results of LSRTM, Deep-LSRTM before transfer learning, and Deep-LSRTM

after transfer learning in Figures 2.21a, 2.21b, and 2.21c, respectively, where it can be notice

that the retrained approach produces a wavenumber that is closer to the LSRTM result. In

addition, Figure 2.22 shows the demigrated shot gathers for a source located in the central

part of the model at 15.6 km. While the adjoint method cannot match the data due to

amplitude and phase mismatches, all the inversion results yield a better correlation with

the observed recorded data. Figure 2.23 shows this behavior in more detail by comparing

three contiguous near-offset traces extracted from the shot mentioned above. Comparing

the demigrated shots obtained using the inverted results (Figures 2.22c, 2.22d, and 2.22e),

we notice that while the change is not dramatic for near offset traces, the waveform fit has

been improved in the mid-to-long offsets after the use of transfer learning.

2.4 Conclusions

Based on recent advances in deep learning, we have built an LSRTM framework that lever-

ages the universal approximation capabilities of CNNs to predict reflectivity updates by

mimicking a projected gradient descent algorithm. Tests on synthetic data show that, de-

spite using a reasonably small training set, the iterative Deep-LSRTM approach yields su-

perior results than conventional LSRTM baselines for the same number of iterations. Once

trained, the computational cost per iteration of the learned projection method is similar

to one iteration of the CGLS algorithm, but it requires fewer iterations to deliver high-

resolution results. When evaluated on the testing data, Deep-LSRTM also outperforms a

two-step residual U-net post-migration application according to the PSNR and SSIM scores,

highlighting the value of including the forward and adjoint wave operators in the inference

process. Satisfactory results over the central part of the Marmousi model and the Sigsbee2a

model (out-of-distribution samples) confirm that the Deep-LSRTM network is not severely

influenced by model over-fitting. On the other hand, the modified residual U-net method

stood as an efficient alternative, filtering RTM images to obtain enhanced reflectivity ap-

proximations. However, this comes at the trade-off of being more susceptible to over-fitting

to the training data. For the Marmousi test, both learned methods proved to be stable to

different degrees of smoothing of the migration velocity model, while the multi-scale archi-

tecture of the U-net provides more robust performance for seismic data with higher levels

of Gaussian noise. Additional iterations of the warm-started CGLS algorithm using either
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Figure 2.21: 2D wavenumber spectrum of (a) LSRTM, (b) Deep-LSRTM before
transfer learning, (c) Deep-LSRTM after transfer learning. All three plots use the
same color scale.
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Figure 2.22: The shot gather of a source located at x=15.6 km for (a) the observed
data set, (b) the demigrated data using the RTM image, (c) the demigrated data
using the LSRTM image, (d) the demigrated data using Deep-LSRTM without
transfer learning, and (e) the demigrated data using Deep-LSRTM after transfer
learning.
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from the shot gathers displayed in Figure 2.22.
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of the results given by the learned approaches as initial guesses led to higher PSNR and

SSIM scores. A direct implementation of Deep-LSRTM on the Mississippi Canyon data

set shows that the technique is sensitive to the different characteristics of the seismic data.

Transfer learning helps to adapt the trained weights to a new distribution at a fraction of

conventional LSRTM using only a reduced portion of the observed data. However, future

research is needed to find the optimal number of shots for transfer learning and analyze

how it affects the final prediction. It is significant for us also to study more efficient ways

of adapting our method to real data sets. This will be the core of our future investigation.

The proposed approach is not limited to the 2D acoustic RTM engine and can potentially

be extended to other migration techniques and 3D models. Future research will explore

the performance of Deep-LSRTM in 3D large-scale acquisitions. Moreover, we expect that

incorporating more information into the networks using, for example, extended domain

imaging conditions can help improve reconstruction performance in scenarios with wrong

velocity models. Identifying uncertainty in DNN solutions to inverse problems is still in its

early stage. Still, studies that consider uncertainty quantification of the proposed network

architecture are also further required.
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CHAPTER 3

Seismic imaging through neural network-based data- and

model-space preconditioning 1

3.1 Introduction

The ultimate goal of seismic imaging is to retrieve the underground reflectivity model from

seismic reflection data measured at the surface. To this end, a linearized waveform inver-

sion problem with an accurate migration velocity enables the least-squares migration (LSM)

inversion, capable of extracting valuable information from pre-stack data to provide true

amplitude and high-resolution reflectivity images (Lailly and Bednar, 1983; Nemeth et al.,

1999). LSM is cast as a linear inverse problem where the Hessian (normal operator), related

to the seismic resolution and subsurface illumination, is implicitly inverted iteratively (Whit-

more, 1983). Since the Hessian operator encodes information about the velocity model, the

acquisition geometry, and the band-limited data, inverting it results in deblurred images

and reduced artifacts generated by complex overburden, limited acquisition geometry, and

band-limited wavefields (Wang et al., 2017b). In the acoustic case, the linearization in LSM

entails keeping the background velocity model fixed over iterations while estimating a high-

wavenumber perturbation (i.e., reflectivity) that honours the best fit of the single scattered

wavefield in a least-squares sense (Tarantola, 1984b). This is commonly referred to as a

data-domain implementation of LSM, which attempts to minimize the difference between

observed and modeled data so that the inverted reflectivity closely resembles the recorded

seismic data when demigrated.

1A version of this chapter has been published as a conference proceeding: A deep-learning inverse Hessian
preconditioning for iterative least-squares migration. In 84th EAGE Annual Conference & Exhibition (Vol.
2023, No. 1, pp. 1-5)
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As with many other large-scale geophysical problems, LSM is commonly solved through

gradient optimization. Regardless of what solver is chosen to update the solution (e.g. a

conjugate gradient or quasi-Newton method), LSM generally requires multiple iterations

to achieve an acceptable result. Slow convergence is expected due to limitations in the

forward modelling operator, noise in the data and a non-trivial null space, which render

LSM a very ill-posed and ill-conditioned problem. Despite often exploiting regularization or

preconditioning strategies to make the problem more stable and better conditioned, LSM

inevitably incurs substantial computational costs because each iteration demands the imple-

mentation of intensive adjoint (pre-stack migration) and forward (demigration) operators

(Kühl and Sacchi, 2003; Clapp, 2005; Wang et al., 2005; Wang and Sacchi, 2007a; Dutta,

2017; Witte et al., 2017; Li et al., 2020a). Furthermore, when the reverse time migration

(RTM) technique is used as the migration engine to exploit the potential of the two-way

wave equation, the cost of iterative data inversion (referred to as least-squares reverse time

migration, LSRTM) can severely hinder large-scale 3D applications (Dai et al., 2012).

Conversely, LSM can be adapted to the image domain, explicitly formulated as an image

deblurring problem (Fletcher et al., 2016; Wang et al., 2017b). Image-domain LSM inverts

for a reflectivity model to fit the adjoint migrated section. It can reduce the computational

cost of the inversion because the input is a 2D/3D migration image, which has signifi-

cantly smaller dimensions than the 3D/5D pre-stack input in the data domain. However,

gradient-based iterative inversion is still needed to harness the full potential of LSM, and,

theoretically, the data domain approach is more accurate than the image-domain formula-

tion in solving the inverse Hessian (Schuster, 2017; Wang et al., 2017a). Data-domain LSM

also can handle cases in which image-domain Hessian representations, such as point-spread

functions, are not locally supported (e.g., simultaneous source migration and migration of

multiples) (Xu et al., 2022a). Regardless of the implementation domain, the primary dis-

advantage of iterative LSM stems from the extensive computations required during each

iteration. Therefore, implicitly inverting the Hessian can be impractical, especially for 3D

data sets, as tens of iterations are typically required to gain substantial improvements.

3.1.1 Previous work

Multiple formulations have been proposed to alleviate the computational aspect of LSM in

both data and image domains. As an explicit computation of the Hessian is prohibitively ex-

pensive outside of target-oriented inversions (Valenciano et al., 2006; Tang, 2009), a common

goal of these techniques is to bypass the storage of many Green’s functions by finding inex-

pensive low-rank approximations of the Hessian or its inverse. For example, to account for

uneven illumination, practitioners frequently scale the migrated image with approximations

of the inverse Hessian diagonal (Shin et al., 2001; Rickett, 2003; Guitton et al., 2007; Sacchi
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et al., 2007; Liu et al., 2013). To increase the resolution, it is still necessary to consider the

off-diagonal terms, so the diagonal Hessian estimate can instead be used as a preconditioner

for data domain LSM to double the convergence rate of the conjugate gradient method

(Luo and Schuster, 1991; Chen and Sacchi, 2017a). Similarly, Aoki and Schuster (2009)

propose to accelerate LSM with deblurring filters within regularization and preconditioning

schemes. Alternatively, a single-iteration technique known as migration deconvolution (Hu

et al., 2001; Yu et al., 2006) assumes a 1D layered media to approximate a horizontally

invariant inverse Hessian where off-diagonal elements can be cheaply incorporated. Another

non-iterative approach based on a bank of matching filters approximates the inverse Hes-

sian locally with a non-stationary convolution operator (Guitton, 2004; Greer et al., 2018).

The matching filters are helpful for amplitude and kinematic corrections of migrated images

and can be regarded as a low-rank approximation of the inverse Hessian (Guitton, 2004).

Nonetheless, this technique offers little improvement in resolution because, even though it is

designed to match lower-resolution images to higher-resolution images, it cannot effectively

recover higher wave numbers through convolution. In other words, the matching filters do

not fill the null space of the Hessian. Later, Guitton (2017) suggests using the matching

filtering technique as a preconditioning operator to speed up the convergence of iterative 3D

LSM. Wang et al. (2016) extend this idea to image-domain LSM by estimating the matching

filters between migrated and re-migrated sections in the curvelet domain, while Herrmann

et al. (2009) and Wang et al. (2017a) use a similar curvelet-based approach to data-domain

LSM. Similarly, Khalil et al. (2016) propose a data-domain preconditioning technique, which

only requires one demigration and two migration operations. Instead of working directly in

the model space, this method computes non-stationary filters by matching demigrated and

observed data, effectively approximating an inverse to the data-domain Hessian (Guo et al.,

2022; Operto et al., 2023). Liu and Peter (2018) and Liu et al. (2019) explore later vari-

ations of this idea by applying Wiener and Gabor deconvolution approaches, respectively.

Other methods involve creating Hessian approximations using operators of a manageable

size by combining Kronecker products (Gao et al., 2020a), a sequence of space and frequency

weights (Tangkijwanichakul and Fomel, 2021), and localized block-wise matrices (Jiang and

Zhang, 2019).

Recent years have witnessed a surge of interest in machine learning methods to aid geophys-

ical inversion, encompassing applications ranging from seismic denoising to full-waveform

inversion (Yu and Ma, 2021b; Adler et al., 2021b). Considering the data-intensive nature

of the LSM problem, researchers have developed deep-learning techniques, mostly based

on convolutional neural networks (CNN), to enhance the resolution of migrated images. A

CNN is a type of neural network composed of a sequence of convolutional operators (layers),

which enhances its ability to express complex functions as the number of layers and neurons

in each layer increases (Goodfellow et al., 2016).
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For instance, Chen et al. (2020) and Liu et al. (2020b) design a supervised denoising filter

trained to remove migration artifacts. Kaur et al. (2020) use generative adversarial networks

(GAN) (a specific type of neural networks typically comprising two CNNs, a generator and

a discriminator) in a conditional framework to simulate the inverse Hessian from migrated

images and synthetic reflectivity labels. To accelerate and regularize iterative LSRTM, Tor-

res and Sacchi (2022a) substitute the projection operator of a gradient-descent formulation

by pre-trained deep CNNs. Kumar et al. (2022) introduced a deep learning variant of the

matching filtering method, replacing the filter coefficients with a non-linear mapping be-

tween migrated and remigrated images, parameterized by a CNN. Moreover, inspired by

the success of stochastic solvers for training neural networks on large datasets, mini-batch

optimization has been applied to LSRTM using both first (Vamaraju et al., 2021) and sec-

ond (Farias et al., 2023) order algorithms. This approach uses subsets of shot gathers and is

more computationally efficient than traditional (full-batch) LSRTM, based on initial studies

using noiseless synthetic data. The references provided are not exhaustive given the vast

amount of literature on these subjects. We have selected a representative group of citations

that interested readers can use as a starting point for further exploration.

3.1.2 Deep-learning-based preconditioning

This chapter introduces two novel deep-learning-based preconditioning strategies for seismic

imaging.

The first strategy acts on the model (image) space and consists of two distinct building

blocks. The first component follows Kumar et al. (2022) and estimates the effect of the

inverse Hessian by training a CNN from pairs of migrated and re-migrated images. How-

ever, instead of a fully convolutional autoencoder, we introduce a deep autoencoder with a

1D lower-rank representation to benefit from its dimensionality reduction capabilities. We

build the training dataset from small overlapping patches of migrated (high-fidelity data)

and re-migrated (low-fidelity data) images, randomly cropped in the shot-index domain.

The technique only requires paired training samples obtained from the available seismic

data and the action of the physical operators, circumventing the need for a representative

dataset of ground-truth reflectivity labels. Once we get the approximation of the inverse

Hessian, the second component solves LSRTM directly on a lower-dimensional space by in-

tegrating the trained decoder in the optimization problem through a (non-linear) change of

variables. Specifically, the decoder connects a high-dimensional model space, where forward

simulations occur, to a lower-dimensional (latent) space using a series of non-linearities and

convolution operations. Since the decoder learns to synthesize model realizations from low-

dimensional representations of the discrepancy between high-fidelity and low-fidelity images,

it has a preconditioning effect that can be used to enhance model features related to images
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with reduced artifacts and more illumination balance. Combining the deep-learning inverse

Hessian with LSRTM potentially overcomes the resolution limitations of single-iteration

matching filtering. Also, given the reduced number of inferred parameters and the fast

generation of enhanced model realizations, the deep-learning parameterization significantly

improves the LSRTM inversion performance.

The second strategy is a single-step adaptation of the learned model-space preconditioning

scheme described above. However, it operates in the data space rather than in the image

space, and only requires a single demigration and an extra migration. It is mainly designed

to enhance RTM images by training a CNN to estimage non-linear matching filters on input-

output pairs of observed and demigrated data. After training, the CNN filters can be directly

applied to the observed data before the migration process to enhance the adjoint results.

The method’s effectiveness is demonstrated through tests conducted on the Marmousi data

set, showing that the CNN data preconditioning approach improves amplitude balance and

focusing around under-illuminated regions, and reduces artifacts compared to the original

RTM section.

3.2 Learned model-domain preconditioning

In this section, we review the mathematical formulation of LSM and establish the foun-

dations for computing the action of the inverse Hessian based on the deep convolutional

autoencoder. Then, we show examples of estimating the reflectivity using iterative non-

linear inversion with and without the model reduction preconditioning scheme. We rely on

empirical testing to examine the convergence properties of the method. We also include a

discussion of limitations and prospects for further research.

3.2.1 Theory

We aim to estimate a reflectivity model vector m ∈ Rn from the single scattered seismic data

d ∈ Rm. Assuming a suitable discretization, a linear relation between the model and data

spaces can be established employing the forward Born modelling operator L : Rn → Rm,

such that

d = Lm. (3.1)

With an accurate background velocity model, a migrated image mmig gives us an initial

approximation of the subsurface reflectivity regarding reliable structural information. It is

computed by applying the adjoint of the Born modelling operator LT : Rm → Rn to the
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recorded data dobs (Claerbout, 1992):

mmig = LTdobs. (3.2)

LT and L are compact representations of two computer subroutines (i.e., we never explic-

itly construct such matrices): a standard RTM with cross-correlation imaging condition and

demigration modelling, respectively. We carefully design our migration and demigration en-

gines to form an exact adjoint pair that passes the dot-product test with numerical precision

(Claerbout, 1992). However, as migration does not correspond to inversion, i.e., LTL 6= I,

the migrated image is blurred, artifact-prone and has uneven amplitudes (Gray, 1997). To

find an approximate inverse to the Born modelling operator, LSM minimizes the quadratic

objective function

J(m) =
1

2
||Lm− dobs||22, (3.3)

where || · ||2 indicates the l2 norm. Equation 3.3 has the formal least-squares solution

LTLm = LTdobs, (3.4)

where H = LTL is the square and symmetric Hessian matrix with elements corresponding

to second-order derivatives of J(m) with respect to m. Although H possesses zero or small

singular values corresponding to shadow zones, we assume it to be invertible; otherwise, a

regularization term needs to be incorporated into equation 3.3. Alternatively, the image

domain formulation of LSM rewrites equation 3.4 in terms of the Hessian and the migrated

image

Hm = mmig, (3.5)

and seeks a true image m = H−1mmig by minimizing the model-space objective function

J(m) =
1

2
||Hm−mmig||22. (3.6)

It is too expensive to directly compute the inverse Hessian H−1. Instead, a gradient-based

procedure can be used to find an iterative solution

mk+1 = mk − α∆mk, (3.7)
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where k denotes the current iteration, α is the step-length, and ∆mk is the update direction.

In the simplest case, ∆mk is equal to the cost-function gradient given by

∇J(mk) =
∂J(mk)

∂mk
(3.8)

= LT (Lmk − dobs) (3.9)

= LTLmk −mmig. (3.10)

To accelerate convergence, we can roughly mimic a Gauss-Newton method (Schuster, 2017;

Fichtner, 2010)

mk+1 = mk − α(LTL)−1∇J(mk), (3.11)

with a preconditioner P, and compute iterative reflectivity updates

mk+1 = mk − αP∇J(mk), (3.12)

such that P ≈ (LTL)−1 is a preconditioner operator that approximates the effect of the

inverse Hessian and acts on the model domain.

Approximating the inverse Hessian with matching filters

As noticed by Guitton (2004), we can reproduce the effect of the Hessian (equation 3.5) by

a demigration/migration sequence

LTLm1 = m2, (3.13)

with m1 = LTdobs. As m1 and m2 are known, a crude approximation of the inverse Hessian

can be found by defining a non-stationary convolutional operator P ≈ H−1 and minimizing

the cost function

E(P) = ||m1 −Pm2||22 + λR(P), (3.14)

where R(P) is a regularization term added for stability, and λ is the trade-off parameter.

After solving for P, we obtain an improved image through a single-step filtering,

m̂ = Pm1, (3.15)

or by incorporating P into the iterative scheme described in equation 3.12 to precondition

the gradient at each iteration.

Alternatively, we propose parameterizing the sought preconditioning operator by the weights

of a deep convolutional autoencoder (CAE), a variant of the basic autoencoder model that
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incorporates convolutional layers into both its encoder and decoder components (Goodfellow

et al., 2016).

Approximating the inverse Hessian with a deep autoencoder

A deep autoencoder is a non-linear dimensionality reduction method inspired by the linear

principal component analysis (PCA) technique (Kramer, 1991). Along with other gener-

ative models such as GANs and Variational Autoencoders (VAEs), it can provide a low-

dimensional representation of the model space that can be directly exploited as priors in

various inverse problems (Gao et al., 2019, 2020b; Chen and Schuster, 2020; Asim et al.,

2020; Hyun et al., 2021; Ravasi, 2021; Liu et al., 2022; Levy et al., 2022). A CAE com-

prises the deterministic pair (Eφ, Dθ) of CNNs, where Eφ : Rn → Rh denotes the encoder

network parameterized by weights φ, Dθ : Rh → Rn corresponds to the decoder network

parameterized by weights θ, and h is the latent space dimension. For n > h, Eφ is trained

to encode samples x ∈ Rn in the lower-dimensional space Rh such that Dθ can reconstruct

an estimated sample x̂ from its latent representation z ∈ Rh through a reverse mapping.

In this case, the latent representation vector of fixed dimensions z = Eφ(x) is an informa-

tional bottleneck, which induces the CAE to capture the most important features of the

input sample. For example, we can express the encoder part of a simple CAE, in which Eφ

comprises only two hidden layers: one convolutional and one fully connected. In this case,

the latent representation output is

z = σ
(
W2(σ(W1 ∗ x + b1)) + b2

)
, (3.16)

with σ an element-to-element non-linear function (e.g. ReLU, LeakyReLU, Tanh), bl denot-

ing the bias vectors, and Wl representing the filters and weights of the convolutional (l = 1)

and fully connected (l = 2) layers, respectively. For this example, φ = [W1,b1,W2,b2].

Analogously, a symmetric decoder maps from latent to model space in a transposed manner

with weights θ = [W̃1, b̃1,W̃2, b̃2].

Generally, CAEs are trained with unsupervised algorithms so that the output samples ap-

proximate the inputs based on the latent representation. A practical choice to adjust the

CAE weights in the training stage, given a training dataset with N samples, is to minimize

the loss function

E(φ, θ) =
1

N

N∑
i=1

||xi −Dθ(Eφ(xi))||22. (3.17)

Restricting h < n serves as a form of regularization, preventing the CAE from becoming an

identity mapping. One could also add regularization terms acting on the network weights

or the latent variable to avoid overfitting and enforce structure (e.g. sparsity) on the lower-
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dimensional space (Obmann et al., 2020).

The unsupervised training strategy in the equation 3.17 assumes access to N input samples

{xi}Ni=1 from a representative dataset. Therefore, there is still implicitly assumed that

ground-truth images are available for training. Thus, the achievable performance of deep

autoencoder methods is inherently bounded by the amount and quality of the available

ground-truth data. Collecting high-quality and high-resolution reflectivity images from a

vastly heterogeneous subsurface is an elusive task in seismic imaging. Furthermore, seismic

imaging is computationally intensive, and we cannot realistically rely on a bank of thousands

of LSM-generated images. This is also different from other geophysical problems, where high-

fidelity representations can be inferred from re-organizing the available data in another

domain or where the uncorrupted signal can be easily accessed (e.g. seismic deblending

or interpolation) (Xu et al., 2022b). We partially overcome this issue by relying on the

migration and re-migration approach. Based on equation 3.13, we rewrite the inverse Hessian

approximation problem as

m1 = Dθ(Eφ(m2)), (3.18)

and establish a supervised training strategy given by

E(φ, θ) =
1

N

N∑
i=1

||mi
1 −Dθ(Eφ(mi

2))||22 + β||θ||22 + λ||φ||22. (3.19)

where µ, λ > 0. Similar to the linear matching filtering procedure (notice the correspondence

between equations 3.14 and 3.19), this training strategy enforces the CAE to learn a filtering

task as a function of the migrated and re-migrated paired samples. To have access to multiple

realizations of m1 and m2 within the same acquisition setup, we build our training dataset

with random crops of overlapping patches from the volume of unstacked images m̃1 and

re-migrated images m̃2. Such volumes are obtained using the source extended imaging

condition (Huang et al., 2016). More specifically, our bank of training high-fidelity and

low-fidelity samples is defined as

m̃1 =


m1

1

m2
1

...

mNs
1

 ; m̃2 =


m1

2

m2
2

...

mNs
2

 , (3.20)

where the super-indexes 1, 2, ..., Ns denote the corresponding shot number.
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LSRTM in the latent space

After the training stage, we use the decoder as a non-linear synthesis operator to solve

data-domain LSRTM in the latent space. This amounts to formulating the new problem as:

J(z) =
1

2
||LDθ(z)− dobs||22 (3.21)

ẑ = argminz J(z) (3.22)

m̂ = Dθ(ẑ), (3.23)

where, m̂ is the final inverted reflectivity. Since it is often impractical to encode the entire

reflectivity model into a single latent vector due to computational constraints and the risk

of information loss, we employ a patching operator that allows for a more distributed and

detailed encoding process. Thus, in practice, we split the sought reflectivity model in Np

overlapping patches of pre-defined size, ẑ = {ẑi}Np

i=1. For simplicity, before performing

the forward modelling on the full image, we attach as the last layer of the decoder an

unpatching operator that assembles individually decoded patches {Dθ(zi)}Np

i=1 back together

using weighing functions (Claerbout and Fomel, 2008). Notice that while the result is

produced by a CNN (as shown in equation 3.23), this approach does not involve training

during the data inversion stage, which is a crucial aspect of other popular deep learning

frameworks like Deep Image Prior (DIP) (Ulyanov et al., 2018). DIP only uses corrupted

data in the reconstruction process and purely relies on the CNN architecture to act as

prior. In DIP, the unsupervised training stage with a single training sample becomes the

mechanism to solve the inverse problem, which might demand many iterations. In principle,

our approach eliminates the need for a specific CNN architecture to exploit correlations in

the data to learn their inner structure, which results in a more efficient solution.

However, since we did not train the decoder weights using ground-truth reflectivity labels,

the set of non-linear basis functions they represent cannot entirely depict the true reflectivity

model (i.e. the true solution is not in the decoder range) (Bora et al., 2017). In addition,

LSRTM is a linear inverse problem and benefits from linear solvers such as the CGLS

algorithm (Hestenes and Stiefel, 1952) to monotonically minimize the original cost function

(Hansen, 2010b). By applying a non-linear transformation, we are inherently changing the

topography of the cost function, and we may be at risk of ending up in one of the multiple

local minimums. For these reasons, solving equation 3.21 might yield imperfect results with

bounded reconstruction quality.

To overcome the first issue, future research should explore the incorporation of regularization

terms to relax the constraint on the range of the decoder and allow for slight deviations.

Less explicit approaches can also be considered to extend the range of the original decoder,

for example, by refining intermediate layers of the network or tweaking the decoder model
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in response to the observed data. For now, we employ the L-BFGS solver (Nocedal, 1980),

which provides fast convergence and additional information about the local curvature of

the new cost function to steer its search direction along the variable space. We rely on

the decoder as a preconditioning operator to produce high-fidelity images relatively similar

to those from the target distribution. Despite these limitations, we still expect to obtain

valuable results comparable to some extent to least-squares iterative inversion and use the

enhancing effect learned by the decoder to gain illumination and artifact attenuation at a

reduced computational cost while maintaining high resolution. Finally, to find a solution

for the problem depicted in equation 3.21, optimization solvers such as L-BFGS require

the gradient of the new cost function with respect to the latent space variable. To solve

this challenge, we incorporate the forward and adjoint wave-equation operators (migration

and demigration subroutines) using the automatic differentiation functionality of Pytorch

(Paszke et al., 2019). Based on the chain rule, the gradient can be computed as

∇J(z) =
∂mk

∂z

∂J

∂mk
, (3.24)

where the last term on the right-hand side is calculated using equation 3.9 via the adjoint-

state method and then fed into equation 3.24, which is seamlessly computed with Pytorch’s

back-propagation algorithm (Paszke et al., 2017).

The second issue, related to the local minimum, might be mitigated by correctly choosing

an accurate initial estimate. In the following example, we set z0 = Eφ(mmig) as it produces

stable results. Furthermore, mmig is available from the training stage (through a stacking

operator acting on m̃1), so initializing the inversion with the encoded adjoint image does

not incur in additional computational costs.

3.2.2 Numerical experiment

In this section, we present a proof-of-concept example through a 2D synthetic test, where

we aim to find the reflectivity model of a relatively simple layered medium with slightly

dipping reflectors, shown in Figure 3.1b. We obtain the background velocity model (not

shown) for forward simulation and migration by smoothing the true velocity model with a

moving box average. The experiment simulates a fixed spread acquisition of 65 sources and

128 receivers. The source and receiver spacings are 24 m and 12 m, respectively. The first

source and receiver are at x = 0 m, and all sources and receivers are at z = 0 m depth.

The spatial grid interval is 12 m in x and z. The seismic source is a Ricker wavelet of

20 Hz (dominant frequency), and the recording time is 1.8 seconds sampled at 1 ms. In

this example, the observed data dobs is noise-free, and our migration velocity is relatively

accurate.
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Figure 3.1: (a) The velocity model in km/s. (b) The squared slowness perturbation
in s2/km2 representing the true reflectivity model.

Network training and evaluation

We define a fixed patch size of 64×64 for the training stage with a stride of 8×64 grid points.

To build the dataset, we individually migrate and re-migrate all the shot-gathers. The total

number of patches is 2304. Figures 3.2a and 3.2b show several randomly chosen patches

from the bank of labels m̃1 and inputs m̃2, respectively. As expected, the patches of re-

migrated images differ significantly from the m̃1 patches, presenting much higher amplitude

imbalance and more migration-related artifacts.

To monitor the network’s performance while training, we split the samples of the dataset

as 90% for training and 10% for validation. Even though the method will not be used on

another data set, the validation dataset helps to monitor the generalization performance

on all parts of the model and different shot positions. To avoid manual annotation, as in
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Figure 3.2: Training dataset. Random selection of paired samples: (a) Labels from
m̃1 (high-fidelity samples). (b) Their corresponding input patches from m̃2 (low-
fidelity samples). All the images are plotted using the same amplitude range.

self-supervised frameworks, the only pre-processing step we apply to the training dataset

is a standardization technique where we subtract the mean and divide it by the standard

deviation of the inputs and the labels separately. The standardization step is important to

avoid sub-optimal results, given that the magnitude of the amplitudes in migrated and re-

migrated images differs greatly, ranging from −10n to 10n. As a result, the data has a very

large variance, and the training loss’s convergence might be compromised. Furthermore,

the activation functions of the network tend to be non-linear only around zero. Therefore,

standardization helps the network learn non-linear patterns while avoiding undertrained

parameters by letting data have zero mean and unit variance. The normalization is applied
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globally (i.e., considering all the unpatched and individually migrated images) to avoid the

risk of blowing up areas of low reflectivity responses and make them as important as those

of high response. This linear transformation is given by

m̃std =
m̃− µ
δ

, (3.25)

where mstd stands for the standardized data, m̃ represents either the dataset of inputs or

labels, and µ and δ stand for the data mean and variance, respectively. Once normalized,

we only use a random horizontal flip as a data augmentation technique during training to

artificially increase the size of the dataset.

For the deep autoencoder architecture, we employ the ResNet CAE model provided in

Ravasi (2021), which includes multiple residual blocks as the backbone of the network,

each composed of two 2D convolutional layers (a sequence of multiple 2D convolutional

filters, a batch normalization operator, and a leaky ReLU non-linear activation) and a

skip connection over the two layers. To slightly improve performance, we concatenate two

consecutive residual blocks on each level, producing a deeper architecture but retaining the

same complexity level (He et al., 2016). We also change the number of 2D filter coefficients

from 3 × 3 to 5 × 5. Generally, a larger convolution kernel means a more robust learning

capacity for capturing larger-scale patterns in the data since it expands the receptive field

of the convolution kernel (i.e., the region’s size in the input space that each convolution

operation acts upon). For the following example, we obtain at least a moderately increased

performance with these modifications regarding training stability and prediction quality.

The total trainable filter coefficients (network parameters) are approximately 15 million.

The input shape is hard coded to the dataset dimensionality (patch size), and the dimension

of the latent space is fixed to h = 300. We use the Adam method (Kingma and Ba, 2014a)

to optimize the network parameters by minimizing equation 3.19 with 50 epochs, batch size

of 256, a learning rate of 1e−3, and β, λ = 1e−5. According to our experience, training with

these hyper-parameters yields acceptable initial results.

Figure 3.3 shows the evolution of the training and validation losses (normalized by their

maximum values). As expected, the validation loss is larger than the training loss for all

epochs. However, we observe no significant divergence between the two curves, implying

a stable and convergent training stage without significant overfitting. The increase of the

average signal-to-noise ratio shown in Figure 3.4 for both training and validation datasets

further supports this analysis. Figure 3.5 displays eight input-output-label triples from the

validation dataset. We notice how the predicted patches from shot-index image gathers

have more suppressed migration artifacts and improved amplitude balance while retaining

significant reflection events.
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Figure 3.3: Normalized training and validation losses versus number of epochs.

Figure 3.4: Average signal-to-noise ratio versus the number of epochs.

Solving the inverse problem

Applying the patching technique with the same configuration as in the training stage, we

split the sought reflectivity model into 18 patches. This corresponds to a dimensionality

reduction factor of approximately 3× compared with the original model dimensions.

First, we only invert the central shot located at x = 774 m. Figure 3.6c shows the results of

the inversion after ten iterations of the proposed method, along with the initial RTM section

(Figure 3.6a). We also run the inversion without the decoder synthesizer for comparison

(Figure 3.6b). These results show that most migration artifacts have been effectively reduced

in the decoder-based inversion, and the image still presents resolution improvements com-

pared to the adjoint result. As a quasi-Newton method, the L-BFGS solver approximates

the inverse Hessian with a combination of gradients from previous iterations. However,

comparing Figures 3.6b and 3.6c proves that the imaging enhancement we obtain relies
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Figure 3.5: Random patches from the validation dataset: low-fidelity (top), network
predictions (middle), high-fidelity labels (bottom). All the images are plotted using
the same amplitude range.

mainly on the action of the decoder. Although there are some remnant artifacts produced

by the inversion of a single shot-index gather, the difference between the L-BFGS and the

L-BFGS with decoder results is obvious. Figure 3.7 shows the normalized objective func-

tion versus the number of iterations. Although both inversions converge to a similar value,

the decoded inversion achieves convergences in fewer iterations, translating into improved

computational performance. However, unlike the single L-BFGS inversion, the decoded one

cannot completely reduce the misfit. Using the Born modelling operator, we can map the

inverted images to the data domain and assess the reconstruction quality and consistency

by comparing the predicted data with the observed data. Figure 3.8 shows the data domain

comparison. As expected, the data discrepancy between the decoded inversion and the true

reflectivity is not entirely zero. We hypothesize that the reconstruction is roughly restricted

to the decoder range and the associated representation error due to the lower-dimensional

parameterization. Increasing the latent space dimension to match the original model space

results in a lower data misfit (Figure 3.8e). Convergence is achieved with the same reduced

number of iterations but at the expense of increased memory requirements. A smaller data

misfit given a larger latent space is reasonable since the problem turns less overdetermined

as h increases.

Despite training on shot-indexed migrated images, we also observe good generalization per-

forming the inversion on a stacked section by applying iterative LSRTM to multiple shot

gathers so that only one reflectivity model explains all of the data. This amounts to solving
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Figure 3.6: Image space results for the inversion of the central shot. (a) RTM image.
(b) L-BFGS result. (c) Proposed method. (d) True reflectivity.
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Figure 3.7: Convergence of the L-BFGS algorithm (with and without the decoder
synthesizer) versus the number of iterations for the central shot inversion.

the non-linear overdetermined system of equations
d1

obs

d2
obs
...

dNsobs

 =


L1

L2

...

LNs

Dθ(z). (3.26)
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Figure 3.8: Data space results for the inversion of the central shot. The horizontal
axis displays the receiver number. (a) Observed data. (b) Demigration on the L-
BFGS. (c) Demigration on the proposed method result. (d) Data residual for the
proposed method (b). (d) Data residual for a result with a larger latent space. (e)
Data residual for single L-BFGS. All images are shown with the same amplitude
range.

To show the method’s potential in dealing with sparse acquisitions, we limit the multiple

shot inversion to only Ns = 10 shots evenly spaced at the surface. Figure 3.9 shows the

result of the stacked inversion. Naturally, stacking is effective in suppressing interferences

observed in single-shot inversions. We still notice a substantial improvement in the decoded

inversion over the traditional LSRTM result.

3.2.3 Discussion and conclusions

We developed a fast imaging framework that relies on deep learning and data domain inver-

sion to recover an improved subsurface reflectivity model. A preliminary numerical example

demonstrates the potential of the method. Compared to other supervised deep-learning tech-

niques that need paired samples of ground-truth labels and initial reconstruction models,

the proposed method does not use the former. The training stage does not need complicated

pre-processing and requires minimal user interaction. It is also relatively cheap since we are

simulating the effects of the Hessian operator at the cost of only one migration/re-migration

sequence, equivalent to one iteration of conjugate gradients. Moreover, the deep synthe-

sizer operator used in the inversion stage is similar in spirit to preconditioning schemes in

linear inverse problems, in which the preconditioner promotes stable features in the model,

improving the eigenvalue distribution of the forward operator and increasing the rate of

convergence.
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Figure 3.9: Image space results for the inversion of 10 shots. (a) Single L-BFGS.
(b) Proposed method.

A tangible reduction in computational costs supports the enticing perspective of using deep-

learning frames to improve the quality of images. It might be essential in making more

expensive approaches, such as extended-domain LSRTM, numerically feasible. A minor

variant of the method that can be the focus of future research consists of approximating the

Hessian instead of its inverse, which renders a better-conditioned problem, and then solving

the LSM problem in the image domain.

Despite the computational advantages of the method, certain aspects can be further en-

hanced. One limitation of the technique is that it currently constraints the solution to those

roughly in the decoder range. One future direction is to study the effect of regularization

terms to overcome this issue. For example, seismic data are assumed to have low-rank char-

acteristics in transformed domains, so exploring sparse inversion in the latent space might

be possible. Alternatively, once the optimal latent code is found, we could refine the solution

by fine-tuning the decoder weights and solving for a new latent variable in an unsupervised

fashion using the observed data. Another limitation arising from computational constraints

is the adopted patching strategy. In this method, once each patch has been individually re-

constructed, they are reassembled, applying suitable weights to the areas where the patches

overlap, to create the final result. Although this approach provides a partial solution to

reduce the computational burden, it is not optimal and demands the setting of additional

hyper-parameters, such as the number of patches and the degree of overlap.

Benefiting from the non-linear representation of the CAE, we can also incorporate more

variable as the inputs of the encoding layer For example, we could incorporate the migra-
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tion velocity model and/or the stacked migrated section. Although such an approach would

not strictly approximate the inverse Hessian anymore, it could provide meaningful informa-

tion for broadband reflectivity inversion. Finally, the decoder’s non-convexity breaks the

optimization’s theoretical guarantees that linear reflectivity inversion such as conventional

LSRTM offers. Finding robust strategies to avoid unsatisfactory results related to defective

local minimum is still necessary.

3.3 Learned data-domain preconditioning

Similar to the computation of matching filters in the model space, Khalil et al. (2016) pro-

pose a data-domain preconditioning technique that only requires one demigration and two

migration operations. Instead of working directly in the image space, this method computes

non-stationary filters by matching demigrated and observed data, effectively approximat-

ing an inverse to the data-domain Hessian matrix. Liu and Peter (2018) and Liu et al.

(2019) explore later variations of this idea by applying Wiener and Gabor deconvolution

approaches, respectively.

Building upon the data-domain preconditioning method and the recent advent of deep learn-

ing algorithms, this section presents a single-step imaging framework that utilizes a CNN

to compute non-linear, non-stationary matching filters in the data domain. Specifically, we

employ the symmetrical U-net architecture (Ronneberger et al., 2015b) as a data-domain

preconditioner, training it with overlapping patches of observed and demigrated shot gather

data. Following the training process, the filtering procedure can be effortlessly applied to

the observations with minimal computational burden compared to seismic modelling and

migration. Subsequently, the filtered data is remigrated to return to the image domain,

resulting in an RTM outcome that exhibits reduced artifacts. Moreover, by applying pre-

conditioning in the data domain, we remove the requirement for a representative training

dataset containing model-space reflectivity labels.

3.3.1 Theory

Assuming an invertible Hessian matrix, H, the closed-form solution of LSRTM is given by

mls = [LTL]−1LTdobs (3.27)

= H−1mmig,

where mls denotes the least-squares solution, and mmig represents the RTM image as the

result of applying the adjoint of the Jacobian operator, LT , to the vectorized observed data,
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dobs.

Equation 3.27 suggests that the pseudo-inverse yields an equivalent solution to the normal

equations in cases of overdetermined inverse problems. Nevertheless, the seismic inversion

system described in equation 3.1 exhibits both overdetermination, stemming from the abun-

dance of seismic measurements, and underdetermination, arising from the limited receiver

coverage of the subsurface and the band-limited nature of the seismic source. The mini-

mum norm solution gives one particular solution in the context of underdetermined inverse

problems

mls = LT [LLT ]−1dobs, (3.28)

where we now assume that the matrix [LLT ] is invertible. Thus, an alternative to least-

squares imaging can be obtained by defining a data-domain preconditioning operator P ≈
[LLT ]−1, such that

mls ≈ LTPdobs. (3.29)

A practical way of computing P is by exploiting the correlation between migration and

demigration,

dmig = Lmmig (3.30)

dmig = LLTdobs

[LLT ]−1dmig = dobs

Pdmig ≈ dobs,

where dmig indicates demigrated data. Since dmig and dobs are known, the elements of P can

be computed, for example, with a non-stationary matching filtering technique minimizing

E(P) = ||Pdmig − dobs||22 + λR(P), (3.31)

where P is defined as a multidimensional convolutional operator along all spatial axes, and

R indicates a suitable regularization term.

CNN-based data-domain preconditioning

We propose parameterizing the preconditioning operator with a CNN, Pθd , with θd repre-

senting the trained CNN weights acting on the data domain. Through this parameterization,

we aim to leverage the non-linear representation capabilities of CNNs to enhance deblurring

and achieve superior amplitude balancing in RTM images in complex geological scenarios

with poor illumination, like subsalt regions and steeper reflectors. This choice is motivated
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by the growing evidence suggesting that CNNs can outperform traditional fixed, linear bases

like Fourier and Curvelet transform, which are currently considered state-of-the-art. It also

expands on the methodology presented in the previous section, as a data-space analogous

of the model-domain deep-learning-based preconditioning for iterative LSRTM.

Thus, we implement a neural network architecture that focuses on extracting complex fea-

tures from the high-dimensional data space to learn a non-linear surrogate of the inverse

matrix [LLT ]−1 without the need for intermediate processing steps or diagonal approxima-

tions (Liu and Peter, 2018).

Akin to the previous section, after an initial migration/demigration sequence, the CNN-

based preconditioner is trained by minimizing the loss

E(θd) =
1

Ns

Ns∑
i=1

||Pθd(dimig)− diobs||22 + λ||θd||22, (3.32)

over a training dataset ofNs paired samples of observed and demigrated data {(dimig,d
i
obs)}Ns

i=1.

In this approach, we treat the observed data samples as the labels and the initial demigrated

data as the inputs to the network. Finally, we get an enhanced RTM image by first applying

the trained network on the observed reflections and then migrating this CNN-preconditioned

data,

mCNN = LTPθd(dobs) (3.33)

≈ LT [LLT ]−1d

≈ LTLT
−1

L−1Lm

≈mls.

Similar to the previously mentioned data-domain preconditioning methods derived from clas-

sic signal processing techniques, the overall cost of our approach amounts to approximately

two RTM operations and one demigration. Compared to the cost of migration/demigration

of the whole data, the CNN training and inference overhead is negligible.

3.3.2 Neural network architecture and training details

In this study, we chose the U-net architecture for its ability to preserve high-level details.

Previously, the U-net has been generally applied as a segmentation precondition in imaging

problems (Huang and Huang, 2021), as a nullspace projection surrogate in post-stack re-

flectivity inversion (Torres and Sacchi, 2023), and for the detection of geological faults (Wu

et al., 2019).
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As can be noticed from Figure 3.10, its architecture consists of an encoding path and a

decoding path, where both input and output are images. This setup captures local and

global features, enabling the model to learn complex mappings between input and output.

The U-Net incorporates several operations. Each step in the contracting path involves two

3×3 convolutional layers followed by the rectified linear unit (ReLU) activation function.

Downscaling is achieved through 2×2 max pooling with a stride of 2. Conversely, the

expansive path (right side) utilizes 2×2 upsampling with the same stride, accompanied

by two convolutional layers that reduce the number of feature channels. The U-Net also

includes skip connections that link the left and right paths to preserve spatial information

lost during max pooling. These connections help preserve high-resolution information and

facilitate the recovery of fine details in the output.
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Figure 3.10: The U-net architecture. The number at the bottom of each convolu-
tional layer indicates the number of channels. I refers to the original image size.

To train the U-net, we utilize overlapping patches of demigrated and observed data, ran-

domly shuffled before being fed into the network. Ten realizations from the paired training

samples are shown in Figure 3.11 and 3.12. When using RTM images for demigration, the

energy magnitude of demigrated shot gathers exhibits significant variation compared to the

observed data. This magnitude can range from −10n to 10n depending on the number of

stacking shots and the source energy. We employ the standardization technique explained

in the previous section to address this data variance and accelerate the convergence of the

training loss function. This technique ensures that the training data is transformed to have a

mean of zero and a variance of one. Furthermore, we introduce a random horizontal flipping

operation to enhance the training process and increase the diversity of training samples.

As the trained U-net will be applied to the observed data in the final step of our workflow

(equation 3.33), we divide the original dataset into 90% training samples and the remaining

10% as validation samples. This division allows for the training of the U-net using most of

the data while retaining a separate portion for evaluating the model’s performance.
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Figure 3.11: 10 random realizations from the patched demigrated shot gathers used
as input training data.

Figure 3.12: 10 random realizations from the patched observed shot gathers used
as output training labels.

3.3.3 Numerical examples

We test our approach on the 2D acoustic Marmousi dataset (Versteeg, 1994). The recorded

data are derived from the true velocity model depicted in Figure 3.13. The migration velocity

presented in Figure 3.14 is obtained by smoothing the true velocity using a 2D Gaussian

smoother. Figure 3.19 shows the true reflectivity model. In this benchmark scenario, 103

shots are evenly initiated at intervals of 50 m, employing a 30 Hz Ricker wavelet as the

source function. The observed data are obtained using a fixed-spreading acquisition setup

with 512 receivers at 10 m intervals for each shot-gather. The recording duration covers 3

seconds, with direct waves being eliminated.

Equation 3.32 is minimized using Adam with 50 epochs, weight decay damping term λ =

10−4 and a learning rate of 10−3.

We initially present the RTM result for a single shot, migrated at x=1km, as depicted in

Figure 3.15. Figure 3.16 illustrates the outcome of migrating the observations after being

filtered by the CNN. Upon comparing these two images, we observe that the preconditioned

result exhibits improved illumination at deeper reflectors and a noticeable reduction in low-

frequency backscattering noise. Subsequently, we showcase the complete RTM section by

stacking all individually migrated shot gathers, both without data preconditioning (Figure

3.17) and with data preconditioning (Figure 3.18) using the CNN. Notably, the amplitude

balance is substantially enhanced, and there is a distinct reduction in migration artifacts

around the top-right steeper reflectors (highlighted by the top red arrow), as well as a

greater focusing power on the deeper reflectors below the bottom high-velocity intrusions

(indicated by the bottom red arrow). Additionally, our method effectively mitigates the

sparse migration footprints present in the shallower part of the model.
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Figure 3.13: Marmousi velocity model.

Figure 3.14: Migration velocity model.

3.3.4 Discussion and conclusions

Identifying optimal preconditioner operators can be a non-trivial task. It requires expertise

and extensive experimentation. This work proposed an alternative data-domain precondi-

tioning based on deep-learning filtering. We showed that our approach could deliver en-

hanced migrated sections with improved focusing capability and amplitude balance around

under-illuminated regions. The training stage does not need further pre-processing and

requires minimal user interaction. It is also relatively cheap: regarding wave equation oper-

ations, the method requires only a single extra migration compared to one LSRTM iteration.

As reported in existing literature (Nichols, 1997), the adjoint operator, which is the final op-

erator employed in equation 3.33, cannot generate model components within the null space.

Therefore, it should be acknowledged that the proposed data-domain technique might not be

particularly successful in aiding the retrieval of a reflectivity model with higher wavenumber

content due to the assumptions it is based on. In terms of iterative inversion, future work will

focus on combining the proposed data-domain (left) preconditioner with image-space (right)

preconditioning to accelerate the convergence of iterative LSRTM towards high-resolution
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Figure 3.15: Single-shot RTM.

Figure 3.16: Single-shot RTM with CNN-based preconditioning.

reflectivity models.
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Figure 3.17: Stacked RTM section.

Figure 3.18: Stacked RTM section with CNN-based pre-
conditioning.

Figure 3.19: True reflectivity.
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CHAPTER 4

Sparse vector reflectivity inversion with full-wavefield

LSRTM

4.1 Introduction

Least-squares reverse time migration (LSRTM) offers distinct advantages in subsurface imag-

ing, such as compensating for wavefield propagation effects and limited resolution typically

seen with conventional migration. This makes it a preferred method to update and improve

the reflectivity model in complex geological settings. However, it faces significant draw-

backs, primarily due to its dependence on the first-order scattering approximation (Born

modeling) for generating predicted data during the forward propagation of the linearized

inversion. Thus, it is unsuited to model large time shifts between the background wavefield

and the scattered wavefield. This limitation confines LSRTM to deal with only primary

waves with near- to mid-reflection angles (Korsmo et al., 2022), implying the need for the

challenging elimination of other wave modes in the observed data, despite their potential to

contain significant information. For example, LSRTM considers prismatic waves as noise,

thus failing to correctly depict steeply dipping structures. Therefore, a pre-processing step

is essential in conventional LSRTM to prevent crosstalk in the imaging results, especially

when dealing with complex seismic data that includes multiple reflections (Wong et al.,

2015). Furthermore, due to the ill-posed and ill-conditioned nature (i.e., solutions are not

unique and/or unstable), LSRTM results often contain migration artifacts and unwanted

sidelobes around reflectors. These issues primarily arise due to the limited acquisition aper-

ture, the restricted bandwidth of noisy seismic data, and inaccuracies in the modeling kernel

(Zeng et al., 2014). On top of that, many different factors, such as sub-optimal acquisition

design or rapidly changing velocity profiles, can play a role in creating shadow zones in
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migrated images or, broadly speaking, in images produced through least-squares migration.

These shadow regions, associated with small and null singular values of the Hessian, reside

in the null space of the forward operator and exacerbate the problem of non-uniqueness in

the solutions.

To alleviate the side effects of conventional LSRTM, we perform a non-linear least-squares

inversion combining the full-wavefield vector reflectivity modeling engine (Whitmore et al.,

2020) with a sparse constraint via the hyperbolic penalty function (HPF) (Claerbout, 2014).

The full-wavefield modeling parameterizes the variable density acoustic wave equation re-

garding velocity and vector reflectivity, eliminating the need to construct a density model.

It generates seismic data with all waveforms, including multiples and transmission events,

directly from the reflectivity without assuming they are linearly related. This enables reflec-

tivity inversion with a more comprehensive and accurate match between observed and calcu-

lated data while bypassing the first-order Born approximation and the data pre-processing

step needed in classic LSRTM. In addition, imposing the sparsity constraint as model-styling

regularization helps to stabilize the solution and mitigate artifacts, thus enhancing the ver-

tical resolution of the estimated seismic images.

Other non-linear LSRTM schemes can also refine the velocity model during the iterative

migration process (Yao and Jakubowicz, 2012; Korsmo et al., 2022). Nonetheless, similar

to Davydenko and Verschuur (2017) and Wu et al. (2024), we assume that a background

velocity has been previously estimated and is not updated through iterations, reducing

the non-linearity of the problem. In other words, we solely focus on inverting the vector

reflectivity model. When contrasted with least-squares inversion lacking regularization, a

2D numerical experiment indicates that applying the HPF combined with the full-wavefield

vector reflectivity engine promotes sparsity in the images while displaying fewer artifacts

and more clearly delineated reflectors.

The outline of this chapter is as follows. First, we review the forward operator of full-

wavefield vector reflectivity modeling in a re-parameterized variable-density acoustic earth.

We also derive its adjoint wave equation and present the corresponding stencils for forward

and backward simulations in the time domain. These pair of forward and adjoint wave-

fields characterize what we have termed as the full-wavefield LSRTM framework, which is

essentially a local optimization problem. Thus, we elaborate on its misfit function and gra-

dient formulation. Then, we add sparsity constraints to the inverse problem of retrieving

the horizontal and vertical vector reflectivity components from the recorded seismic data at

the surface. Additionally, we detail the process of deriving a relative density model from

the obtained vector reflectivity, which is a secondary result of our analysis. Finally, we

demonstrate the effectiveness of the inversion with and without sparsity constraints on the

Marmousi2 model (Martin et al., 2006b).
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4.2 Full-wavefield LSRTM

4.2.1 Forward modeling

In its continuous form, the 2D full-wavefield vector reflectivity acoustic wave equation used

in this study as the forward modeling engine is given by (Whitmore et al., 2020)[
1

vp(x, z)2

∂2

∂t2
−
(
∇2 +

1

vp(x, z)
∇vp(x, z) · ∇ − 2~r(x, z) · ∇

)]
us(x, z, t) = fs(t), (4.1)

where

~r =

[
rx

rz

]
=

1

2

∇z
z

=
1

2

[
∂
∂x ln(z)
∂
∂z ln(z)

]
(4.2)

denotes the vector reflectivity with horizontal and vertical components, rx and rz, respec-

tively, z = ρvp represents the acoustic impedance, vp is the velocity model, ρ the density, fs

is the scaled seismic source at the shot coordinates (xs, zs), and us(x, z, t) is the pressure

wavefield associated to that source (hence the subscript), dependent on time and space vari-

ables. It is assumed that the pressure wavefield has zero initial conditions, i.e., the wavefield

does not have any energy before zero time:

us(x, z, 0) =
∂us(x, z, 0)

∂t
= 0. (4.3)

Whitmore et al. (2020) show that equation 4.1 is simply a re-parameterization of the acoustic

wave equation with variable density (equation 1.1) that avoids the explicit dependence on

the density model by defining the vector reflectivity as the normalized rate of impedance

change in each spatial direction. This reconfiguration of the wave equation has powerful

applications to multiparameter waveform inversion (Yang et al., 2021), and may also be

useful for adaptive multiple removal. Also, an alternative application of this modeling

engine include Fletcher et al. (2023), suggesting a method to diminish reflections from a

specific boundary by averaging the wavefields from two independent forward simulations.

To simulate the forward modeling of the wavefield on the subsurface, we incorporate an extra

dampening term, η(x, z)∂u(t,x,z)
∂t , to mimic an infinite domain (Sochacki et al., 1987). The

factor η is set to 0 within the boundaries of the physical domain and progressively increases

from the interior to the exterior within the damping layer. Depending on the width of

the damping layer and the frequency band, η may exhibit either a linear or exponential

increase. At the boundary of the artificial domain, we assume the solution fulfills the

radiation boundary conditions

us(x, z, t)
∣∣
(x,z)→∞ → 0, ∇us(x, z, t)

∣∣
(x,z)→∞ → 0, (4.4)
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indicating that the wavefield is progressively damped as we move away from the source

towards the computational domain’s edge. Omitting variable dependence on space dimen-

sions to simplify the notation, the expression for the vector reflectivity modeling with the

absorbing boundary term is[
1

v2
p

∂2

∂t2
−
(
∇2 +

∇vp
vp
· ∇ − 2~r · ∇

)
+ η

∂

∂t

]
us(t) = fs(t). (4.5)

Using a second-order central-difference approximation for the time derivative, we can con-

struct the stencil necessary to compute the full solution of the acoustic wavefield over time.

Within the boundaries of the physical domain (i.e., ignoring the absorbing boundary region),

the stencil is given by

us(t+ dt) = dt2vp

(
∂us(t)

∂x

∂vp
∂x

+
∂us(t)

∂y

∂vp
∂y

)
− dt2v2

p

(
2rx

∂us(t)

∂x
+ 2ry

∂us(t)

∂y
−∇2us(t)

)
(4.6)

+ 2us(t)− us(t− dt) + dt2v2
pfs(t),

where dt represents the time-stepping interval, and ∂
∂x , ∂

∂z , and ∇2 denote the first-order

spatial derivatives in horizontal and vertical dimensions and the Laplacian operator, respec-

tively, which can be computed with high-order finite difference approximations. Discretizing

and solving the vector reflectivity wave equation by applying this explicit Euler scheme for

all time steps results in the linear system,

F(~r)us = fs, (4.7)

where us ∈ RNu signifies the vector containing the discrete wavefield’s solution, fs ∈ RNu

denotes the source term, and F(~r) ∈ RNu×Nu encapsulates the matrix form of the discrete

wave equation, which non-linearly depends on the known vector reflectivity parameter ~r ∈
R2×Nn . Here, Nu = Nn × Nt, where Nn = Nx × Nz, and Ni designates the number of

points along the i spatial axis of the numerical grid. Likewise, Nt represents the number

of time samples. The time-marching structure of the stencil indicates that the matrix F(~r)

is lower triangular, depending on the assumed time and spatial boundary conditions. In

practice, however, we never explicitly form or invert this matrix but rather perform forward

substitution which is equivalent to solving the problem sequentially, row by row, starting

from the top. Thus, the forward stencil is equivalent to implement the matrix-vector product

describing the propagation of the acoustic source

us = F(~r)−1fs, (4.8)
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which represents a linear operator with respect to the source term. Finally, the vector

symbolizing the projection of the propagated wavefield onto the receiver coordinates is

given by

d = Pdus, (4.9)

where d ∈ RNm , and Pd ∈ RNm×Nu , with Nm = Nr ×Nt and Nr denoting the number of

receivers, is the sampling-to-receivers operator, a discretization of the delta function. We

assume a stationary-recording acquisition (Pd does not depend on s) for the sake of compact

notation but the method can be applied to other acquisition geometries.

Figure 4.1 compares the snapshots of the forward-propagated wavefield at time=2.5 sec-

onds between the full-wavefield vector reflectivity modeling and Born modeling on the BP

synthetic model. Similarly, Figure 4.2 compares a shot gather obtained via full-wavefield

vector reflectivity modeling with a shot gather computed using Born modeling. As can

be noticed in both images, the full-wavefield vector reflectivity resolves a broader range of

seismic events, including refractions, diving waves, and reflections beyond the Born approx-

imation. We also show the data recorded using the original variable density acoustic wave

equation for comparison.

0 1 2 3 4 5 6
km

0.0

0.5

1.0

1.5

2.0

2.5

km

Vector reflectivity

0 1 2 3 4 5 6
km

0.0

0.5

1.0

1.5

2.0

2.5

km

Born

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.10

0.05

0.00

0.05

0.10

Figure 4.1: Forward propagation experiment on the BP synthetic model. The
seismic source is located at x = 6 km and z = 0.02 km. Left: Acoustic wavefield
at t = 2.5 seconds modeled with the full-wavefield vector reflectivity engine. Right:
Born modeling for the same time snapshot. The velocity model containing a salt
body is shown on the background for reference.

4.2.2 Adjoint modeling and gradient

In this section we provide the derivation of the FWLSRTM gradient with respect to the

vector reflectivity parameter using the time-domain adjoint-state method following Plessix

(2006b) and Fichtner (2010). Within the framework of optimization problems constrained by

large systems of partial differential equations, this mathematical tool allows us to calculate
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Figure 4.2: Forward modeling comparison on the BP synthetic model. Left:
Recorded traces using the variable density acoustic wave equation. Middle:
Recorded traces using the full-wavefield acoustic vector reflectivity modeling. Right:
Born modeling for the same experiment. LSRTM uses the Born approximation fo-
cusing on first-order scattering in forward modeling, which limits its use to near-to-
mid reflection angles and neglects other wave modes such as diving and prismatic
waves.

the gradient in an efficient way. This is particularly pertinent given the impracticality of

directly calculating and storing the Jacobian matrix, even with modern computing hardware.

To find a solution to the FWLSRTM problem, I use gradient-descent-based algorithms

such as the L-BFGS method (Liu and Nocedal, 1989), which derives quasi-Newton updates

as a function of the misfit value and its gradient. The computation of the latter also

entails the derivation and implementation of the adjoint vector reflectivity wave equation.

Consequently, we introduce a robust and precise framework to resolve the optimization

problem. This approach stands in contrast to prior methodologies that relied on the heuristic

impedance kernel combined with the inverse scattering imaging condition to estimate vector

reflectivity updates (Yang et al., 2021).

To begin, we define the FWLSRTM objective function for a single shot data (thereby drop-

ping the source-dependent index from my previous notation), E(~r) ∈ R, by assigning the

squared l2-norm to a residual function, e(~r), which quantifies the error between the predicted

and observed data, d(ψg;~r) and dobs(ψg), respectively,

E(~r) =
1

2

∫
Ψ

e(~r)2 dψg =
1

2
〈e(~r), e(~r)〉, (4.10)
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where the residual function

e(~r) = d(ψg;~r)− dobs(ψg) =

∫
Ψ

[u(ψ;~r)− uobs(ψ)] δ(ψ − ψg) dψ, (4.11)

is expressed as an integral over the entire physical domain, Ψ = (x, z, t). The predicted

and observed pressure fields, denoted by u and uobs, propagate across the entire space-time

domain. However, they are sampled exclusively at the spatial and temporal coordinates

of the receivers, expressed as ψg, by the Dirac delta function δ. It is important to note

that, for the sake of notational brevity, this work is conducted within a 2D (x and z spatial

coordinates) plus time domain. However, the methodology described herein can be readily

adapted to a 3D plus time domain with just an additional integration over the y-dimension.

Using the chain rule for differentiation, the gradient of the objective function can be ex-

pressed as

∇~rE = 〈∇~re, e〉 = 〈∇ue∇~ru, e〉. (4.12)

The inability to compute the gradient arises from the term ∇~ru containing the Fréchet

derivatives, due to the vast size of the model parameter space and the state variable u. To

circumvent the direct computation of this term, we can first express the forward operator

of the vector reflectivity wave equation as

F (u(~r), ~r) =

[
1

v2
p

∂2

∂t2
−∇2 − ∇vp

vp
· ∇+ 2(~r · ∇)

]
u− f = 0, (4.13)

and its derivatives

∇uF∇~ru+∇~rF = 0, (4.14)[
1

v2
p

∂2

∂t2
−∇2 − ∇vp

vp
· ∇+ 2(~r · ∇)

]
∇~ru+ 2∇u = 0.

We then introduce the adjoint state variable, λ, also known as the Lagrange multiplier,

compute its product with Equation 4.14,

〈λ,∇uF∇~ru+∇~rF 〉 = 〈λ,∇uF∇~ru〉+ 〈λ,∇~rF 〉 = 0, (4.15)

and add this null expression to the gradient equation as follows:

∇~rE = 〈∇ue∇~ru, e〉+ 〈λ,∇uF∇~ru〉+ 〈λ,∇~rF 〉. (4.16)
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By implementing the definition of adjoint operators,

〈Aw2, w1〉 = 〈w2, A
∗w1〉 (4.17)

(in which w1 and w2 are test functions from the domains of the arbitraty operators A and

A∗, respectively), and establishing the adjoint-state variable in a convenient manner, we can

isolate and eliminate ∇~ru from the first two terms on the right-hand side of Equation 4.16.

This gives

∇~rE = 〈∇~ru,∇ue∗e〉+ 〈∇uF ∗λ,∇~ru〉+ 〈λ,∇~rF 〉. (4.18)

= 〈∇~ru,∇ue∗e+∇uF ∗λ〉+ 〈λ,∇~rF 〉
= 〈λ,∇~rF 〉,

when λ satisfies the adjoint-state equation

∇uF ∗λ = −∇ue∗e. (4.19)

The last line in Equation 4.18 tells us that the gradient of the FWLSRTM objective function

for a single shot experiment can be efficiently obtained by solving

∇~rE =

[
∇rxE
∇rzE

]
= 2

∫ T

0

λ∇udt, (4.20)

which represents the accumulation of a vector field, ∇u, weighted by a scalar field, λ,

over the specified time period. In this scenario, the FWLSRTM gradient provided by the

adjoint-state method requires solving only two PDEs, as opposed to solving a set of PDEs

that matches the total number of elements in the model parameter, which would be required

to construct the Jacobian.

The last ingredient in our recipe consists of finding an explicit expression for the adjoint-

state variable. Following Equation 4.19, we first derive the term for the right-hand side

adjoint source, −∇ue∗e. Per the definition of the residual function (Equation 4.11), we

notice that

∇ue =

∫
Ψ

δ(ψ − ψg)dψ, (4.21)
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and

〈∇uew2, w1〉 =

∫
Ψ

(∫
Ψ

w2(ψ)δ(ψ − ψg)dψ
)
w1(ψg)dψ (4.22)

=

∫
Ψ

w2(ψg)
(∫

Ψ

w1(ψ)δ(ψ − ψg)dψ
)
dψ

=

∫
Ψ

w2(ψg)w1(ψg)dψ

= 〈w2,∇uew1〉,

which indicates that the operator ∇ue is self-adjoint, i.e., ∇ue = ∇ue∗. Therefore, the

adjoint source term is equal to the negative of the residuals.

Similarly, to obtain the term ∇uF ∗, we resort to the adjoint definition given by Equation

4.17. Namely,

〈w2,∇uFw1〉 =

∫ T

0

∫ z1

z0

∫ x1

x0

w2

[
1

v2
p

∂2

∂t2
−∇2 − ∇vp

vp
· ∇+ 2(~r · ∇)

]
w1 dxdzdt (4.23)

=

∫ T

0

∫ z1

z0

∫ x1

x0

w2

v2
p

∂2w1

∂t2
− w2∇2w1 − w2

∇vp
vp
· ∇w1 + 2w2(~r · ∇w1) dxdzdt.

To deal with the first term on the right-hand side containing temporal derivatives, we

integrate by parts twice and impose zero initial conditions to w1 such that w1(x, z, 0) =
∂w1(x,z,0)

∂t = 0. By applying integration by parts to this terms, we move the differentiation

from one factor in the product to the other. Moreover, we prescribe zero final conditions on

w2, i.e., w2(x, z, T ) = ∂w2(x,z,T )
∂t = 0. Thus, the expression can be reduced to

∫ T

0

w2

v2
p

∂2w1

∂t2
dt =

1

v2
p

{[
w2
∂w1

∂t

]T
0

−
∫ T

0

∂w2

∂t

∂w1

∂t
dt

}

=
1

v2
p

{[
w2
∂w1

∂t

]T
0

−
[
∂w2

∂t
w1

]T
0

+

∫ T

0

∂2w2

∂t2
w1dt

}
,

=

∫ T

0

w1

v2
p

∂2w2

∂t2
dt. (4.24)

The remaining terms contain spatial derivatives and can be treated in a similar way assuming

that both w1 and w2 vanish at the boundaries x0, x1, z0, and z1(homogeneous boundary
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conditions). Consequently, Equation 4.23 can be reformulated as

〈w2,∇uFw1〉 =

∫ T

0

∫ z1

z0

∫ x1

x0

w2

[
1

v2
p

∂2

∂t2
−∇2 − ∇vp

vp
· ∇+ 2(~r · ∇)

]
w1 dxdzdt (4.25)

=

∫ T

0

∫ z1

z0

∫ x1

x0

w1

[
1

v2
p

∂2

∂t2
−∇2 +∇ · ∇vp

vp
−∇ · 2~r

]
w2 dxdzdt

= 〈∇uF ∗w2, w1〉,

which gives us the term ∇uF ∗. We rewrite equation 4.19 to get the final expression for the

adjoint-state vector reflectivity wave equation:[
1

v2
p

∂2

∂t2
−
(
∇2 −∇ · ∇vp

vp
+∇ · 2~r

)]
λ = −e,

1

v2
p

∂2λ

∂t2
−∇2λ+∇ ·

(
λ
∇vp
vp

)−∇ ·
(
2λ~r
)

= −e (4.26)

with final conditions

λ(t = T ) = 0,
∂λ(t = T )

∂t
= 0. (4.27)

To avoid the computation of nested spatial derivatives at each timestep, we can use the

product rule on the third term from the left-hand side in equation 4.26, and rewrite the

adjoint equation as

1

v2
p

∂2λ

∂t2
−∇2λ+ λ∇2 log vp +∇ log vp · ∇λ−∇ ·

(
2λ~r
)

= −e, (4.28)

where the terms ∇2 log vp and ∇ log vp can be precomputed and stored in memory.

Given the final conditions, the corresponding expression for the update of the adjoint wave-

field follows a form akin to the stencil presented in Equation 4.6, but solving the time-

stepping scheme backwards in time (t = T → 0):

λ(t− dt) = dt2v2
p

(
−
(∂2 log (vp)

∂x2
+
∂2 log (vp)

∂y2

)
λ(t) + 2

(∂(rxλ(t)
)

∂x
+
∂
(
ryλ(t)

)
∂y

)
−
(∂λ(t)

∂x

∂ log (vp)

∂x
+
∂λ(t)

∂y

∂ log (vp)

∂y

)
+
∂2λ(t)

∂x2
+
∂2λ(t)

∂y2

)
+ 2λ(t)− λ(t+ dt) + dt2v2

pfadj(t) (4.29)

where fadj = −e implies the time-reversed residuals acting as sources. Following the same

notation as the previous section, the discretization of Equation 4.29 for all the time steps

can be represented by the upper triangular matrix F(~r)T . The propagation for the adjoint
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wavefield is then given by the solution of the linear system

F(~r)Tλ = fadj , (4.30)

which is computed by simulating wave propagation starting from the last time step using

the data residuals as sources to update the previous adjoint wavefield, λ(t−dt), rather than

the next wavefield. Similar to the forward problem, this matrix does not need to be explictly

built, making it efficient for large-scale problems.

The gradient for each shot (Equation 4.20) is therefore given by the product between two

wavefields propagating in opposite time directions: the forward wavefield, u, simulated on

a known background velocity, and the retro-propagated wavefield, λ, which is generated

by injecting the data residuals from the position of the receivers as the adjoint seismic

source, backwards in time. A naive computational approach to estimating the gradient

entails storing one of these two wavefields in the entire domain and then accessing its time

slices to perform the product with the other wavefield on-the-fly while stacking through

the time dimension. However, more advanced wavefield reconstruction schemes can also

be implemented to ease the computational load, especially in 3D, where we deal with 4D

wavefields (e.g., Symes, 2007; Nguyen and McMechan, 2015).

Once the misfit gradient has been computed, we can obtain vector reflectivity updates via

iterative gradient-based minimization

~r k+1 = ~r k + γkpk(∇E(~r k)), (4.31)

where the superscript k indicates the current iteration, γ is the step length computed via a

line-search algorithm, and p is the gradient search direction, which we compute with a quasi-

Newton algorithm to precondition the gradient for an accelerated convergence. The iterative

optimization algorithm runs until reaching the maximum number of iterations, which serves

as the stopping criterion. Figure 4.3 presents a simplified FWLSRTM workflow while a

more complete multisource FWLSRTM algorithm is presented in algorithm 1.

4.2.3 Gradient verification

This section focuses on two specific tests: the dot-product test and the gradient test. As

mentioned in the previous section, the solution to the inverse problem relies heavily on

the accurate estimation of the misfit gradient, which depends on both the forward and the

adjoint wavefields. Therefore, it is important first to confirm the exactness of the derivation

of Equation 4.26 and its discretization as the true numerical adjoint wave equation of the

full-wavefield vector reflectivity modeling engine. To do this, we employ the dot-product
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Figure 4.3: Simplified FWLSRTM workflow.

Algorithm 3 Multisource FWLSRTM

1: Set initial ~r = 0
2: for k = 1 to Max. iterations do
3: for s = 1 to Ns do . Loop over sources
4: Compute us(x, z, t;~r

k) . 1 PDE solve
5: Compute residuals es(~r

k) = ds(ψg;~r)− dobss(ψg)
6: Compute λs(x, z, t) . 1 PDE solve
7: Compute (∇~rE)s = 2

∫
T
λs∇usdt

8: end for
9: ∇~rE =

∑ns

s=1(∇~rE)s . Stack gradient over sources
10: Compute pk . Gradient-based techniques
11: Compute γk . Line search. Requires PDE solves
12: ~rk+1 = ~rk + γkpk

13: end for

test (Claerbout, 2014) given by the inner product

< F~a, b > − < ~a, FT b >

< F~a, b >
= 0, (4.32)

where ~a ∈ R2×Nn and b ∈ RNm are random vectors spanned in the model and data spaces,

respectively. To perform the dot-product test, we use the experiment shown in Figure 4.4,

where the long vector ~a in column form is selected as a single flat reflector model, given by

the concatenation of the two vector reflectivity x and z components (Figure 4.4c and 4.4d)

~a =

[
ax

az

]
. (4.33)

Similarly, Figure 4.5 shows the model b represented as the data residuals between the

”observed” and ”synthetic” forward responses for a source located at the middle of the
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model’s surface. We use a zero vector reflectivity to compute the latter. The horizontal

and vertical components of the gradient using 400 receivers, also deployed at the model’s

surface, are presented in Figure 4.6. Our numerical results indicate that the discrete adjoint

is accurate, passing the dot product test up to (single) numerical precision.

For comparison, we use the exact same configuration to compute the gradient response for

the standard LSRTM problem using the adjoint of the Born modeling operator to migrate

the data residuals. An important observation is the lack of low-wavenumber energy in both

components of the misfit gradient related to the vector reflectivity engine (Figures 4.6a

and 4.6b) compared to the image displaying the traditional LSRTM gradient (Figure 4.6c).

Furthermore, in the vertical component of the vector reflectivity gradient, the ”rabbit-ear”

wavepaths associated with the source- and receiver-side wavefields have opposite phases.

In seismic acquisitions with a high density of shots and receivers, these opposing wave-

paths cancel out, rendering the low-frequency ”rabbit-ear” effect negligible on the stacked

vertical component of the vector reflectivity. Conversely, the ”rabbit-ear” wave-paths have

the same phase in the horizontal component of the vector reflectivity gradient, and the

migration’s ”smile” exhibits varying positive and negative values across each side of the

shot. Consequently, a multi-shot experiment results in a stacked horizontal component of

vector reflectivity with smaller amplitudes and higher low-frequency artifacts. We show this

in section 1.5 in a more realistic experiment.
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Figure 4.4: Flat reflector experiment to calculate the misfit gradient response of
a single shot located at the middle of the model’s surface and registered with 400
receivers, also at the surface of the model. (a) velocity model, (b) density model,
(c) horizontal and (d) vertical components of the vector reflectivity model.
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Figure 4.5: Left: ”observed” data generated with a variable density acoustic wave
equation using the models from Figures 4.4a and 4.4b. Middle: ”synthetic” or ”cal-
culated” data generated with the full-wavefield vector reflectivity forward modeling
using the true velocity model (Figure 4.4a), but a zero vector reflectivity model.
Right: the data residuals.
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Secondly, we test for the accuracy of the misfit gradient. To do this straightforwardly,

we calculate individual elements of the two gradient components using a finite difference

central approximation. Specifically, we approximate the derivative of the objective function

with respect to the horizontal and vertical components of the vector reflectivity by varying

the model parameters and observing the change in the objective function. We test this

approximation for a few different points in the computational domain following

∂E

∂rxi

≈ E(rxi
+ ∆rxi

, rzi)− E(rxi
−∆rxi

, rzi)

2∆rxi

, (4.34)

∂E

∂rzi
≈ E(rxi , rzi + ∆rzi)− E(rxi , rzi −∆rzi)

2∆rzi
, (4.35)

where xi and zi denote discrete points in the computational grid for each gradient com-

ponent, and ∆rxi
and ∆rzi are small perturbations. Varying the value of these model

perturbations between 10−6 and 10−1, we observe numerical errors that are below 10−2

when compared with the adjoint-state-derived gradient.

4.3 Sparse regularization

Regularization strategies are essential for controlling stability and ambiguity in the solution,

particularly when faced with insufficient seismic data. Furthermore, even with sufficient

data, maintaining a regularization term is crucial to account for the noise inherent in real

seismograms and avoid overfitting, which could result in inaccurate results. Therefore, we

modify the original problem described in Equation 4.10 by incorporating the HPF as the

regularization term, which is differentiable and thus facilitates the use of straightforward op-

timization methods based on gradient descent techniques. This allows us to retrieve a sparse

model of the vector reflectivity, characterized by a long-tail prior, which proves beneficial

when the model components are expected to exhibit spiky characteristics. The regularized

cost-functional for the sparsity promoting full-wavefield LSRTM takes the additive form

min~r J(~r) = E(~r) + µRε(~r), (4.36)

with µ > 0 as the weight balancing the importance of sparseness of the vector reflectivity

and data fitting, and

Rε(~r) =
√
r2
x + r2

z + ε2 − ε, (4.37)

denotes the HPF term, where ε is the l1/l2 norm threshold.
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The gradient search direction then becomes

∇J(~r) = ∇E(~r) + µ∇Rε(~r), (4.38)

with

∇Rε(~r) =

 rx√
r2x+r2z+ε2

rz√
r2x+r2z+ε2

 . (4.39)

4.4 Deriving density models from the vector reflectivity

In the oil and gas industry, both density and velocity play an important role in seismic

interpretation steps. Therefore, once we obtain the final vector reflectivity, a relative density

model can be calculated as a byproduct by solving the normal equations

argminm

∥∥∥∥∥1

2

[
Dx

Dz

]
m−

[
rx

rz

]∥∥∥∥∥
2

2

+ α ‖m‖22

 (4.40)

with a linear solver such as CGLS. In Equation 4.40, Dx and Dy are the first-order derivative

operators in the horizontal and vertical dimensions, and α is a damping parameter. The

final density model is given by ρ = exp(m)
vp

. This extra step after the inversion extends the

applicability of our sparsity-promoting results.

4.5 Numerical experiments

We illustrate the effectiveness of our FWLSRTM workflow in two numerical experiments.

The first experiment entails a high-density box model with a homogeneous velocity. The

second one is the Marmousi2 model (Martin et al., 2006b). In these experiments, we generate

the observed data with a 20 Hz Ricker wavelet using the variable-density acoustic wave

equation to alleviate the inverse crime. The data contains multiples, direct arrivals, and

diving waves. The results are compared to traditional (i.e., linear/Born-modeling-based)

LSRTM, which requires a mute to be applied to the data, removing direct, diving, and far-

offset events. All reflectivity images are plotted on the same scale for a fair comparison. In

all the examples, we set 30 iterations as the stopping criteria for the optimization algorithm.
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4.5.1 A high-density box model

We first demonstrate the effectiveness of FWLSRTM in resolving reflectors with large dip

angles using a simple high-density box model, as shown in Figure 4.7a. The migration

velocity is a homogeneous background velocity model (not shown). Figures 4.7c and 4.7d

show the horizontal and vertical components of the true vector reflectivity parameter, re-

spectively. The model size is 101×101 with a grid spacing of 10 m in the x and z directions.

We generate 31 shots with a 33 m shot interval, each with 101 receivers with a 10 m receiver

interval. The record length is 1 s, with a sampling interval of 2 ms.

Figure 4.7b shows the traditional LSRTM result, which is deficient in recovering the hori-

zontal component of the reflectivity at limited observation apertures. On the other hand,

FWLSRTM can resolve all reflectors as shown in Figures 4.7e and 4.7f, demonstrating its

ability to fully use more recorded wavefield information, such as prismatic waves and inter-

nal multiples. We find lower resolution and decreased amplitude balance in the recovered

vertical reflectors from the FWLSRTM-inverted vector reflectivity horizontal component

compared to the retrieved vertical reflectivity component. This is because, with limited off-

set, the primary reflections can mostly illuminate the horizontal reflectors, and the multiples

illuminating the vertical reflectors provide lower wavenumber information about the model

compared to primaries (Huang and Schuster, 2014). We also note a phase discrepancy in the

reflectors produced by LSRTM relative to those from FWLSRTM, potentially attributable

to the fact that LSRTM inverts for velocity perturbations. Although the results of this sim-

ple example could be enhanced with regularization, we do not apply sparsity constraints;

rather, we focus on showcasing the potential of FWLSRTM in recovering steeply dipping

structures by using a more comprehensive physics model than traditional LSRTM.

4.5.2 Application to the Marmousi2 model

The FWLSRTM method is now tested on the more complex Marmousi example. The survey

comprises 25 shots and 667 receivers evenly distributed at the surface. Figures 4.8a and 4.8b

show the true velocity and density models. Figure 4.8c shows the smooth velocity model used

as the background migration field. Figures 4.9a and 4.9b show the horizontal and vertical

components of the true vector reflectivity model. The initial guess for the inversions is

set to a zero vector reflectivity, and µ was selected through trial and error and kept fixed

throughout iterations.

We obtain the final vector reflectivity components for the seismic data inversion without

(Figures 4.9c and 4.9d) and with (Figures 4.9e and 4.9f) HPF regularization after 30 it-

erations of L-BFGS. Inversion results with this dataset show that the iterative migrations
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Figure 4.7: High-density box model with homogeneous velocity experiment: a)
density model, b) LSRTM, c) true horizontal vector reflectivity component, d) true
vertical vector reflectivity component, e) FWLSRTM horizontal vector reflectivity
component, f) FWLSRTM vertical vector reflectivity component.

with HPF regularization are sparse and present fewer migration artifacts, less contaminating

sidelobes, and better signal content than their non-regularized counterpart. Moreover, all

the least-squares results have correct amplitudes and behave as an approximate inversion

since forward modelling reproduces the data approximately, as shown in Figure 4.10 for

a shot positioned at the surface at x=3.33 km. No frequency domain transformations or

spatial filtering techniques such as high-pass filters, Laplacian filters, or any other form of

image enhancement were employed to produce these final results. Figure 4.11 compares the
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inverted results, with and without sparse regularization, and the true vertical component

of the vector reflectivity for a trace in depth extracted at the middle of the model. We

observe that in both cases, the inverted results match well with the corresponding defined

reflectivity model. The inverted result with HPF regularization has more high-wavenumber

components and better agrees with the true reflectivity.

For comparison, we also conducted 30 iterations of traditional LSRTM (as shown in Figure

4.8d), in which we applied a mute to the data to remove direct, diving and far-offset events.

Despite this, the final image still exhibits substantial cross-talk attributable to parameter

leakage. This is because standard LSRTM only inverts for velocity perturbations using an

imprecise modeling engine. On the other hand, with the FWLSRTM, reflectivity changes

caused by density variations are not erroneously mapped as velocity updates. We recognize

that other studies have suggested multi-parameter LSRTM to deal with the cross-talk be-

tween model parameters, including elastic (Chen and Sacchi, 2017b) and variable-density

(Farshad and Chauris, 2021) reformulations. However, they still rely on and are restricted by

the assumptions inherent to Born modeling, and require substantially greater computational

resources.

Contrasting the results of FWLSRTM with traditional LSRTM, which heavily relies on an

accurate velocity model due to the Born approximation, also reveals insights into how the

vector reflectivity parameterization acts as a model-extension approach. It inherently makes

the problem less over-determined by increasing the number of unknowns in the system. This

comparison suggests that the FWLSRTM method is likely more resilient to the challenges

of inaccurate velocity models. This observation becomes increasingly evident in the deeper

sections of our results. FWLSRTM also significantly reduces backscattering noise compared

to traditional LSRTM, enhancing seismic imaging.

Figure 4.12 shows the imaging results for the same experiment but changing the migra-

tion velocity model to a highly smoothed velocity, as shown in Figure 4.12a. The results

indicate that FWLSRTM still exhibits fewer artifacts and provides more accurate images

than traditional LSRTM. Sparse FWLSRTM further reduces the high-frequency artifacts.

With an inaccurate model, the seismic events are not expected to indicate the true reflection

position. However, the better focused events after migration can give a hint and help the

interpretation to better identify the true events and coherent noise. In practical scenarios,

LSRTM tends to be more susceptible to migration velocity errors compared to conventional

RTM because it introduces incoherent stacking in each iteration, leading to blurring effects.

To manage these unknown velocity discrepancies, pre-stack strategies are typically used

in LSRTM, adding an extra dimension through a shot index, ray-parameter, time-lag, or

subsurface offset to mitigate the issue. Future research should investigate the adaptation

of these strategies to FWLSRTM to further refine the accuracy of imaging with respect to
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velocity model errors.
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Figure 4.8: The 2D Marmousi2 model: (a) true velocity model, (b) true density
model, (c) background migration velocity field, (d) traditional LSRTM inversion.

4.6 Conclusions

Classic LSRTM is solved in a linear inversion framework, which can be restrictive in handling

data from complex geological settings where non-linearity might be significant. We success-

fully obtained enhanced vector reflectivity models by re-formulating LSRTM as a non-linear

full-wavefield least-squares inversion in combination with sparse regularization. In our nu-

merical experiment, applying this method to the 2D Marmousi2 model demonstrated its

clear superiority. The parameter µ, which controls the regularization strength, requires tun-

ing. Our results indicate that sparse full-wavefield LSRTM reduced artifacts and sidelobes

more effectively and delineated reflectors more precisely than traditional methods, even in

the presence of highly decimated data. Moreover, the ability of our approach to adapt

to imprecise velocity models highlights its potential as a robust tool in seismic imaging,

especially in complex geological settings. Our tests imply that the nonlinear FWLSRTM

workflow may produce more accurate updates in combination with velocity updates in FWI,

leading to a better convergence.

97



0

1

2

k
m

(a) (b)

0

1

2

k
m

(c) (d)

0 1 2 3 4 5 6
km

0

1

2

k
m

(e)

0 1 2 3 4 5 6
km

(f)

−0.002

0.000

0.002

−0.01

0.00

0.01

Figure 4.9: Full-wavefield LSRTM inversion of the 2D Marmousi2 model: (a), (c)
and (e) show the horizontal components for the true vector reflectivity and the
inversions without and with HPF regularization, respectively. Similarly, (b), (d)
and (f) show the true and inverted vertical components. All the results are displayed
using consistent amplitude scales, as demonstrated in Figures (a) and (b), thereby
accurately representing true amplitude reflectivity imaging.
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Figure 4.10: Comparison of traces in the data domain for the Marmousi2 inversion
experiment for a shot positioned at the surface at x=3.33 km. (a) Observed data
using the true velocity and density models. (b) and (c) show the forward modelling
shot gather obtained with the vector reflectivity engine using the inverted results
without and with sparse regularization, respectively. (d) and (e) show the data
residuals for each result ((a) - (b) and (a) - (c)).
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Figure 4.12: Full-wavefield LSRTM inversion of the 2D Marmousi2 model using a
highly smoothed velocity model: (a) velocity model, (b) standard LSRTM result,
(c) vertical component of full-wavefield LSRTM, (d) vertical component of full-
wavefield LSRTM with sparse regularization. A Laplacian filter was applied to the
images to remove low-frequency artifacts.
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CHAPTER 5

Learned reconstruction with a nullspace-range

decomposition1

5.1 Introduction

Enhancing the resolution of band-limited seismic data via effective deconvolution techniques

has always been a recurring goal in exploration seismology. Superior bandwidth content

translates into potentially resolving reflectors hidden under the tuning thickness and ulti-

mately provides more accurate structural and stratigraphic information from high-resolution

images (Chopra et al., 2006, 2009). After the reflection data undergoes a sequence of pro-

cessing steps (Levin, 1989), a common assumption is that the zero-offset seismic trace can

be modelled as a linear system. The linear system entails the convolution of a band-limited

source wavelet (i.e., the blurring kernel with most of its energy concentrated within some

pass-band) with the earth’s impulse response, which is typically conceived as a broadband

reflectivity time series representing layers of constant material parameters (Robinson and

Treitel, 1980). The deconvolution process attempting the frequency enhancement then con-

siders the computation of an approximate solution for the discretized problem

dε = Lm + ε, (5.1)

where m ∈ Rn is the (vectorized) reflectivity time series, d ∈ Rm contains the seismic

traces, ε ∈ Rm denotes an unknown data error represented as additive noise, and the linear

forward operator L : Rn → Rm contains the stationary seismic wavelet properly arranged

1A version of this chapter has been published as a journal article: Torres, K. and Sacchi, M. D., 2023,
Deep decomposition learning for reflectivity inversion, Geophysical Prospecting, 71(6), pp.963-982.
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into a Toeplitz matrix

Lij =

wi−j+1 i ≥ j
0 i < j

. (5.2)

This enables convolution via simple matrix-times-vector multiplication, with wi−j+1 as the

i− j + 1th sampling point of the wavelet. For this purpose, this chapter adopts a classic

deconvolution framework, in which the noise is white and Gaussian, and the wavelet is

assumed time-invariant and known or at least well approximated as a preliminary step

(Ulrych et al., 1995). While a more realistic model entails an unknown and non-stationary

propagating wavelet, this simplification serves as a good approximation. We point out,

however, that multiple efforts have also considered time-variant and blind deconvolution

frameworks that simultaneously estimate the wavelet and the reflectivity in a non-linear

fashion (e.g. Kaaresen and Taxt, 1998; Kazemi and Sacchi, 2013; Gholami and Sacchi, 2013;

Chen et al., 2023).

Even when the wavelet is available a priori, reflectivity inversion is an underdetermined

problem due to the presence of a non-trivial kernel or null space, resulting from the lack of

low and high frequencies of the seismic wavelet. Rigorously, the missing model components

of m lie in the spectrum gaps describing the null space of the forward operator. Given the ex-

istence of non-uniqueness, many reflectivity series fit the acquired data equally well, despite

having radically different features. Only some of these solutions can accurately character-

ize the true earth’s impulse response. Additionally, the ill-posedness of the problem makes

the reconstruction process more vulnerable to noise, especially in the high and low bands

where the noise contribution is stronger. Thus, a direct inversion of the Toeplitz matrix

m = L−1dε is impossible, and appropriate priors upon the reflectivity must be promoted to

reduce the null space ambiguity and determine a unique and credible approximation of m.

Early attempts to perform reflectivity inversion via deconvolution are based on classic

inverse-filtering theory assuming a white random reflectivity sequence with Gaussian prior

distribution and a minimum-phase seismic wavelet (Berkhout, 1977; Robinson and Treitel,

1980; Scales and Smith, 1994; Yilmaz, 2001). Such restrictions render a stable and causal

wavelet inverse filter that can be applied to the data to retrieve a reflectivity estimate.

Nevertheless, gaussianity yields band-limited results with broadened peaks and side-lobe

artifacts that preclude closely spaced reflectors from being sharply resolved. To overcome

the shortcomings that typify conventional least-squares deconvolution, many methods have

been proposed for high-resolution, sparse-spike or thin-bed reflectivity inversion, including

techniques that use minimum entropy (Wiggins, 1978; Sacchi et al., 1994) and lp (0 ≤ p ≥ 1)

sparsity constraints (Taylor et al., 1979; Levy and Fullagar, 1981; Oldenburg et al., 1983;

Debeye and Van Riel, 1990; Sacchi, 1997; Chopra et al., 2006; Zhang and Castagna, 2011;

Gholami and Sacchi, 2012).
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Particularly, sparse priors are only valid through mathematically enforcing that the reflec-

tivity series consists of a few isolated spikes comprising a plane homogeneous layered model.

Under this simplified construction, the seismic trace constitutes a finite superposition of

seismic wavelets. This hypothesis is suitable when only a few strong reflections dominate

the seismogram. In reality, however, well-log data presents a stochastic pattern that is far

more complex (Walden, 1985; Tenorio, 2001). Furthermore, when sub-optimally applied as

a trace-by-trace process, sparse deconvolution algorithms do not consider the inherent con-

tinuity in the spatial dimensions, and we require more complicated multichannel techniques

to avoid harming the signal (Idier and Goussard, 1993; Kaaresen and Taxt, 1998; Gholami

and Sacchi, 2013), which still may face challenges for seismic data with complex structures.

Additionally, sparse inversion algorithms suppress random noise to some extent when Gaus-

sian statistics are assumed for the data error, but they often have significant sensitivity

to outliers that negatively impacts the results (Debeye and Van Riel, 1990). Ultimately,

practical applications of high-resolution deconvolution still face several challenges related

to regularization and hyper-parameter selection, intensive demand for human-computer in-

teraction, and the high computational cost of iterative reconstruction in large 3D seismic

volumes. Despite providing state-of-the-art solutions, limitations from utilizing handcrafted

priors inspire the development of alternative data-driven and learning-based seismic data

processing methods.

In recent years, various geophysical problems have explored applications of supervised deep

learning techniques using Convolutional Neural Networks (CNN) (LeCun et al., 2015), for

they have powerful representation learning properties and the potential to process extensive

seismic surveys with minimal human intervention (Yu and Ma, 2021c). In the supervised

regime, one trains a neural network as a universal approximator to recover model parame-

ters from observed data with many high-quality pre-labelled solutions from a representative

(training) dataset. Deep learning applications on seismic inversion include end-to-end ap-

proaches (Araya-Polo et al., 2018; Mandelli et al., 2019; Chai et al., 2021a; Wu et al., 2021a),

in which the neural networks directly learn an inverse data-to-model mapping. Such net-

works bypass the use of explicit physics operators but rely on a vast amount of training

samples to learn the underlying physics of the problem. To reduce the dependency on train-

ing data, learned iterative schemes (Torres and Sacchi, 2022b) incorporate physics into the

learning process and replace various components of unrolled iterative reconstruction algo-

rithms with neural network computations. Alternatively, to avoid iterations, the learned

post-processing method first maps the measurements to the model space through a known

physics operator (either the pseudo-inverse L† : Rm → Rn or an approximation to it) and

then trains a neural network to learn a model perturbation that potentially improves this

initial reconstruction (Kaur et al., 2020; Zhang et al., 2021). Even though these techniques

have demonstrated remarkable empirical success, many supervised approaches still lack a
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data consistency constraint to enforce that the predicted model matches the acquired data,

a necessary condition for a reliable solution to the inverse problem.

Consequently, such deep learning schemes do not lead to convergent regularization strate-

gies. Hence, the results might look realistic, but there is no way to assess their accuracy.

Unsupervised approaches (Dhara and Sen, 2022; Chen et al., 2022; Kong et al., 2022) ad-

dress this issue by design, but they often amplify the expensive iterative nature of traditional

methods when the trainable weights are not correctly initialized.

Schwab et al. (2019) introduced regularization via null space networks as an alternative

image domain restoration method to account for data consistency. By computing a pro-

jection onto the null space of the forward operator after the last weight layer of a residual

architecture, it is possible to train a neural network to learn the missing components of

the initial reconstruction. The null space projection ensures that the output estimates are

consistent with the observed input data. As a generalization to null space networks for noisy

data, Chen and Davies (2020) introduced the concept of deep decomposition learning, which

attaches a complementary network to act as a denoiser on the range of the pseudo-inverse.

Similarly, Schwab et al. (2020) allow the null space networks to act on the orthogonal com-

plement of the kernel by being dependent on the regularization technique that produces

the initial reconstruction and demonstrate the convergence properties of these algorithms.

Based on these ideas, we investigate the extension of data-consistent null space learning on

the inversion of reflectivity. Specifically, we extend the deep decomposition approach by

using the truncated singular value decomposition (TSVD) as an initial regularized recon-

struction for approximating the low-frequency components of the model. As a second step,

we trained two neural networks to recover the missing parts of the model and the ”inverted”

noise, respectively.

This chapter is an extension of Torres and Sacchi (2022c). In the next section, we reintroduce

the concept of null space networks for the convolutional model for normal incidence seismo-

grams. To our knowledge, regularization via null space networks has not been reported in

the literature in the context of full band reflectivity inversion. As a proof of concept, we em-

pirically demonstrate the behaviour of the proposed method on a single-channel toy dataset

in which the optimal solution is known and two 2D field datasets. These examples show that

when the wavelet is known, the proposed deconvolution approach may reconstruct a suit-

able high-resolution reflectivity model from band-limited noisy data. The performance, we

believe, is comparable to the state-of-the-art techniques in this category. The chapter ends

with a discussion of limitations and prospects for further development of this reflectivity

inversion method.
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5.2 Method

5.2.1 Deconvolution

Many classic deconvolution methods find approximate deterministic solutions to equation

5.1 by computing the reflectivity model m? that minimizes a composite objective function

m? = arg min
m

{
J(m) + λR(m)

}
, (5.3)

where the first term is a convex data-fidelity term, usually defined as the least-squares data

error J(m) = ||Lm− dε||22, R(m) represents a regularization function, and λ > 0 denotes

the regularization parameter. For example, Wiener or Tikhonov regularized deconvolution

can be derived assuming a Gaussian prior for the reflectivity R(m) = ||m||22, which has an

analytical solution

m?
λ = [LTL + λI]−1LTdε, (5.4)

where LT is the transpose of L (a cross-correlation operator) and I ∈ Rn is the identity

operator. Analogously, when the problem allows an explicit singular value decomposition

(SVD) of L, the truncated SVD (TSVD) pseudo-inverse L†k can be used as an intuitive

brute-force low-rank approximation to obtain a filtered solution

m?
k = L†kdε (5.5)

= VkS
−1
k UT

k dε, (5.6)

with Uk ∈ Rm×k and Vk ∈ Rn×k as the top k rows of the unitary matrices U ∈ Rm×m

and V ∈ Rn×n, respectively, and Sk ∈ Rk×k as a diagonal matrix containing the largest k

singular values of L. TSVD and Tikhonov regularizations provide similar solutions under

certain conditions (Hansen, 2010a). In both cases, the regularization parameters λ and k

attempt to reduce the influence of noise by suppressing the less reliable signal components.

However, it is well-known that none of these techniques are suitable when the solution is

discontinuous. Deconvolution via Tikhonov regularization, for instance, tends to smear the

solution by enforcing that the reflectivity coefficients concentrate close to zero, considering

R(m) = ||m||22 = ||m−mprior||22 with mprior = 0 as a vector of all zeros. The TSVD pseudo-

inverse truncates the spectrum of L and only provides minimum norm solutions since no

elements in the null space of L are added to the solution.

On the other hand, the layered earth model visualizes the unknown reflectivity series as a
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train of isolated spikes represented by a set of delta functions

mn =

S−1∑
s=0

asδn−Γs (5.7)

where S is the number of nonzero spikes of amplitude as, and Γ ⊂ {0, ..., N − 1}. Thus,

enforcing a sparse property to the reconstructed reflectivity through the long-tailed l1-norm

while retaining the l2-norm on the data-fidelity term yields efficient sparse-spike deconvolu-

tion algorithms that seek the solution to the convex problem

min
m

{1

2
||Lm− dobs||22 + µ||m||1

}
, (5.8)

which allows for resolving closely spaced reflectors. Nonetheless, controlling the sparsity

level of the reconstructed reflectivity is challenging. In particular, because of the constant

shrinkage parameter µ, l1-regularization results in a biased estimate by over-penalizing large-

valued reflectivity coefficients. Alternatively, we propose to solve the reflectivity inversion

problem given in equation 5.1 with a deep decomposition technique based on null space

network regularization that constructs a learnable prior from training data and possesses

data consistency and denoising properties.

5.2.2 Deep decomposition learning for reflectivity inversion

The outset of the deep decomposition learning as a regularization technique is the active-null

space decomposition of the signal, i.e., we decompose the domain of the forward operator

into two sub-spaces: the measurement space and the null space. Accordingly, we might think

of any reflectivity model m in the domain of L as being made up of two unique orthogonal

vectors,

m = mR + mN = PR(m) + PN (m), (5.9)

such that mR lies in the range of the pseudo-inverse L† which is also the active space solution,

and mN lies in the null space. By definition, these two components satisfy, respectively,

mR = L†dε (5.10)

= L†Lm + L†ε, (5.11)

and

LmN = 0. (5.12)
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Based on this fragmentation of the model, we can define the ideal reconstruction as

m∗ = L†dε − L†ε+ mN . (5.13)

In other words, the solution is expressed in terms of a unique minimum norm least-squares

solution (L†dε) minus the ”inverted” noise plus the null space vector.

As denoted in equation 5.9, the model components can be obtained from two orthogonal

projections, PR and PN , defined as

PR = L†L, (5.14)

and

PN = I− L†L. (5.15)

Using a physics-engaged approach promoted by the application of the above-mentioned

orthogonal projections, deep decomposition learning attempts to solve equation 5.13 with a

trained estimator Λ : Rm → Rn defined as

Λ(dε; θ1, θ2) = L†dε + PR ◦ Fθ1 ◦ L†dε + PN ◦Nθ2 ◦ (L†dε + PR ◦ Fθ1 ◦ L†dε), (5.16)

where Fθ1 and Nθ2 are two trainable neural networks. Compared to equation 5.13, it is

clear that the second term in the right-hand side of equation 5.16 tries to estimate the

negative ”inverted” noise by projecting the output of the network Fθ1 onto the range of the

pseudo-inverse. Likewise, the third term in equation 5.16 tries to estimate the null space

component from the denoised input L†dε + PR ◦ Fθ1 ◦ L†dε ≈ L†dε − L†ε. When Λ lacks

the explicit denoising element (PR ◦ Fθ1 ◦ L†dε = 0), the estimator turns into a standard

null space regularization network of the form

Λ(dε; θ) = L†dε + PN ◦Nθ ◦ L†dε

= (I + PN ◦Nθ)(L
†dε),

(5.17)

where the data consistency property, LΛ(dε; θ) = dε, is exactly preserved.

For noisy seismic data, the results obtained using the naive solution L†dε are non-interpretable.

Therefore, in this work, we use TSVD for computing a regularized approximation L†k to the

pseudo-inverse, where the regularization parameter is given by the number of non-truncated

singular values k > 0. One must keep in mind that ill-posed problems in the discrete setting

are not the same as numerically rank-deficient problems, which are characterized by a no-

ticeable separation between large and small singular values. Therefore, setting a threshold
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for truncation in discrete ill-posed problems is expected to be challenging due to the lack

of a clear gap. When the true model is unavailable, or the noise level is unknown, one

may refer to data-dependent strategies to approximate the optimal truncation, such as the

optimal singular value hard thresholding (Gavish and Donoho, 2014).

The solution obtained by TSVD is the classical regularized least-square solution that will

yield a reflectivity of spectral properties similar to the original data and no significant gain

in bandwidth. TSVD produces a stable solution that prevents small singular values of L

from amplifying noise by only recovering signal components corresponding to sufficiently

large singular values. The absent components (frequencies in the null space of the operator)

have an unreliable model-to-data mapping and, therefore, will be recovered in the learning

stage. In other words, because of the impossibility of precisely differentiating the signal

from noise in the active space, we partially recover some reflections with TSVD filtering and

then predict the residual noise component with a denoising network. Next, we attempt to

increase the high-frequency content of the reflectivity with the estimation of the null space

element, which limits the non-uniqueness of the problem. Instead of explicitly incorporating

a sparse regularizer in an iterative least-squares inversion, the spike representation of the

reflectivity is embedded in the manifold of representative solutions in the training labels.

The null space network will learn it during training.

Finally, the overall procedure aims to jointly seek the weights that minimize

E(θ1, θ2) =
1

N

N∑
i=1

||mi − Λ(diε; k, θ1, θ2)||22 + λ1

N∑
i=1

||LFθ1(L†kd
i
ε)− εi||22 + λ2||θ2||22, (5.18)

where the first term enforces ”benignant” inductive bias by carrying out supervised training

on a synthetic dataset D = {(mi,diε, ε
i)}Ni=1 using the Mean Squared Error (MSE) loss, the

second term prevents the denoising component from breaking the data consistency property.

The third term provides the null space estimator with robustness to small perturbations via

weight regularization (Schwab et al., 2019).

We define Fθ1 as a denoising convolutional neural network (DnCNN) architecture (Zhang

et al., 2017) (Figure 5.1) designed to predict the residual noise component from a corrupted

input with the operations in the hidden layers. We set Nθ2 as an encoder-decoder neu-

ral network, shown in Figure 5.2, inspired by the U-net architecture (Ronneberger et al.,

2015a). This type of architecture is a two-stage convolutional neural network commonly

used in image segmentation and reconstruction from insufficient data due to its straight-

forward design, high representation power, and fast convergence in training. The encoder

portion of Nθ2 implements convolutions and downsampling operations to extract high-level

features from the inputs. The decoder then performs convolutional and upsampling op-

erations on the retrieved features to produce the required outputs. Skip connections feed
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Figure 5.1: Convolutional neural network architecture of the denoiser Fθ1 with
corresponding depth of 17. I refers to the original image size. The number at
the bottom of each convolutional layer indicates the number of channels. The
convolutional kernels are of size 3× 3. ReLU and BN stand for rectified linear unit
and batch normalization, respectively.

the extracted features from the encoder sections to their respective decoder sections to re-

cover the information lost in the downsampling process, enhancing the model’s ability to

produce high-quality outputs with the desired size at a reduced computational cost. This

architecture enables the model to learn complex representations and patterns by providing

a broad field of view of signal features through downsampling operations. However, this

capability also increases the risk of overfitting, especially when training data is limited. To

address this, we incorporate dropout layers as suggested by (Tompson et al., 2015), which

are essential for improving prediction performance while mitigating the risk of overfitting.

A strength of the null space network component is that the estimator Λ(dε; k, θ1, θ2) only

adds missing information without introducing inconsistencies with the acquired data, even

when applied to models very different from the training data, which in principle can improve

the reconstruction quality if compared to non-data-consistent approaches. Algorithm 1

summarizes the proposed scheme.

As noticed, computing the trained estimator only requires one SVD of the forward operator

before training, so the technique is practically convenient. The following section presents

evidence that regularization via deep decomposition can be applied to field seismic data sets

and produce plausible results in the cases exhibited here.
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Figure 5.2: U-net based architecture of the null space neural network Nθ2 . I refers
to the original image size. The number at the bottom of each convolutional layer
indicates the number of channels. The convolutional kernels are of size 3× 3. Max-
pooling has a kernel size of 2× 2.

5.3 Numerical examples

We evaluate the proposed learned regularization method on a synthetic example and two

real data sets. Setting the trade-off parameters to λ1 = 10e−6 and λ2 = 10e−8 yields stable

solutions for the three experiments considered in this section. Stochastic gradient descent

with the adaptive moment estimation scheme (Kingma and Ba, 2014b) minimizes equation

5.18, running 400 epochs as the stopping criteria with a learning rate of 0.001.

We incorporate different realizations of unstructured Gaussian noise into the training data

samples using a fixed and predefined signal-to-noise ratio SNR=20. Namely, to each i-

th training realization, we add a noise vector εi = αini to the clean signal di such that

diε = di + εi. For this, we adopt the definition

SNR =
Power of the clean signal

Power of the additive noise

=
||di||22

αi
2||ni||22

where αi is a scalar used to yield the desired SNR and ni is sampled from a standard normal

distribution.
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Algorithm 4 Deep decomposition estimator Λ(dε; k, θ1, θ2)

Requires:
• Forward operator L (constructed with an estimated wavelet as per equation 5.2)
• Projection operators PR, PN
• Training dataset D = {(mi,diε, ε

i)}Ni=1

Parameters:
(k, λ1, λ2) > 0, stopping criteria

1: SVD of L→ L†k
2: Training stage:
3: repeat for all labels until stopping criteria
4: Λ(diε; k, θ1, θ2) = L†kd

i
ε + PR ◦ Fθ1 ◦ L†kd

i
ε + PN ◦Nθ2 ◦ (L†kd

i
ε + PR ◦ Fθ1 ◦ L†kd

i
ε)

5: Minimize 1
N

∑N
i=1 ||mi−Λ(diε; k, θ1, θ2)||22 +λ1

∑N
i=1 ||LFθ1(L†kd

i
ε)− εi||22 +λ2||θ2||22

6: Output Trained parameters θ1, θ2

7: Inference stage:
8: Input: Observed data dε
9: Output m?

Λ = L†kdε + PR ◦ Fθ1 ◦ L†kdε + PN ◦Nθ2 ◦ (L†kdε + PR ◦ Fθ1 ◦ L†kdε)

5.3.1 Synthetic example: single-channel deconvolution

Relying on the convolutional model of the seismic trace, we attempt to recover a known

full-band reflectivity sequence from a zero-offset seismic trace. To train the estimator,

we generate 5000 1D random reflectivity samples and obtain the corresponding data by

convolving a 60 Hz Ricker wavelet and adding the observational noise. The maximum

amplitude of the wavelet is unity. The deconvolution process uses the exact wavelet and

signal-to-noise ratio.

Figure 5.3 shows the results for a test reflectivity model different from all training samples

but generated using the same random procedure. For a quantitative evaluation of the results,

we calculate the reconstruction accuracy

Accuracy (dB) = 10 log10

||m||22
||m−m∗||22

, (5.19)

where m and m∗ are the true and inverted reflectivity models, respectively. Figure 5.3b

shows the initial TSVD solution, where some of the most prominent reflections are par-

tially recovered, but a residual band-limited component masks the non-resolvable events.

Moreover, oscillations are visible in the result, courtesy of the truncated expansion. For com-

parison, Figure 5.3c displays a sparse-spike deconvolution obtained as a solution of equation

5.8 via 100 iterations of the fast iterative shrinkage-thresholding algorithm (FISTA) (Beck

and Teboulle, 2009) with regularization parameter µ = 0.5. Even though the inversion with

sparsity promotion enables a full-band solution, the noisy data impedes successfully retriev-

ing the correct amplitude and positioning of some events, and the solution presents spurious
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spikes. Figure 5.3d shows the result obtained with deep decomposition regularization, where

we conclude that, both visually and quantitatively, the learned estimator inversion produces

higher quality results and fewer spurious events compared to the two previous techniques.

Finally, Figures 5.4a and 5.4b show the amplitude spectrum of the true and the estimated

result and the solution’s range and null space components, respectively. Both figures show

that deep decomposition regularization approximately recovers the true missing frequency

components of the original signal.
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Figure 5.3: Single-channel deconvolution example. True reflectivity m (black) su-
perposed with (a) the noisy trace dε, (b) the TSVD result, (c) the FISTA result,
and (d) the deep null space regularization.

The following section will test the proposed method on real post-stack seismic data. Despite

the fact that the post-stack process typically yields a high SNR, the proposed deep estimator

has been designed to function in the presence of noise. We test how the method reacts with

noisier datasets by injecting different values of SNR into the observed data and recording

the reconstruction accuracy using equation 19. The prediction results are shown in Table

1. We notice only a slight deterioration in accuracy with SNR values different from the one

used in training. The deterioration is stronger for lower SNR values.

Albeit synthetically, this example demonstrates that the proposed algorithm provides a

broad-band, sparse and spiky reflectivity solution that, under controlled conditions, is more

faithfully resolved than the filtered TSVD and spike-sparse deconvolution.
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Figure 5.4: Comparison of (a) the amplitude spectrum of the true reflectivity model
and the deep null space regularization solution, and (b) the amplitude spectrum of
the individual range (orange) and null space (gray) retrieved components.

5.3.2 Field data examples

We also adopted the proposed estimator to predict full-band reflectivity models from two

real 2D datasets. In a 1D trace-by-trace deconvolution technique, thin layers can be ver-

tically subtle, and the desired spatial coherence might be easily lost (Wu et al., 2021a).

Instead of using 1D models and noisy traces, the networks were trained with synthetically

generated 2D reflectivity models and their corresponding noisy data slices to improve lat-

eral continuity and robustness to noise. We follow Torres and Sacchi (2022b) to generate
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SNR Accuracy (dB)
24 6.82
22 6.86
20 6.90
18 6.79
16 6.43
14 5.92
12 5.86
10 5.55

Table 5.1: Testing the sensitivity to random noise on the single-channel deconvolu-
tion example using different values of SNR. The filled cells designate the SNR value
used for the training stage.

synthetic reflectivity models (as shown in Figure 5.5) considering the spatial correlation im-

posed by depositional processes while mimicking fractured, faulted and folded sedimentary

structures that can take arbitrary shapes and orientations. The training samples reflect that

physical, nonrandom processes produce the earth’s geology, and subsurface layers can have

many arbitrary orientations, including sharp discontinuities.

In the following tests, the training stage was performed on a workstation with one NVIDIA

GeForce RTX 2080 Ti graphics processing unit (GPU). The total training time for running

400 epochs on the 2D datasets with 5000 training samples of dimensions 144 × 496 took

approximately 15 minutes and 8.6 GB of VRAM using a batch size of 4.
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Figure 5.5: Multiple realizations of reflectivity models (left column) and noisy data
(right column) used for training the estimator to perform 2D thin-bed reflectivity
inversion.
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Despite dealing with different geological settings, both experiments used the same reflectivity

labels in the training data to test the generalization properties of the proposed estimator. We

notice high-resolution results even when there is a significant shift in the data distribution.

Alberta foothills seismic data

The first dataset entails a 2D seismic section from Alberta, Canada, in the foothills of the

Rocky Mountains (Chopra et al., 2009). It consists of 300 traces digitized in increments

of 1 ms. Figure 5.6 shows the estimated wavelet and frequency spectrum. Figure 5.7
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Figure 5.6: (a) Extracted source wavelet from the Alberta foothills seismic data.
(b) Amplitude spectrum.

portrays the results, where for completeness, we also compare the proposed method to the

output of a thin-bed spectral inversion (TSI) (the thin-bed reflectivity inversion method

used here is commercially available as ThinMan) (Chopra et al., 2006) (Figure 5.7c) and

the solution obtained with a learned post-processing residual U-net architecture (ResUnet)

(Figure 5.7d) given by m?
ResUnet = (I + Uθ)(L

†
kdε), in which Uθ has the same design as
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Nθ2 . For consistency, the ResUnet was trained by minimizing the MSE loss
∑N
i ||mi −(

L†kd
i
ε −Uθ(L

†
kd

i
ε)
)
||22 using the same training data, number of epochs and learning rate as

the proposed estimator.

No additional information (e.g., sonic logs) is available in the studied area, which limits the

validation of the results. However, the deep decomposition output compares favourably with

the conventional TSI solution, which provides confidence that the proposed technique has

revealed substantial reflectivity information hidden in the original seismic section. Moreover,

the predicted deconvolution output of the deep estimator shows more continuous reflectors

and fewer noise artifacts than TSI due to an improvement in the lateral continuity and the

explicit denoising component. At first glance, the deep decomposition prediction performs

similarly to the ResUnet solution. Nonetheless, the residual data panel shown in Figure

5.7e presents almost no signal for the proposed solution. In other words, the re-convolution

of the deep decomposition result with the wavelet is almost identical to the input data.

It indicates the proposed deconvolution’s ability to better preserve the overall solution’s

fidelity to the measured data. On the other hand, a moderate amount of residual error is

visible for both ResUnet and TSI re-simulated outputs (Figures 5.7f and 5.7g). The degree

of approximation shows clearly in the comparison of a representative middle trace in terms

of the Pearson correlation coefficient (Figure 5.8)

The deep decomposition estimator offers versatility from the image perspective as we can

decompose the prediction of the proposed deconvolution operator in the three panels shown

in Figure 5.9 for visual inspection, according to equation 5.13. Figure 5.9a displays the

minimum norm solution alone, anticipated to fail due to its lack of resolution. The inverted

noise panel (see Figure 5.9b) mainly presents uncorrelated and band-limited noise. The

predicted null space component (Figure 5.9c) exhibits the thin-beds and high-frequency

features.

Lastly, Figure 5.10 compares the average power spectral density of the inverted reflectivities.

We see that the three deconvolution methods yield an increase in the spectral content for

both low and high frequencies compared to the input data, significantly improving the

resolution.

Penobscot seismic data: a blind well test

We further test the deconvolution estimator in a third example comprising a 2D section of

the Penobscot 3D survey (crossline number 1155), an offshore dataset recorded at a 4ms

sampling rate. Figure 5.11 shows the statistically extracted wavelet and frequency spectrum.

Figure 5.12 shows the predicted output and input data. In general, the deconvolved solution

is superior if we keep in mind the quality of the input seismic data in terms of extra reflection

118



0.0

0.1

0.2

0.3

0.4

T
im

e
(s

)

(a) dε

0 100 200
Trace number

(g) 0.90 ± 0.09

0 100 200
Trace number

0.0

0.1

0.2

0.3

0.4

T
im

e
(s

)

(e) 0.99 ± 0.02

(d) ResUnet(c) TSI

0 100 200
Trace number

(f) 0.86 ± 0.02

0.0

0.1

0.2

0.3

0.4

T
im

e
(s

)

(b) Λ(dε; k, θ1, θ2)

−1

0

1

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−1

0

1

−1

0

1

−1

0

1

Figure 5.7: Alberta foothills results: (a) field data example portraying the input
band-limited data dε, (b) full-band reflectivity inverted by the proposed method, (c)
classical thin-bed reflectivity inversion via the TSI algorithm, (d) ResUnet result.
Panels (e), (f) and (g) show the data residual dε − Lm?, taking m? as the results
in (a), (b) and (c), respectively, and the Pearson correlation coefficient (mean ±
standard deviation) of the traces with respect to the input data on top.
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Figure 5.9: Individual components of the deep decomposition solution for the Al-
berta foothills dataset: (a) the band-limited solution obtained via TSVD (L†kdε), (b)
residual noise leaking into the solution through the pseudo-inverse (PR◦Fθ1 ◦L†dε),
and (c) the predicted null space component PN ◦Nθ2 ◦ (L†dε + PR ◦ Fθ1 ◦ L†dε).
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Figure 5.11: (a) Extracted source wavelet from the Penobscot seismic data. (b)
Amplitude spectrum.

cycles and the fault detail. While there is an evident loss of detail in the data’s deeper

part (approximately after 2 seconds), the amplitudes and lateral coherence of the reflectors

are well preserved throughout the deconvolved traces. Additionally, we notice the data’s

relative reliability since the spectrum’s overall shape (see Figure 5.13) within the seismic

main frequency band is approximately preserved and enhanced.

The studied area also contains one well log to compare the reflectivity profiles. We first

calculate the impedance and reflectivity curves from the P-wave sonic and density logs.

Then, the reflectivity is converted to the time domain using the P-wave log data. The final

synthetic trace is obtained by convolving the well-log-derived reflectivity with the estimated

wavelet. We observe a good correlation between the seismic sections (input data and the

deconvolved result) and the synthetic seismogram, especially in key horizons. For more

detail, Figure 5.14 shows a close-up view of the well-derived synthetic trace and the real

data and predicted traces in the exact location of the well-log data.
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Figure 5.12: (a) Field data example from the Penobscot dataset. (b) Full-band
reflectivity inverted by the proposed method.
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Figure 5.13: Normalized average power spectral density for the Penobscot data
example and the decomposition learning solution Λ(dε; k, θ1, θ2).

Furthermore, we validate the inverted results in Figure 5.15 by comparing the predicted

reflectivity convolved with a known bandpass wavelet with the synthetic seismogram. In

general, the predicted reflectivity recovers the most significant features. We observe an

appropriate degree of agreement with the well-derived reflectivity despite not applying any

stretch or squeeze of the well-log in this process. A point worth considering is that a perfect

well-tie is impossible because we used a simplistic physics model that neglects more complex

phenomena such as a time and space-variant source wavelet and a dispersive media (White

and Hu, 1998).

Like the previous example, Figure 5.16 displays the individual elements of the deconvolved

prediction in Figure 5.12b. Once again, the TSVD output (Figure 5.16a) presents the

inevitable band-limited deconvolution and a general loss in resolution with depth. Figure

5.16b exhibits artifacts in the inverted noise panel, and Figure 5.16c presents thin-bed

reflectors as the predicted null space components.

Uncertainty quantification

In the previous examples, the deconvolution problems were solved deterministically and did

not provide any uncertainty on the obtained solution. Uncertainty estimates, however, may
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Figure 5.15: Validation panel for the Penobscot dataset. (a) well-log-derived reflec-
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Figure 5.16: Individual components of the deep decomposition solution for the
Penobscot dataset: (a) the band-limited solution obtained via TSVD (L†kdε), (b)
residual noise leaking into the solution through the pseudo-inverse (PR◦Fθ1 ◦L†dε),
and (c) the predicted null space component PN ◦Nθ2 ◦ (L†dε + PR ◦ Fθ1 ◦ L†dε).
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give valuable insight into reflectivity estimation by revealing the reliability of the predic-

tions, which might impact subsequent decision-making. In this section, we focus specifically

on epistemic uncertainty quantification, which refers to the uncertainty associated with

estimating the trainable parameters of the deep decomposition estimator conditioned on

the training data in our neural network setting. Namely, several parameter configurations

Θ = [θ1, θ2] may explain the data for a particular training dataset, rendering different pre-

dictions on the input seismic at inference time. Many methods have been proposed to

encode the uncertainty of neural networks over the model parameters (Abdar et al., 2021),

including Bayesian neural networks (BNNs) adopting variational inference to approximate

Bayesian statistics. BNNs usually double the number of parameters per layer compared

to their non-Bayesian counterparts since each trainable weight is replaced by a trainable

Gaussian weight distribution parametrized by its standard deviation and mean. The high

parameter dimensionality of BNNs leads to slow convergence in training which might hurt

performance.

As an efficient alternative that does not increase the number of parameters and requires min-

imal modification of the original estimator without retraining, we implement Monte Carlo

Dropout (MC dropout). Unlike regular dropout regularization that only applies dropout

layers at training time, MC dropout activates dropout during test time to sample from

the posterior parameter distribution. Gal and Ghahramani (2016) show the connection be-

tween dropout and approximate inference in a Gaussian process and propose MC dropout

to approximate the exact posterior inference relying on Bernoulli distributed weights.

Concretely, MC dropout utilizes layers Wdo
i ∈ Θ defined as

Wdo
i = Widiag(zi), (5.20)

where Wi is the weight matrix for each i-th convolutional layer before dropout is applied,

diag(zi) is the randomly generated dropout mask, and zi ∼ Bernoulli(pi) are the randomly

activated coefficients with dropout probability pi, which can be fixed or set as a learnable

parameter. We then perform Monte Carlo integration to approximate an empirical unbiased

estimator

Ê(m) ≈ 1

T

T∑
t=1

Λ(dε; k, Θ̂t) (5.21)

≈ 1

T

T∑
t=1

Λ(dε; k, θ̂1t
, θ̂2t

), (5.22)

such that Λ(dε; k, θ̂1t
, θ̂2t

) are realizations of independent draws of random dropout masks

for the same estimator Λ. In practice, equation 5.22 is equivalent to running T stochastic
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forward passes through the trained estimator, all with the same input, and computing the

mean of the dropout realizations (Gal and Ghahramani, 2016). Finally, we use the pixel-wise

variance to indicate instabilities in the reconstruction for a particular input, which contains

information about the uncertainty of the model parameters

σ̂2(m) =
1

T

T∑
t=1

(Λ(dε; k, θ̂1t
, θ̂2t

)− Ê(m))� (Λ(dε; k, θ̂1t
, θ̂2t

)− Ê(m)), (5.23)

where � represents element-wise multiplication. This strategy is similar in spirit to the one

proposed by Velis (2008) for quantifying the uncertainty of stochastic inversion in sparse

deconvolution via fast simulated annealing.

In this example, we use the Penobscot dataset from the previous section and set pi = 20%

and T = 200. Figures 5.17a and 5.17b show the averaged solution and the pixel-wise

standard deviation of the inferred reflectivities, respectively. To reduce the bias towards

strong reflectors in the estimated uncertainty, Figure 5.17c shows the normalized standard

deviation by dividing the point-wise standard deviation estimate by the envelope of the

mean (Siahkoohi et al., 2022a). Since this real dataset is an out-of-distribution sample,

we notice relatively high model uncertainty in all model regions. The estimator can also

express an increased uncertainty in the deeper parts of the studied area, which corresponds

to partially imaged reflectors and less resolvable features in the input data due to amplitude

loss. Ultimately, this result allows us to flag unreliably reconstructed reflectors and quantify

seismic structural uncertainty. In addition, due to the data consistency property of the

deep decomposition estimator, multiple realizations from the deep null space network can

be used to stochastically explore the null space of the forward operator and obtain a family of

solutions that honour the data. However, the uncertainty maps will be partially biased since

the approximated posterior still depends on the training dataset used to extract the prior

information to solve the inverse problem and other hyper-parameters such as the dropout

rate. Changing these variables could significantly modify the calculated uncertainty.

5.4 Discussion and future work

Some points deserve special consideration when using the proposed technique to deconvolve

noisy seismograms. First, since we adopt the convolutional model for the seismogram, it is

required that initial processing recovers amplitudes and removes multiples as well as possible.

Surface-consistent deconvolution should also be implemented, allowing us to assume an

invariant wavelet across traces.

Due to the necessity of constructing the forward operator from the test data, deconvolution

via deep decomposition can be classified as an acquisition-restricted learning method. In
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Figure 5.17: (a) Estimated mean after MC dropout running 200 forward passes
through the deep estimator for the Penobscot field data. (b) Point-wise standard
deviation among samples. (c) Normalized point-wise standard deviation by the
estimated mean.
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other words, because of the dependency on the forward operator and its null space com-

ponents, the deep estimator needs to be trained every time the signature of the estimated

source wavelet changes. This does not represent a disadvantage in practice since SVD is

only calculated once before training, which renders the algorithm’s training phase relatively

cheap, depending on the number of training samples. Transfer learning could potentially

ease the computational burden of the training stage, but the success of such an approach

needs further investigation and escapes the scope of this chapter. Likewise, the direct com-

putation of the projection operators is intractable for large-scale problems. Iterative solvers

such as the conjugate gradient method can help calculate approximations to these projec-

tions, for example, by solving the linear system

PN (x) ≈ arg min
m

||m− x||22 s.t. Lm = 0, (5.24)

with x as an initial guess model. Another option is to train a neural network to approximate

the projection operators as proposed in Kuo et al. (2022).

lp norms can be easily incorporated into the proposed training loss to investigate the use

of explicit sparsity-promoting norms in combination with the deep decomposition deconvo-

lution operator to measure the resolving power in sparse reflectivity inversion. While we

only consider white Gaussian noise, significant non-Gaussian noise may appear as low-rank

components, affecting the proposed method’s performance. In this case, the denoising ele-

ment can be adapted to give Fθ1 a broader range to annihilate non-Gaussian and correlated

noise.

Post-processing regularization via null space filtering is not new to the geophysics com-

munity. Deal and Nolet (1996) proposed a similar method, coined null space shuttles, in

which desired features are imposed on an initial inverted solution by applying non-linear

filters in the null space to preserve the observed data. Variations of this method include

successful applications to tomography (de Wit et al., 2012; Osypov et al., 2013) and full

waveform inversion (Keating and Innanen, 2021). The most significant differences between

the method of Deal and Nolet (1996) and the proposed approach relate to the treatment of

the filter design. Compared to the handcrafted filtering in the null space shuttles method,

we make no explicit a priori assumptions about the properties of the solution. Instead, we

use only reliable data in combination with the additional knowledge learned by the network

from the training samples. Thus, deconvolution via deep decomposition can be considered

a data-driven version of the null space shuttle approach.

In the proposed method, our constraints are based on knowledge of the physical process

embedded in the forward operator, so we dispense the use of wells to prevent adding bias at

an early stage (Li et al., 2022), although having a single well control point might be helpful

for wavelet extraction. In the second example, we use well-log data for quality control but
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not in the inversion process. Once high-resolution seismic is obtained using the suggested

approach, conventional inversion employing well-log data can be performed. Downton et al.

(2020) show that using a small number of well-logs and a physics-based data augmentation

technique can create multiple realizations of area-specific data labels. Future research should

include additional well-log data information in the estimator training process to guide the

reconstruction of the missing frequencies.

For the single-channel deconvolution example, the proposed method can accurately recover

the low-frequency components of the reflectivity belonging to the null space (see amplitude

spectrum shown in Figures 4a and 4b). In this case, the forward operator is accurate, and

the noise level is known. We attribute the more substantial boost of high frequencies to

the fact that these conditions are not completely met in the two real data scenarios, which

hinders the reconstruction of a perfectly flattened spectrum. A low-frequency component

leakage occurs on the estimated negative inverted noise panels (Figures 9b and 16b), which

are subtracted to approximate the ideal reconstructions. However, in the presented real-case

scenarios, the lower part of the reconstructed reflectivity spectrum still improves, allowing

the technique to produce valid thin bed reflectivity results. More testing should be done to

boost the inverted low-frequency components by fine-tuning the regularization parameter

from the TSVD solution or the noise suppression to avoid the low-frequency leakage into the

subtracted component. Also, an extension of the method could contemplate accepting an

initial low-frequency model as input to boost the deep estimator prediction on this part of

the spectra. This approach has been exploited in other deep learning-based seismic inversion

techniques such as Kaur et al. (2020), Downton et al. (2020) and Wu et al. (2021a), but

exceeds the scope of this chapter. Initial low-frequency models can be constructed from

smoothed well log information, smoothed velocity fields, prior geologic information or more

complicated bandwidth extension frameworks (e.g. Gholami and Sacchi, 2013; Lesage et al.,

2015; Bianchin et al., 2019).

Recently, different authors have proposed deep-learning-based reflectivity and impedance

inversion techniques. Chai et al. (2021b) propose an end-to-end sparse-spike inversion algo-

rithm based on 2D and 3D convolutional neural networks (CNN), showing that multi-trace

filters outperform results obtained by single-channel methods. Unlike our physics-guided

approach, they only extract the wavelet from the signal to generate the input-output train-

ing pairs but do not integrate the physics into the training stage. Similarly, Wu et al.

(2021b) introduce an impedance inversion technique using a 2D CNN with a weakly su-

pervised training loss that requires multiple well-logs from the same field data. While this

approach allows explicitly incorporating prior knowledge extracted from well-log data and

an initial low-frequency model to guide the prediction, it is too dependent on the num-

ber and distribution of wells to build the training dataset. Moreover, this approach also

suffers the limitations of fully learned end-to-end approaches due to the lack of a physics-
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driven component. On the other hand, Chen et al. (2022) implement a regularized deep

image prior (DIP) Ulyanov et al. (2018) framework for inverting a high-resolution model

by parametrizing the reflectivity with the trainable weights of a neural network. Since DIP

is an unsupervised technique, it enforces data consistency by design while minimizing the

data misfit. DIP only uses corrupted data in the reconstruction process and purely relies

on the CNN architecture to act as prior. In Chen et al. (2022), the training stage and the

optimization problem are the same, which might demand many iterations. Our approach

eliminates iterations and the need for a specific CNN architecture to exploit correlations

in the data to learn their inner structure, which results in a more efficient solution. Fi-

nally, Chen et al. (2021b) and Chen et al. (2021c) propose supervised and semi-supervised

blind methods, respectively, in which they simultaneously invert the seismic wavelet and a

high-resolution post-stack model. In these physics-guided iterative approaches, the prior is

implicitly learned by trainable proximal operators that mimic an unrolled non-linear solver

instead of explicitly exploring the null space of the forward operator. Mainly, Chen et al.

(2021c) designed a semi-supervised data-consistent loss incorporating well log information

as a regularization term, which can be adapted to extend our method by reducing the de-

pendence on synthetic labels and will be investigated in a future report. Future work will

test the proposed estimator on additional seismic inverse problems and compare it with

other regularization methods. Also, a thorough numerical comparison between our method

and other deep learning techniques will be conducted in upcoming research.

One characteristic of the proposed deconvolution method is that it is possible to estimate

the prediction uncertainty of the inversion by performing several forward passes using dif-

ferent weight seeds via MC dropout. While easy to train and compute, MC dropout is a

simplistic approximation of Bayesian variational inference. The quality of the uncertainty

estimation depends on the appropriateness of the dropout as a Bayesian approximation for

the given model and problem. In this regard, future work should explore reflectivity inver-

sion via deep decomposition integrating uncertainty quantification approaches that may be

more efficient and robust to out-of-distribution and noisy data. For example, recent research

(Siahkoohi et al., 2022b) advocates for invertible neural networks leveraging (conditional)

normalizing flows to parameterize surrogate conditional distributions and enable efficient

variational inference. As in all uncertainty quantification techniques, accuracy and compu-

tational efficiency have a trade-off. Explaining this trade-off for the presented reflectivity

inversion problem is a question of ongoing research. Future work should also adapt the

proposed framework to tolerate wavelet phase inaccuracies, extensions to 3D and a forward

modelling operator considering a more complex physics framework.
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5.5 Conclusions

In this work, we investigated regularizing networks via the deep decomposition approach

to deal with the always-desirable goal of estimating full-band reflectivity from band-limited

seismic data. We illustrate how learned null space regularization adds reasonable estimates

from the null space, improving classic regularization solutions. Additionally, we combined

the deep decomposition learning method with TSVD, which helps produce clean inputs

to train the null space network efficiently. As a result, we produce an approximate high-

resolution deconvolution operator for a specific and predetermined forward operator. Despite

this limitation, the enhancement in resolution caused by the null space network formula-

tion may be key to achieving widespread adoption of deep learning in full-band reflectivity

estimation. We demonstrate the method’s effectiveness in multiple datasets and obtained

reflectivity sections with no spurious artifacts and good lateral continuity. The inversion

of 2D field datasets illustrates that the algorithm works in the presence of noise and is

practical. An important research direction is identifying ways of efficiently integrating deep

null space regularization with more significant problems where the direct computation of

the orthogonal projections is prohibitively expensive.
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CHAPTER 6

Conclusions

6.1 Summary

The main challenge in solving seismic imaging problems is that, without any prior assump-

tions, recovering an accurate representation of the true reflectivity model from the observed

reflection data is usually unsatisfactory—even when the forward model is perfectly known.

This thesis explored how different handcrafted and learned regularization and precondition-

ing methodologies can aid and improve model-based inversion schemes.

Two common issues of LSRTM are the many iterations required to produce substantial

subsurface imaging improvements and the difficulty of choosing adequate regularization

strategies with optimal hyper-parameters. In Chapter 2, we investigated how supervised

learning can mitigate these shortcomings by solving the LSRTM problem through an it-

erative deep-learning framework inspired by the projected gradient descent algorithm. In

particular, we develop an image-to-image approach interlacing the gradient steps at each

iteration with blocks of residual CNNs that capture the prior information in the training

phase. By including the least-squares data-misfit gradient in the learning process, we force

the solution to comply with the observed seismic data. At the same time, the CNN projec-

tions implicitly account for the regularization effects that lead to high-resolution reflectivity

updates. After training with 900 randomly generated instances, our network ensemble can

estimate accurate reflectivity distributions in only a few iterations. To demonstrate the

effectiveness and generalization properties of the method, we consider three synthetic cases:

a folded and faulted model, the Marmousi model, and the Sigsbee2a model. We empiri-

cally find that it is possible to obtain an improved reflectivity model for out-of-distribution

instances by using the learned reconstructions as warm starts for the conjugate gradient
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algorithm and bridging the gap between the learned and conventional LSRTM schemes. Fi-

nally, we apply the proposed network with transfer learning on a 2D towed-streamer Gulf of

Mexico field data set, producing high-resolution images comparable to traditional LSRTM

but drastically reducing the required number of iterations.

Identifying optimal preconditioners in seismic inversion is not straightforward; it demands

expertise and extensive experimentation. Chapter 3 presents two approaches that com-

bine deep-learning-based preconditioning techniques in data and model spaces to acceler-

ate iterative pre-stack LSRTM and improve non-iterative pre-stack imaging, respectively.

The first method employs a deep autoencoder formulation that learns a mapping between

shot-indexed migrated and re-migrated images, enabling it to estimate an approximation

of the inverse Hessian. This process facilitates the re-parameterization of the reflectivity

model into a low-dimensional space through the autoencoder’s dimensionality reduction

capabilities. It allows linearized waveform inversion to be solved more efficiently. As a

result, the convergence of LSRTM is expedited, significantly reducing artifacts and achiev-

ing plausible high-resolution imaging in fewer iterations. These benefits are demonstrated

in trials with synthetic data where sparse shots are inverted. The second method relies

on a non-iterative approach to improve RTM images by training a CNN on input-output

pairs of observed and demigrated data, computing nonlinear filters that precondition the

migrated data, enhancing the focusing capability and amplitude balance, particularly in

under-illuminated regions. Our method’s effectiveness was confirmed through tests con-

ducted on the Marmousi data set, showing improvements in amplitude balance and reduced

artifacts compared to traditional RTM outputs. Both preconditioning frameworks sidestep

the need for paired samples of ground-truth labels and initial reconstruction models, which

are commonly required in other supervised deep-learning techniques. The training stage

avoids complicated pre-processing and demands minimal user interaction, enhancing user-

friendliness and cost-effectiveness. We simulate the effects of the Hessian operator at the

cost of only one migration/re-migration sequence, equivalent to one iteration of conjugate

gradients.

Incorporating overturned waves and multiples in seismic imaging is one of the most plausi-

ble means by which imaging results might be improved, particularly in regions of complex

subsurface structures such as salt bodies. Chapter 4 presents a study on FWLSRTM, an

advanced subsurface imaging technique capable of inverting wave modes beyond single scat-

tering, enhanced by sparse regularization. We discuss the limitations of traditional LSRTM,

which relies on first-order scattering approximations and is hindered by insufficient data pro-

cessing, limited physical operators and noise. The new FWLSRTM method overcomes these

challenges by utilizing a nonlinear inversion approach that integrates full-wavefield vector

reflectivity modelling with a sparse regularization term, improving data fidelity and reduc-

ing artifacts. This chapter outlines the theoretical foundations, including the mathematical
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modelling and equations used in the new method. It also provides detailed results from

numerical experiments that compare the new technique against traditional methods using

different models like high-density box and Marmousi2 models. The results demonstrate that

sparse FWLSRTM significantly enhances the resolution and clarity of subsurface imaging,

better delineate geological layers, and is more resilient to the inaccuracies in velocity models

commonly encountered in complex geological settings. The study highlights the advantages

of the nonlinear and sparse regularization approaches in FWLSRTM, a robust tool for seis-

mic imaging that can handle the complexities of real-world geological data more effectively

than traditional methods.

Chapter 5 explored seismic broadband deconvolution with regularization using the deep de-

composition technique to derive full-band reflectivity from band-limited seismic data. We

demonstrate how incorporating learned null space regularization provides reasonable esti-

mates from the null space, thereby enhancing traditional regularization methods. Further-

more, we integrated the deep decomposition learning method with TSVD, facilitating the

generation of clean inputs for efficiently training the null space network. Consequently, we

developed an approximate high-resolution deconvolution operator tailored to a specific and

predefined forward operator constructed with the seismic wavelet. Although this presents a

relative limitation in that the high-resolution deconvolution operator needs to be trained for

each seismic survey, the improvement in resolution achieved through the null space network

approach could be crucial for the broader acceptance of deep learning in full-band reflec-

tivity estimation. We validated the method’s efficacy across various datasets, achieving

reflectivity sections free of spurious artifacts and characterized by strong lateral continuity.

The successful inversion of 2D field datasets confirms that the algorithm remains effective

amidst noise, proving its practicality. A vital avenue for future research is exploring efficient

ways to integrate deep null space regularization into larger-scale problems where direct com-

putation of orthogonal projections is impractically costly, such as in LSRTM, FWLSRTM

and FWI.

6.2 Future research

As widely stressed in all geophysical literature, seismic inverse problems are ill-posed, mean-

ing that an infinite number of models can match the observed data. Throughout this thesis,

we have predominantly utilized deterministic methods to address seismic imaging problems

due to computational restrictions, except for employing a surrogate Bayesian approach in

the latter part of Chapter 5 to evaluate model uncertainty. This approach highlights a

pathway toward integrating stochastic methods, which might be further explored to en-

hance model accuracy and reliability through uncertainty quantification. We acknowledge
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the necessity of exploring more complex, statistically robust techniques within rigorous sta-

tistical inference frameworks to quantify uncertainty effectively. This is particularly vital

as methods evolve and computational feasibility improves, allowing for more sophisticated

Bayesian approaches to be integrated into mainstream applications of wave-equation-based

seismic imaging techniques.

Despite the advancements presented in Chapter 3 of the thesis, we identify several challenges

that warrant discussion. For example, a current limitation is the highly nonlinear mapping

from latent space to reflectivity model space, which complicates gradient-based optimization

due to prevalent local minima issues. As an alternative, we suggest global optimization and

stochastic sampling of the latent space, which might offer more robust solutions, albeit

at a higher computational cost. The potential application of generative neural networks

for sampling prior models through variational inference methods presents a promising area

for future research. Moreover, the dimension of the latent space in both data and model

space preconditioning techniques is selected arbitrarily and might not accurately reflect the

actual dimension of the posterior. Currently, we depend on heuristic approaches instead of

systematic methods to estimate the data manifold’s latent dimension.

Besides effectively accounting for uncertainty in the model space, seismic inversion might

also benefit from multiparameter approaches. Exploring subsurface structures using P and

S wave data in inversion algorithms promises significant advancements. By leveraging these

wave modes’ unique propagation characteristics and sensitivities, particularly the distinct

response of shear waves to anisotropy, we could achieve a more detailed and comprehensive

understanding of subsurface conditions. Multiparameter inversion in LSRTM mitigates the

limitations posed by poor illumination from the single P wave type inversion and enhances

the overall resolution and accuracy of the seismic imaging. Extensions of the presented

techniques to multiparameter inversion are an exciting path for future research.

In practice, the precision of velocity models plays a critical role in LSRTM-like inversion.

Furthermore, an accurate velocity model’s role is also evident, especially in detailed lithology

assessment techniques such as AVO analysis for reservoir characterization. We underscore

the importance of ensuring the accuracy of the background model, as errors can significantly

affect the outcomes of linear waveform inversion techniques and subsequent geological in-

terpretations. Thus, when the velocity model requires refinement, the next logical step

following linearized waveform inversion is to pursue joint or simultaneous inversion of both

the velocity and reflectivity models. Therefore, the techniques presented in the thesis should

be explored and adapted to scenarios where velocity is also unknown. This adaptation would

enable a more dynamic and comprehensive approach to seismic imaging, allowing for simul-

taneous refinement and adjustment of the reflectivity and velocity models based on the

seismic data.
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APPENDIX A

Parametrization of the projection operators and figures of

merit from chapter 2

Conceptually, each updating operator block Pθk , corresponding to the k iteration of the

Deep-LSRTM framework, can be characterized as an N-stack of 2D convolutional layers

with trainable weights and non-linear activation functions of the form:

Pθk =
(
(φN ◦WwN ,bN ) ◦ ... ◦ (φ1 ◦Ww1,b1)

)
k
, n = 1, ..., N, (A.1)

where φ is the rectifier linear unit function

ReLU(m) = max(0,m), (A.2)

which is applied to each convolutional layer for easier and faster training, and

W q
wn,bn

=
(
bqn +

∑
p∈P

wq,pn ∗ gp
)
, q ∈ Q, (A.3)

where P and Q denote the number of channels for the input data g and the output feature

maps Wwn,bn of the nth convolutional layer, respectively, bqn is a bias term, and wq,pn is

the two-dimensional convolutional kernel (or filter). We provide two types of measurements

to assess the performances of different techniques. The PSNR function (Huynh-Thu and

Ghanbari, 2008) computes the peak signal-to-noise ratio between the reconstructed image

m and the ground-truth image mtrue and is calculated by

PSNR(m,mtrue) = 20 log10

(max(mtrue)√
MSE

)
, (A.4)
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where MSE is the mean squared error and max(·) is the maximum possible intensity value.

The structural similarity index measure (SSIM) (Wang et al., 2004) is used to indicate the

perceived similarity in the reconstructions. It is locally computed between two windows x

and y of equal size N × N , which move pixel-by-pixel over the entire reconstructed and

ground-truth images. The SSIM is given by the following expression:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (A.5)

where µx and σx indicate the average and variance of x, respectively; µy and σy denote the

average and variance of y, respectively; σxy represent the covariance of x and y, and c1 and

c2 are two constants to avoid instability.
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