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Abstract

Velocity analysis can be a time-consuming task when it is performed manu-

ally. Methods have been proposed to automate the process of velocity analysis,

which, however, typically requires significant manual effort. We propose us-

ing the Convolutional Neural Network (CNN) to estimate stacking velocities

directly from the semblance. Our CNN model uses two images as one input

data for training. One is the entire semblance (guide image), and the other is

a small patch (target image) extracted from the semblance at a specific time

step. Labels for each input dataset are the root mean square (RMS) velocities.

We generate the training dataset using synthetic data. After training the CNN

model with synthetic data, we test the trained model with other synthetic data

that was not used in the training step. The result shows that the model can

predict a consistent velocity model. One also notices that when the input data

is extremely different from the one used for the training, the CNN model will

hardly pick the correct velocities. In this case, I propose to adopt transfer

learning to update the trained model (base model) with a small portion of the

target data. The latter improves the accuracy of the predicted velocity model.

The Marmousi dataset and a marine dataset from the Gulf of Mexico are used

for validating the proposed automatic velocity analysis algorithm.
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CHAPTER 1

Introduction

1.1 Background

Reflection seismology is one of the geophysical methods that is used to estimate

the images of the subsurface. It is often adopted by oil and gas exploration be-

cause it can offer high-resolution maps of subsurface interfaces and structures

of geological interest (Yilmaz, 2001). Reflection seismology uses human-made

sources such as explosives, mechanical vibrators, and airguns to create elastic

waves that propagate downward into the subsurface. These waves are reflected

by geological interfaces and generates an upward propagating wavefield that

is recorded by arrays of sensors deployed on the surface of the earth. Seismic

data acquired by sensors in the form of time series1 are processed and then,

utilized for imaging the interior of the earth.

Seismic data acquisition entails deploying a large array of receivers and sources

1Seismograms or seismic traces
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CHAPTER 1. INTRODUCTION 2

on the surface of the earth. When one source is activated, all sensors record

the reflected wavefield produced by the source. The product of this experiment

is called a Common Shot Gather (CSG), which represents the group of seismic

traces generated by a given source. A CSG is portrayed in Figure 1.1 (a). I

denote xr and xs the receiver and source coordinates, respectively. Data from

multiple CSGs are then sorted to create a Common Midpoint (CMP) gather.

Figure 1.1 (b) illustrates a CMP gather. The CMP gather contains seismic

traces generated by different sources and acquired by different receivers. These

traces have a common midpoint x position

x =
xs + xr

2
.

Conversely, each source-receiver pair participating in a CMP gather has a

different offset h (source-receiver distance) that is given by

h = xr − xs .

A simple trigonometric exercise shows that the two-way traveltime of a reflec-

tion as a function of offset is given by a hyperbola

t(h) =

√
t20 +

h2

v21
, (1.1)

where t(h) is the two-way travel time of the trace of offset h, t0 = t(h = 0)

is the two-way traveltime of the zero-offset trace, and v1 is the velocity of

the layer above the reflection point. Equation 1.1 holds for a single horizontal
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interface and for a dipping interface. In the dipping interface case, the velocity

v1 in expression 1.1 must be replaced by v1/cos(φ) where φ is the dip of the

interface (Yilmaz, 2001).

Similarly, one can show that for a series of horizontal layers equation 1.1 is a

good approximation to the reflection traveltime if I replace the velocity v1 by

a weighted average of the velocities above the reflection point. In this case, I

can express

t(h) =

√
t20 +

h2

V (t0)2
(1.2)

and consider V (t0) as the root-mean-squared velocity of the layers above the

reflection point (Yilmaz, 2001). Similarly, t0 indicates the two-way traveltime

from the surface to the reflecting layer for a source-receiver pair at the same

position (h = 0). In other words, t0 is time a wave takes to travel from the

source to an interface and back to the receiver if the source and the receiver

were placed at the same spatial position.

The Normal Moveout (NMO) correction (Figure 1.2) is a procedure that cor-

rects the CMP gather to make it behave like a group of traces acquired with

source-receiver distance h = 0. In other words, it is a correction that per-

mits to flatten reflection hyperbolas. The correction is given by the following

expression

∆t(h) = t0 −

√
t20 +

h2

V (t0)2
. (1.3)

We can use the above equations to align travel-times of any arbitrary offset h
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to that of the zero offset trace. The velocity in equation 1.3, V (t0), is the NMO

velocity or stacking velocity which, in general, is close to the the hyperbola’s

RMS velocity. The stacking velocity is the velocity of the hyperbola that

optimally stacks the reflections after NMO correction.

As it was already mentioned, the goal of the NMO correction is to flatten the

seismograms that belong to a CMP gather. Once the traces are aligned, they

can be stacked (summed) to enhance their signal-to-noise ratio and to generate

the so called stacked trace. The latter is the ideal seismic trace one would have

been able to obtain via a zero-offset seismic experiment. Figure 1.2 (a) shows

a CMP gather prior to the NMO correction. This case corresponds to an earth

model composed of two geological interfaces. Figure 1.2 (b) is the CMP gather

after NMO correction. Finally, Figure 1.2 (c) is the CMP gather after NMO

correction and stacking. The stacking process is a fundamental part of seismic

imaging because adjacent CMPs are NMO corrected and stacked to produce a

seismic section. A seismic section is the subsurface image that corresponds to a

map of the seismic reflectivity of the earth, functioning as midpoint and time.

Seismic sections are important in reflection seismology because they generate

time domain images of the earth interior. These images are commonly used

for geological structure interpretation (Yilmaz, 2001). In order to perform

the NMO correction, one needs to know V (t0). The process estimating V (t0)

directly from the CMP gather is often called Velocity Analysis.
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Figure 1.1: (a) Common Shot Gather (CSG). (b) Common Midpoint
(CMP) Gather.

Subsurface velocity analysis is an essential processing step since it provides

the stacking velocity V (t0) that is necessary for the NMO correction. It is

also needed for extracting preliminary velocity information for advanced seis-

mic imaging methods such as migration (Yilmaz, 2001). A popular method

to estimate stacking velocities is via semblance velocity analysis (Taner and

Koehler, 1969; Neidell and Taner, 1971). Semblance is a measure of energy

that can be used to determine stacking velocities from CMP gathers optimally.

The semblance can be interpreted as an energy spectra, and it can be displayed

as an image indicating the reflection energy versus two-way traveltime t0 and

stacking velocity V (t0).
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Figure 1.2: (a) The CMP gather before NMO correction. (b) The CMP
gather after NMO correction. After the NMO correction, all traveltimes
are matched to the zero-offset time. After NMO correction traces can
be stacked (summed) coherently. (c) Traces after stacking.

Figure 1.3: The CMP gather and its semblance (Equation 1.4) panel
displaying velocity spectra.

Figure 1.3 illustrates the process of velocity analysis for one CMP gather.

For different times, one extracts windows representing hyperbolas with a trial
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velocity. The semblance (Equation 1.4) is measured in the window of analysis

and it is placed in the t0−V (t0) plane. K indicates the number of trace in the

window and ak represents the kth trace’s amplitude. Thus, the energetic peaks

in the semblance represent the t0 − V (t0) pairs that flatten the reflections

c =

(∑K
k=1 ak

)2
K
(∑K

k=1 a
2
k

) . (1.4)

Once the semblance panel is obtained, the stacking velocity can be inferred by

extracting the energy peaks manually. The estimated velocity is then used for

the NMO correction (Figure 1.4 (c)). In general, velocity analysis is a time-

consuming task because it requires a visual examination of a large number

of semblance panels by a processor. Many studies have been conducted to

automate velocity analysis (Toldi, 1985; Abbad et al., 2009; Fomel, 2009; Choi

et al., 2010; Chen, 2018). Non-convolutional Neural Networks (NN) have also

been suggested for velocity analysis (Schmidt and Hadsell, 1992; Fish and

Kusuma, 1994; Calderón-Maćıas et al., 1998).
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Figure 1.4: (a) CMP gather. (b) Semblance panel with estimated ve-
locity (red line). (c) NMO corrected gather.

Recently, there has been a significant improvement in deep learning itself due

to the advancement of computer performance (LeCun et al., 2015a). A Con-

volutional Neural Network (CNN) is one of the most powerful algorithms to

classify images among various approaches in deep learning (LeCun et al., 1989).

This is because CNN can consider the local connectivity of the input image

by adopting convolutional filters that provide invariance of geometric shifts

or distortions (LeCun et al., 1995). Given its superiority in extracting fea-

tures from images, CNN has been extensively employed in image classification

or recognition (Lawrence et al., 1997; Simard et al., 2003; Krizhevsky et al.,

2012; Karpathy et al., 2014; Maturana and Scherer, 2015; He et al., 2016).

Studies of the application of deep learning to seismic data processing have

also been carried out. For instance, Araya-Polo et al. (2018) has proposed to
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adopt deep neural network for tomographic inversion. Also, CNN applications

in problems such as fault classification (Xiong et al., 2018; Wu et al., 2018,

2019), first-break picking (Yuan et al., 2018) and denoising (Liu et al., 2018)

have been explored.

In this thesis, I propose to adopt CNN for automatic velocity analysis. I

consider the velocity picking process as an image classification problem by as-

suming that small patches extracted from the semblance represent the stacking

velocity corresponding to a specific time. For training, I use synthetic custom

models to build the training dataset. I first compute synthetic shot gathers

from those models by using the finite difference method (Taflove and Hagness,

2005) and calculate semblance panels after performing CMP sorting. Then,

I obtain the input data from the semblance panels and calculate the RMS

velocity from the velocity model to generate the labels. After training, the

trained model can predict a consistent velocity field. I assume that the CNN

model trained with the RMS velocity can predict the stacking velocity because

the synthetic models correspond to quasi-horizontal structures (Yilmaz, 2001).

However, if the target data are significantly different from the training data,

the base model can barely output the correct labels. To overcome this limi-

tation, I use transfer learning (Pan et al., 2010; Yosinski et al., 2014), which

is an additional training process with a small portion of target data. In my

research, I have found that although the new input data has different features

from those of the training dataset, the CNN model obtained after transfer

learning can predict reasonable stacking velocities. The methodology devel-

oped for automatic velocity analysis was adopted to process a marine dataset
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from the Gulf of Mexico. My work also addresses the importance of transfer

learning to save computing time. For instance, I have found that training the

CNN for automatic velocity analysis can be considerably reduced by adopting

transfer learning.

1.2 Thesis overview

In Chapter 2, I describe the principal operators utilized for setting the CNN.

I first explain the basic CNN architecture. Then, I describe the purpose and

operational principles behind the convolutional layer, the pooling layer, and

the fully connected layer that make up the CNN. After that, I introduce three

representative CNN models named LeNet-5, AlexNet, and VGG16 (LeCun

et al., 1998; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). Finally,

I discuss the problem of understanding and selecting parameters (hyperpa-

rameters) needed for CNN training. I also discuss the hyperparameter tuning

process.

Chapter 3 introduces the conventional semblance velocity analysis and ex-

plain data preconditioning prior to CNN training. I describe how one can

define the training dataset that includes the input data and labels.

Chapter 4 explains the CNN model training process. In this chapter, I have

adopted synthetic and field data examples to train and test the CNN model

for automatic velocity analysis. I use three datasets: a custom velocity model,

the Marmousi model (Versteeg, 1994), and a marine dataset from the Gulf
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of Mexico2 (Guitton, 2003). In this chapter, I also introduce and discuss

Transfer Learning, an alternative training method, that permits to improve

the predictability power of the CNN model.

Chapter 5 includes the conclusions of my project and recommendations for

future work.

2Mississippi Canyon dataset



CHAPTER 2

Convolutional Neural Networks

2.1 Introduction

As a subset of Artificial Neural Networks (Rosenblatt, 1958), CNN is gaining

a tremendous amount of popularity because of its powerfulness of extracting

features from images. Unlike CNN, Artificial Neural Network (ANN) has a

limitation in handling images because it can use only one-dimensional data as

an input. Thus, it is necessary to flatten the image data into one dimension

before adopting ANN. A loss of spatial information during this process reduces

the ANN’s feature extracting ability. CNN, however, is designed to process

multidimensional data (LeCun et al., 1998, 2015a). It uses a kernel with a

convolution operator to extract features preserving data spatial information.

Thus, CNN not only maintains the shape of input data but also effectively

extracts features of the images. With multiple kernels, it can produce various

features which can represent the image. Each kernel shares parameters so that

12
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the computational cost for training decreases a lot (LeCun et al., 1998, 2015a).

In this chapter, I describe the CNN that I propose to automate semblance

velocity analysis. As mentioned before, CNN has excellent performance in ex-

tracting features from images by considering the local connectivity of the input

data. I will treat the semblance extracted from CMP gathers as images that

will constitute the input to our CNN algorithm for automatic velocity analysis.

Before moving into my particular seismic application, in this chapter, I describe

the building blocks of CNN algorithm. In particular, I will briefly explain CNN

architecture itself as well as the main three components of CNN, namely the

Convolutional Layer, the Pooling Layer, and the Fully-Connected Layer. I

will also introduce three popular CNN architectures: LeNet-5, AlexNet, and

VGG16 (LeCun et al., 1998; Krizhevsky et al., 2012; Simonyan and Zisserman,

2014).



CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS 14

2.2 Basic CNN architecture

Figure 2.1: Typical CNN architecture. It consists of two convolutional
layers followed by FC layer.

The typical CNN architecture for classification includes two parts. The first

part is a feature extraction part, which consists of two types of layers: convo-

lutional layers and pooling layers. In convolutional layers, each layer produces

feature maps from the output of the previous layer by using convolutional op-

erator. Also, an activation function such as a ReLU (Nair and Hinton, 2010)

gives non-linearity to the feature maps in this stage. Then, pooling layers

decrease the size of feature maps to reduce computational cost. Generally, at

least two pairs of convolutional layer and pooling layer exist in a CNN archi-

tecture so that CNN can be trained with more complex features. The second

part of a CNN is the classification part, which is known as the fully connected

layers. It firstly flatten the final output (feature maps) of the feature extrac-
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tion part. Then, it performs matrix multiplication between the flattened array

and the declared weight matrix. The length of the final output is the same as

the number of classes to perform classification. Figure 2.1 shows the typical

CNN architecture, which consists of two convolutional layers, followed by a

fully connected layer.

2.3 Convolutional layer

The convolutional layer consists of two parts. The first is the convolutional

kernel (or filter) K, which extracts different features from each input image

I. The convolutional kernel performs a simple dot product between a patch

extracted from the input data and the kernel itself. In signal processing,

the operation is basically the traditional two-dimensional convolution between

two matrices (Simard et al., 1999). The output of this operation is called the

feature map and denoted by O. If I assume that I have kernel (filter) of size

H × W samples, the convolution between the input data and the kernel is

given by

Oi,j =
H∑
h=0

W∑
w=0

Ii+h,j+wKh,w . (2.1)

The size of the kernel K depends on the features’ complexity. Figure 2.2 shows

how the convolution kernel works. It generates a value, 9, after the convolu-

tional operator (Equation 2.1) between the local receptive field and the kernel.

After this process, the kernel slides and repeats the same process throughout
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the entire input image to generate the full two-dimensional feature map. It

is important to point out that the same kernel applies equally to all parts of

the image because it considers a spatially stationary operator. Considering

a kernel that changes for each feature point Oi,j will entail adopting a non-

stationary two-dimensional convolution with a different Kernel for each out

i, j. Clearly, the latter will create a large number of unknown filter coefficients

and probably lead to overfitting.

Figure 2.2: 8× 8× 3 Input image and the 3× 3× 3 kernel are shown.
Convolutional operator (X) between the local receptive field (3× 3× 3
shaded part in the Input image) and the kernel generates a value 9 as
an output.

The second part of the convolutional layer is the activation function. The lat-

ter serves to adjust the value that is passed to the next neuron. The activation

function was firstly used in a perceptron, which is the basic template for an

ANN (Rosenblatt, 1958). It receives multiple signals and combines them to

determine whether to propagate the signal using a step function. The multi
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layers perceptron (MLP) that was developed from the perceptron, adopted a

different activation function called Sigmoid function (Equation 2.2). It deter-

mines the strength of the signal to be sent to the next neuron when multiple

signals arrive (Rumelhart et al., 1988). The activation function of an ANN

(or a CNN) is always non-linear. This is because the output of the multi-layer

ANN (or CNN) with linear activation function is just a linear combination of

the various inputs. In other words, it becomes meaningless to stack multiple

layers with a linear activation function (LeCun et al., 1998).

Figure 2.3: Four different non-linear activation functions: (a) Sigmoid,
(b) tanh, (c) Leaky ReLU, and (d) ReLU.

Figure 2.3 shows four different non-linear activation functions. I would like

to point out that both the Sigmoid (Equation 2.2) and the tanh (Equation
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2.3) activation functions are barely used nowadays since they are affected by

the so called vanishing gradient problem. When the input value is close to

0 or 1, the corresponding partial value is very close to zero, which causes

the gradient to converge to zero during the back-propagation training step.

Thus, the vanishing gradient problem becomes more serious as the depth of

the CNN or the number of epoch increases. Nair and Hinton (2010) suggests to

adopt a ReLU (rectified linear unit) activation function (Equation 2.4) to solve

this problem. However, there is also a disadvantage with the ReLU activation

function because some of the neurons can die when the slope becomes zero

for negative input values. To circumvent this problem, Maas et al. (2013)

suggests adopting Leaky ReLU (Equation 2.5) activation function. Analytical

expressions for the aforementioned activation functions are given by

Sigmoid(x) =
1

1 + e−x
, (2.2)

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
, (2.3)

ReLu(x) = max(0, x) , (2.4)

and

LeakyReLu(x) = max(αx, x) . (2.5)
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2.4 Pooling layer

The purpose of the pooling layer is to conduct a sub-sampling of the input

in order to decrease the computational cost of training. This sub-sampling

can also mitigate the overfitting problem that occurs when too many neurons

are trained. There are two popular pooling methods named average pooling

(Figure 2.4) and max pooling (Figure 2.5). The average pooling takes the

average of all the values in the selected patch while max pooling just takes

the maximum value of the patch.

Figure 2.4: Average-pooling operator. It takes the values’ average in
the patch extracted from the input image. This process repeats through
the entire input image.
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Figure 2.5: Max-pooling operator. It takes maximum value of the
patch from an input image. This process repeats through the entire
input image.

2.5 Fully-connected layer

The fully-connected layer (FC layer) follows the same principle as the con-

ventional MLP. To solve the classification problem with the CNN architecture,

the matrix (or tensor) has to be flattened into a one-dimensional vector. Then,

through the FC layer, the final output must be the same length as the num-

ber of classes. Figure 2.6 shows how the output of the FC layer produces the

vector with the specific length. The fully-connected layer performs a matrix

multiplication between the declared weight matrix of size W × H and input

vector to yield an output of length H. Thus, each element of the final output

of the FC layer correlates with a corresponding class. In my research, I have

adopted a Softmax classifier (Equation 2.6) to convert each element of the

output vector to a probability for each class
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Figure 2.6: The fully connected layer uses the same principle as the
conventional MLP where W is the length of the input vector and H is
the desired output length. It performs a matrix multiplication between
the declared weight matrix of size W ×H and input vector to form an
output of length H.

Softmax(xj) =
exj∑k
i=1 e

xi
for j = 1, . . . , k. (2.6)

For training, one needs to define an objective function that allows compar-

ing the predicted probability to the true probability (label). Equation 2.7

shows one popular objective functions named Cross-Entropy objective func-

tion. Recently, the Cross-Entropy objective function has been reported to

yield a higher training process (Nielsen, 2015)

J (φ1, φ2) = −
N∑
i=1

φ1(i) log (φ2(i)) , (2.7)

where N is the number of classes, φ1 and φ2 are the true and predicted proba-

bility for the i-th class. Since every φ1 is zero except when i is k, I can simplify
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Equation 2.7 as follows

J (φ1, φ2) = − log (φ2(k)) , (2.8)

where k is the target number. All the weights are then repeatedly optimized

using the back-propagation algorithm.

2.5.1 LeNet-5

Figure 2.7: LeNet-5 architecture (LeCun et al., 1998). It contains two
convolutional layers followed by FC layer. After each convolutional
layer, there is a sub-sampling operator or average pooling.

LeCun et al. (1998) first suggested a CNN model called LeNet, which is de-

signed to recognize handwriting and LeNet-5 is the latest version of it (LeCun

et al., 2015b). LeNet-5 has a quite simple architecture compared to the mod-

ern architectures. Figure 2.7 shows this architecture. The image is taken from

LeCun et al. (1998). This architecture has 4 layers, 2 convolutional layers (C1

and C3) and 2 fully connected layer (C5 and F6) followed by an output layer.
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The sub-sampling layers are given by 2 × 2 average pooling layers. In terms

of the activation function, this architecture uses the tanh activation function

which is used through every layer except for the output layer. At the output,

a sigmoid function is used as the activation function. Even if LeNet has a rel-

atively simple architecture and a small number of parameters, the error rate

it achieved is below 1% when working with the MNIST database. The latter

is a huge dataset of handwritten digits often adopted to test machine learning

algorithms (Deng, 2012). Figure 2.8 shows the feature maps extracted from

each layer corresponding to each input. The first stage of the feature maps

(C1, C2) show relatively simple features such as edge detection and color re-

versal. The final output layer (F6) shows more complicated features. The

output (F6) always represents the labels.
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Figure 2.8: The feature maps from each layer corresponding to each
input (LeCun et al., 1998). The first stage of the feature maps (C1,
C2) show relatively simple features such as edge detection and color
reversal, while the final output (F6) shows more complicated features.
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2.5.2 AlexNet

Figure 2.9: AlexNet architecture (Krizhevsky et al., 2012). This ar-
chitecture consists of two models in parallel. Each model includes 5
convolutional layers and 3 fully connected layers. Also, there are three
max-pooling layers to perform sub-sampling.

AlexNet architecture was the top in the ImageNet challenge (Deng et al., 2009)

in 2012 (Krizhevsky et al., 2012). Top-5 error rate was 16.4%. To classify a

large size image (224 × 224 × 3) into a thousand classes, it was necessary to

make the network deeper than LeNet-5 architecture. AlexNet is the founda-

tion of the current deep convolutional neural network using several methods

such as ReLU activation function, max pooling and the softmax classifier. Fig-

ure 2.9 shows the AlexNet architecture. One can observe that the two CNN

models are joined in parallel. Each model consists of a total of eight layers

(5 convolutional layers and 3 fully connected layers). The two sub-sampling

layers are 2×2 max-pooling layers. As mentioned before, another great feature

of AlexNet is that it uses ReLU activation function. The training speed with

ReLU activation function is much higher than training with tanh or sigmoid
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activation functions (Krizhevsky et al., 2012).

2.5.3 VGG16

Figure 2.10: VGG16 architecture. Two or three convolutional layers
are stacked before sub-sampling. It consists of a total of 16 layers
(13 convolutional layers and 3 fully connected layers). Max pooling is
adopted for the sub-sampling.
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The VGGNet (Simonyan and Zisserman, 2014) architecture was the second

(Top-5 error rate was 7.3%) in the ImageNet challenge in 2014, with a slight

difference in GoogleNet (Szegedy et al., 2015). The error rate of GoogleNet

was 6.67%. However, the VGG model have been more popular because it is

much simpler and more intuitive than GoogleNet. The figure 2.10 shows the

architecture of one (VGG16) of the six VGGNet architectures. It consists of 16

layers (13 convolutional layers and 3 fully connected layers). Max pooling is

used for the sub-sampling. As the networks become deeper, vanishing gradi-

ent problems arise even if ReLU is adopted. VGG16 mitigates this problem by

stacking several convolutional layers before sub-sampling.

2.6 Hyperparameters

When defining a CNN model to use for data learning, the architecture such

as the size and the size of the kernel is the first thing one must consider. If

the size of the kernel is too large, it will not properly extract the input’s local

feature. Thus, kernels of size 3 × 3 × n (where n is the number of channels

of the input) are usually adopted. On the other hand, the number of kernels

in each layer is often defined according to the available computing power used

in the calculation. The initial convolutional layers do things like edge or color

detection. These low-level features are sufficiently expressible with a relatively

small number of kernels. As the layers go deeper, however, the features become

increasingly difficult to distinguish, and the way the kernels represent each

feature acdquires more variability.
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In addition to this, there are hyperparameters to consider before the training

step. The learning rate is one of the key hyperparameters which can affect

CNN’s performance. It is a variable that can adjusts the training speed. In

classical optimization theory, the learning rate is the step size of the steepest

descent method (Ruder, 2016). The batch size is also a critical hyperparam-

eter. As it grows, it increases the amount of computation in each iteration,

but it can estimate the gradient more accurately. The appropriate batch size

can be a solution to this problem. Also, a different optimizer, loss function,

or weight initialization method could be considered before the training step.

Unfortunately, as it is impossible to calculate the optimal hyperparameters

analytically, it is necessary to determine them empirically.



CHAPTER 3

Preparation

3.1 Introduction

This chapter explains the four preparatory steps required before CNN training

for automatic velocity analysis. The first step is to define the input data.

I define the semblance as an input data, allowing CNN to take the overall

pattern of the semblance into account and return a single velocity value. The

second step is the construction of training dataset. I first created common shot

gather (CSG) using a custom velocity model and a finite difference method

(FDM). Then, I perform a CMP sorting followed by the estimation of the

semblance of each CMP and finally I construct the input data as a set of

images that are paired to labels. For the label, I use the RMS velocity under

an assumption that the RMS velocity and the stacking velocity are equivalent

because the velocity model I use for training is composed of quasi-horizontal

layers. The third step is to define the CNN architecture for training and

29
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testing. I construct the CNN model based on the LeNet-5 architecture. A

more complex architecture could have been adopted. However, considering the

relatively small number of classes (40) in which I have divided RMS velocity

field, it is reasonable to adopt a non-overwhelmingly complex architecture like

LeNet-5. I also add methods that boost the performance of the CNN model,

such as ReLU and dropout. The last step of my study involve hyperparmeter

tuning. In particular, I have optimized values of the learning rate, batch

size, and activation function through the hyperparameter tuning.

3.2 Data definition

To use CNN, I define the semblance velocity analysis task as an image clas-

sification problem. One semblance panel contains one-dimensional velocity

profile for two-way travel time axis. Therefore, I extract small patches so that

each patch has one velocity value. In this case, however, it is impossible to

distinguish a multiple reflection (Yilmaz, 2001) from a primary reflection be-

cause there is no information about the semblance overall pattern. Figure 3.1

shows three patches extracted from one semblance with the stacking velocity

(red dots) at the center of each patch. These are obtained via manual velocity

analysis. However, Figures 3.1 (b) and (c) display energy peaks at lower ve-

locity than the optimal stacking velocity. The low veloicity event is a multiple.

In other words, a reflection that has undergone more than one reflection in the

subsurface. It is important to avoid selecting the multiple as it corresponds to

a coherent noise (Yilmaz, 2001). Thus, when I train CNN using small patches,
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the method might not be able to recognize a primary from a multiple. I solve

this problem by adding the image of the entire semblance to images of small

extracted patches. In other words, our training data consists of two images

per time step; one capturing local features and the other the general trend of

the velocity in the semblance panel.

Figure 3.1: Three patches (v,t) extracted from the same semblance.
Red dots indicate the stacking velocities at the center of each patch.
These are from the manual velocity analysis. The red dot in (a) the
first patch matches with the high-condensed energy while other dots
in (b) the second and (c) third patches have higher velocities than the
high-condensed energies.
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Figure 3.2: Input data definition. For each semblance, there is one
Guide image (G) and 45 Target images (T ). Then, Input data (I)
pair each Gn and Tn,tm to produce the input data (In,tm), where n is
the CMP number and the index m = {1, 2, 3..., 45} corresponds to the
intercept traveltime tm.

Figure 3.2 shows the definition of the input data. The guide image (G) is

representing the whole semblance. The target image (T ) includes only the

values in the specific t range where t is the zero offsets two-way travel time of

the reflection hyperbola. Each image T represents the velocity at the middle

of the t interval. I substitute all the values in the semblance by zero except

for the values in the t interval of analysis. The number of target images T

is 45 for each semblance. Thus, the input data are represented by pairs of
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images denoted by Gn and Tn,tm , where n indicates the CMP number and the

index m = {1, 2, 3..., 45} corresponds to the intercept traveltime tm. I unify

the size of all input data by compressing them into images of 50× 50 pixels to

reduce computational cost. The model trained with inputs G and T can pick

a reasonable stacking velocity for each t because it allows the trained model to

focus on a specific t time while it also considers the semblance’s overall trend.

Regarding the label definition, I divide the semblance velocity axis into K =

40 compartments and define each compartment as one class. That is, one

class represents a specific velocity bin. For example, if the velocity axis of

the semblance ranges from 2000m/s to 4000m/s and if I assign classes with

an increment of 50m/s, all value of velocity between 2000m/s and 2050m/s

belong to the class 1. Similarly, velocities in the bin 2050m/s to 2100m/s

belong to class 2 and so on. Labels can be represented in binary form. For

instance, for the class 2 the label is given by the vector of length K, pn,m =

[0, 1, 0, 0, 0, . . . , 0] where n is CMP number and m is intercept time. I match all

input data with the corresponding label to construct the dataset for training.

Our model outputs the vector q̂[j]n,m, j = 1 . . . 40 . I adopt a Softmax classifier

to convert q̂n,m to the probability of each class j being correctly identified

q[j]n,m =
exp q̂[j]n,m∑K
i=1 exp q̂[i]n,m

. (3.1)

Thus, each q[j]n,m represents a predicted probability for each velocity class

j where each element of the vector, q[j]n,m, is a number in the interval [0, 1].

The weights of the CNN are computed by minimizing the cost function that
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measures the similarity of pn,m and qn,m which is equivalent to saying that

CNN model should be able to predict the stacking velocities provided in the

training step. I have adopted the cross-entropy cost function, which is usually

applied to build CNN models because it leads to an algorithm with a high

training speed (Nielsen, 2015). The cost function is expressed as:

J = −
∑
n

∑
m

K∑
j=1

pn,m(j) log(qn,m(j)) . (3.2)

3.3 Training data construction

As mentioned earlier, I define the input data used for CNN training as the two

images (G, T) taken from the semblance. I construct the CSG by performing

forward modeling using the custom synthetic velocity models and the finite

difference method (FDM) to build the training dataset.

The time domain acoustic wave equation for a two-dimensional isotropic media

is given by

1

v2
∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+ f , (3.3)

where v is a P-wave velocity, u is the pressure, and f is a source term. I assume

that exploration reflection seismology using single component data can model

the wave propagation process at typical exploration scales (Kelly et al., 1976).

Then, if I approximate the second order differential term respect to the time

by the finite difference method
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1

v2
uk+1 − 2uk + uk−1

(∆t)2
=
∂2uk

∂x2
+
∂2uk

∂y2
+ fk (3.4)

and

uk+1 = 2uk − uk−1 + v2(∆t)2
(
∂2uk

∂x2
+
∂2uk

∂y2
+ fk

)
, (3.5)

where k is a time index and ∆t is a time interval. In Equation 3.5, the second

order differential terms respect to the two-dimensional space (x,y) are also

approximated by the finite difference method as follows

uk+1
i,j = 2uki,j−uk−1

i,j +v2i,j(∆t)
2

(
uki−1,j − 2uki,j + uki+1,j − 2uki,j + uki,j+1

(∆x)2
+
uki,j−1 − 2uki,j+1

(∆y)2
+ fki,j

)
,

(3.6)

where i and j are two-dimensional space indices. I also consider the discretiza-

tion of the subsurface assuming ∆x = ∆y = h. Thus, the final form of the

wave equation in discrete coordinates leads to the following time marching

algorithm

uk+1
i,j = 2uki,j−uk−1

i,j +v2i,j(∆t)
2

(
uki−1,j + uki,j−1 − 4uki,j + uki,j+1 + uki+1,j

h2
+ fki,j

)
.

(3.7)

Figure 3.3 shows an example of forward modeling with two layers velocity

model using Equation 3.7. I use Keys method for imposing boundary condi-

tions (Keys, 1985). Figure 3.3 clearly shows that the reflected wave is formed

at the layer’s boundary. By locating virtual receivers on the surface, one can
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estimate the synthetic seismic data in the form of Common Shot Gathers

(CSG). For an effective CNN model training, I create five velocity model that

mimics a sedimentary geological structure (Figures 3.4). All models have a

different number of layers and have a velocity distribution that increases with

depth. As described above, I obtain CSGs for each velocity model using FDM

and then generate the CMP gathers by conducting classical CMP sorting.
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Figure 3.3: (a) The P-wave velocity model. The snapshots of the for-
ward modeling at the time (b) 0.3 sec, (c) 0.9 sec, (d) 1.5 sec, (e) 2.1
sec, and (f) 2.7 sec. I use Keys method for boundary condition. It
clearly shows that the reflected wave is formed at the layer’s boundary.
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Figure 3.4: Five synthetic velocity models are used to generate the
training data. All models have a different number of layers and the
velocity distribution that increases with depth.

Figure 3.5 shows the workflow that I use to create the CNN training data.

First, I simulate data from the velocity models by solving the acoustic wave

equation via the Finite Difference Method. I also conduct CMP sorting and

apply automatic gain control to the data to equalize amplitudes. Then, I

compute the semblance panels for each model. I also normalize the semblance

panels to a common predefined scale. For all custom models, the number

of time samples of each record is 2850. The number of semblance panels

is 70. The velocity for each semblance ranges from 2000 m/s to 4000 m/s.

Finally, I construct the entire input dataset using the method mentioned in

the last section. The total size of the input data is 15750 × 50 × 50 × 2,
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where 15750 = 5 × 70 × 45 is the number of input data and 50 × 50 × 2 is

the size of each input data. I also calculate the RMS velocity profiles at the

CMP locations where I compute the semblance. Equation 3.8 shows how to

calculate the RMS velocity at some two-way traveltime step τ .

VRMS(τ) =

√∑τ
i=1 V

2
i ∆τi∑N

i=1 ∆τi
(3.8)

where V is an interval velocity. As mentioned earlier, I assume that the RMS

velocity and the stacking velocity are equivalent because the five synthetic

models used for training are composed of quasi-horizontal layers. All the RMS

velocities are mapped into K = 40 classes. The total size of the label is

15750 × 40. I match all input datasets with all labels to create the entire

training dataset.

Figure 3.5: Workflow displaying the training step. I solve the acoustic
wave equation via the Finite Difference method to compute synthetic
shot gathers. I calculate the semblance panels for each CMP location
after CMP sorting and automatic gain control. To compute the labels,
the RMS velocities are computed analytically from the velocity models.
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3.4 CNN architecture adoption

Figure 3.6: The CNN architecture I adopt. It is based on LeNet-5.
It contains two convolutional layers (Conv1, Conv2) and two fully-
connected layers (FC1, FC2) followed by the softmax classifier. The
model outputs 40 numbers in one array for each input data. Each
output represents the probability of each class.

For efficiency, I decide to use the architecture, which is based on an existing

well-known architecture, rather than constructing the CNN architecture from

scratch. However, architectures with a deeper neural network such as AlexNet

or VGG16 are designed to solve relatively complex problems such as the Ima-

geNet challenge (Deng et al., 2009). Because our classification problem has

only 40 classes and the image size of the input is relatively small, I decided

to use the LeNet-5 architecture as the base architecture for the automatic

velocity analysis. Figure 3.6 shows the CNN architecture adopted for this the-

sis. The architecture consists of two convolution layers named (Conv1, Conv2)

and two fully-connected layers (FC1, FC2) followed by a softmax-classification

layer. Conv1 has 64 filters of size 3× 3× 2 size and Conv2 has 128 filters with
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3 × 3 × 64 size. After both conv1 and conv2, I applied an activation func-

tion which increases the non-linearity of the model (Nair and Hinton, 2010;

Krizhevsky et al., 2012), and a max-pooling of both size and stride 2×2. In the

FC1 layer, the feature maps are flattened to 256 elements. The FC2 layer has

128 elements. I also apply an activation function to both FC1 and FC2 layers

and also use dropout to both layers to prevent overfitting (Srivastava et al.,

2014). Through the softmax classification layer, I predict the stacking veloci-

ties. For the optimization, I adopt the Adaptive Moment Estimation (Adam)

optimizer (Kingma and Ba, 2014) implemented in Tensorflow (Abadi et al.,

2016).

3.5 Hyperparameter tuning

As described in Chapter 2, I need to obtain optimal hyperparameters to

obtain a better performance of the CNN architecture. Based on the model I

described (Figure 3.6), I try to find the optimal values of three hyperparam-

eters: the learning rate, batch size, and activation function. The

evaluation method for the model is also important to find the optimal parame-

ters. I evaluated the performance of the model using three methods. The first

is the trend of the loss as the training progresses. The loss of good models is

fast to converge and stable in changing directions. The second method is to

measure the accuracy of the predicted value by the trained model. The final

method is to check the F1 score based on the concept of precision and recall

(Powers, 2011).
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3.5.1 Learning rate

The first parameter I try to optimize is the learning rate. For tuning pro-

cess, I unify every conditions except for the learning rate. Activation function

is ReLU, and the batch size is 256. Every experiment uses the same subset of

the training data I build for, and the same total number of epoch (number of

epoch is 100). I test total five learning rates (0.0001, 0.0005, 0.001, 0.005, 0.01).

Figure 3.7 shows the loss trends of the five models that use five different

learning rates. As we can see, learning rate 0.001 (gree line in Figure

3.7) shows the best result of convergence. Table 3.1 shows other measurements

(Loss, Accuracy, Precision, Recall, and F1 score) of the five cases. As with

the above results, every evaluation result tells that 0.001 is the best learning

rate for our model and the dataset.
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Figure 3.7: Loss trends for five models with different learning rates.
Learning rate 0.001 (green line) shows the best result of convergence.
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Learning rate Loss Accuracy Precision Recall F1 score

0.0001 0.4035 0.8363 0.8555 0.8105 0.8324

0.0005 0.1324 0.9478 0.9512 0.9458 0.9485

0.001 0.1135 0.9566 0.9584 0.9549 0.9566

0.005 0.2247 0.9203 0.9240 0.9149 0.9194

0.01 0.3679 0.8716 0.8856 0.8575 0.8713

Table 3.1: Evaluation results (Loss, Accuracy, Precision, Recall, and
F1 score) for five models with different Learning rates. All the results
are from the model after 100 epoch training process. Data used for
accuracy is the same as the training data. Learning rate 0.001 shows
the best performance in every evaluations.

3.5.2 Batch size

The second parameter I tune is the batch size. In the starting model, ReLU

is used as the activation function, and the learning rate is 0.001. Also, for

every case I use the same dataset for model training. The total epoch number

is 100 for every test. I test five batch sizes (16, 64, 128, 256, 512), and Figure

3.8 and Table 3.2 shows the results. Unfortunately, I have not found any

noticeable correlation between batch size and the performance of the model.

The model with 512 batch size has the lowest final loss, and the other indicators
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are also higher than average, but there is no significant difference.

In this test, as the batch size is related to the training time, I also measure the

average time per epoch. As one increases the batch size, the time per epoch

decreases (See the second column of Table 3.2). Thus, it is better to use a

larger batch size to the extent that is allowed by the GPU (or CPU) memory.

In this project, I choose a batch size of 256 because of both the insufficient

GPU memory and the relatively small difference of time per epoch between

using a 256 or a 512 batch size.

Figure 3.8: Loss curve for five models with different batch sizes
(16, 64, 128, 256, 512). I have not found any noticeable correlation be-
tween batch size and the performance of the model.



CHAPTER 3. PREPARATION 46

Batch size Time per epoch Loss Accuracy Precision Recall F1 score

16 16.5 sec 0.1158 0.9655 0.9678 0.9629 0.9653

64 4.3 sec 0.1164 0.9573 0.9599 0.9556 0.9577

128 2.1 sec 0.1077 0.9610 0.9631 0.9594 0.9612

256 1.9 sec 0.1108 0.9587 0.9610 0.9569 0.9590

512 1.7 sec 0.0992 0.9625 0.9637 0.9612 0.9625

Table 3.2: Evaluation results (Time per epoch, Loss, Accuracy, Preci-
sion, Recall and F1 score) for five models with different batch size. All
the results are from the model after 100 epoch training process. Data
used for accuracy is the same as the training data.

3.5.3 Activation Function

The final parameter I tune is the activation function. In the starting

model, I use a batch size of 256 and a learning rate of 0.001. Also, every

case adopts the same dataset and the same epoch number. I test four activation

functions (Sigmoid, tanh, ReLU, Leaky ReLU), and the results are shown

in Figure 3.9 and Table 3.3. As the training process of the model with the

Sigmoid activation function does not work properly (blue line in Figure 2.3),

I exclude it when I evaluate the models. I find that the Leaky ReLU shows
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the best performance among three different activation functions. It shows the

lowest loss and the highest F1 score. The loss curve (Figure 3.9) also shows

that the Leaky ReLU is the optimal activation function for the dataset and the

model I used. However, as it requires a higher computational cost than the

ReLU, and the difference in performance is not significant, I adopt ReLU as the

activation function.

Figure 3.9: Loss curve for four models with different activation func-
tions (Sigmoid, tanh, ReLU, Leaky ReLU).
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Activation function Loss Accuracy Precision Recall F1 score

tanh 0.1568 0.9451 0.9473 0.9428 0.9450

ReLU 0.0992 0.9625 0.9637 0.9612 0.9625

Leaky ReLu 0.0631 0.9766 0.9769 0.9763 0.9766

Table 3.3: Evaluation results (Loss, Accuracy, Precision, Recall, and
F1 score) for three models with different activation functions. All the
results are from the model after 100 epoch training process. Data used
for accuracy is the same as the training data.

3.5.4 Final CNN architecture

The final CNN architecture is constructed after conducting the hyperparame-

ter tuning for the learning rate, batch size, and activation function.

In our final architecture, I choose a learning rate 0.001, batch size 256 and

ReLU activation function. I conduct the last comparison with the other pop-

ular model (VGG16) to find out if the performance of our custom architecture

is reasonable for our dataset. For the test, I change the output layer length

of VGG16 from 1, 000 to 40. Also, I use the same dataset and the same epoch

number for the test. Figure 3.10 and Table 3.4 show the results. Every eval-

uation result represents VGG16 is better than our custom architecture. This

result is reasonable because VGG16 consists of total 16 layers and 22, 693, 064
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parameters (our custom architecture has 4, 831, 976 parameters). As a result,

the VGG16 model takes about four times as much training time per epoch as

compared to the custom model. I conclude that the use of the custom model

is reasonable because the difference in performance is not significant compared

to the amount of computation required.

Figure 3.10: Loss trends for two different models: custom architecture
and VGG16.
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Architecture Time per epoch Loss Accuracy Precision Recall F1 score

Custom 1.7 sec 0.9451 0.9451 0.9473 0.9428 0.9450

VGG16 6.4 sec 0.9915 0.9919 0.9637 0.9911 0.9915

Table 3.4: Evaluation results (Time per epoch, Loss, Accuracy, Pre-
cision, Recall and F1 score) for two different models (Custom and
VGG16). All the results are from the model after 100 epoch train-
ing process. Data used for accuracy is the same as the training data.



CHAPTER 4

Training and Testing

4.1 Introduction

This chapter firstly describes the actual training process with the training

dataset obtained earlier. Also, I describe Transfer Learning that can be used

as an alternative when training data is insufficient. Once one obtains the

trained model, it is tested with a total of three datasets that are not included

in the training dataset. The first dataset is a custom velocity model with

features similar to the training dataset, and the trained model predicts rea-

sonable velocities without Transfer Learning. Secondly, I conduct tests with

the Marmousi dataset. In this case, however, since the features of the sem-

blance obtained from the Marmousi dataset are much different from those of

the training data I used, the trained model does not predict the correct ve-

locities. In this case, I adopt Transfer Learning to solve the aforementioned

problem. Finally, I test the proposed automatic velocity analysis with a ma-
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rine dataset obtained from the Gulf of Mexico. I also use Transfer Learning,

and compare the results to those obtain via manual velocity analysis. For

completeness, I also estimate stack images of the Gulf of Mexico dataset with

velocities that were manually derived and estimated by the proposed CNN

scheme. The main results of this chapter are that a velocity field derived by

CNN can deliver similar quality image to those estimated via manual velocity

analysis.

4.2 Base model training

As I mentioned in Chapter 4, the total number of the input for training is

15750 and each input size is 50× 50× 2. I randomly initialize all the weights

of the CNN and train the model with randomly shuffled datasets. The total

number of the epoch is 300. Figure 4.1 shows the loss value plot for the epoch.

I use a computer equipped with a GTX 1060 graphic card to train the model.

Training takes about 10 hours. I call the trained model as the ’Base model’.
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Figure 4.1: Loss trend for the base model training.

4.3 Transfer Learning

Even though our model is trained as expected, it is common to have insufficient

data for training. Let us assume a task X and a trained CNN model through

labeled data A. We expect that the trained model can predict the correct

label of the new data B in the task Y , which is similar to X. However, this

scenario is only possible if the data A is large enough to reflect both task

X and Y or the data B has features that are similar to those of the data

A. Unfortunately, there are not enough labeled data for training in many of

our real seismic data processing applications. This data-hungry problem also

occurs in our semblance analysis problem, which requires manual picking of

velocities to obtain the labeled data. Thus, I use Transfer Learning when I
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have an unsatisfying result with the original model trained with the synthetic

data (base model). Figure 4.2 shows the concept of Transfer Learning. The

base model (trained with labeled data A) can be updated with a small portion

of the target data B to improve the predictability of Y .

Figure 4.2: The concept of Transfer Learning.

4.4 Numerical examples

4.4.1 Custom dataset

The base model (without Transfer Learning) is first evaluated with a simple

synthetic case. I use the velocity model (Figure 4.3), which includes similar

features to the training data for testing. In this case, the base model can



CHAPTER 4. TRAINING AND TESTING 55

predict the velocity properly. The testing data are obtained in the same way

as the base model training data. The test result shows 42% of the accuracy

and most predicted values of the remaining 58% outputs have a similar value

to the label. This result is acceptable considering the number of classes is 40.

Figure 4.3: The velocity model used for testing. This model was not
used in the training stage.

Figure 4.4 shows the label model and Figure 4.5 shows the predicted velocity

model. Although the predicted velocities do not match exactly with the label

model, it can be seen that they are similar. I performed NMO correction and

stacking using both true RMS velocities and the predicted velocities. Figure

4.6 (a) shows the predicted velocity (red line) and the true RMS velocity

(blue line) superimposed on the semblance panel. The NMO corrected result

(Figure 4.6 (d)) using the predicted velocity is almost identical to the result

(Figure 4.6 (c)) obtained by the true RMS velocity. There are also some parts

with a relatively high error, especially in the shallow part. In those areas, the

predicted velocity is slightly higher than the true RMS velocity. The NMO
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correction with the velocity higher than the true RMS velocity causes under-

correction, as shown in Figure 4.6 (d). Finally, I apply the NMO correction

to all CMP gathers and stack them. Figure 4.7 shows the stack sections for

both the true velocity model (Figure 4.7 (a)) and the predicted velocity model

(Figure 4.7 (b)). As mentioned above, the trained model predicts a shallow

velocity field that is higher than the true one. Thus, I can also observe the

relatively large error in the shallow part of the stack (Figure 4.7 (c)). I confirm

that the trained model can output a consistent velocity by comparing the stack

section to the near-offset section (Figure 4.7 (d)).

Figure 4.4: The label velocity model.
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Figure 4.5: Velocity field predicted via CNN.
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Figure 4.6: (a) Predicted velocity (red line) and true RMS velocity
(blue line) are shown in conjunction with the semblance. (b) NMO
correction corresponding to the CMP gather. (c) The results of NMO
correction with the true velocity. (d) The predicted velocity are shown
as well.
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Figure 4.7: Stack sections. (a) Stack section obtained with the true
velocity model. (b) Stack section obtained via the velocity model pre-
dicted by CNN. (c) Difference panel ((b) minus (a)). (d) The near
offset traces.

4.4.2 The Marmousi dataset

Figure 4.8: The Marmousi velocity model.
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For the next synthetic example, I use the Marmousi model (Figure 4.8) to test

the performance of automatic velocity analysis method. In this experiment,

the total number of obtained CMP gather is 385. Thus, the total number of

input data is 17325(385×45), and each data size is 50×50×2. I first test this

dataset with the base model. However, the result is unsatisfactory because the

dataset obtained from the Marmousi model is much different from the training

dataset I adopt. Thus, I use Transfer Learning. As I mentioned in chapter

‘Transfer Learning’, I take a small portion of the target data (the Marmosusi

dataset) to update the base model. I test two cases by selecting the different

number of Transfer Learning data, 19, and 38 semblances out of the entire

dataset (385 semblances). All data are selected at regular intervals. Thus, the

total numbers of the datasets for each case are 855(45×19) and 1710(45×38),

respectively.

Number of the semblances Data size Time for Transfer Learning

19 (out of 385) 855× 50× 50× 2 83 sec

38 (out of 385) 1710× 50× 50× 2 171 sec

Table 4.1: Information of the model after Transfer Learning with 19
semblances (second row) and 38 semblances (third row).

Information about Transfer Learning is shown in Table 4.1. I perform the
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Transfer Learning until the loss value is less than 0.05 or until the epoch

reached 500. Transfer Learning takes 83 seconds and 171 seconds, respec-

tively. This is a time that can be ignored when compared with the base model

training, which takes about 10 hours. Figure 4.9 shows the loss trends of each

case for the epoch. The red line indicates the case which uses 19 semblances

for Transfer Learning while a blue line represents 38 semblances case. I would

like to mention that the convergence speed of 38 is faster than that of 19 at

the beginning of transition learning. Since the Marmousi model has a severe

lateral variations, the more data used for Transfer Learning, the more effec-

tive learning can be. Figure 4.10 shows the label model (Figure 4.10 (a)), the

predicted results of both 19 (Figure 4.10 (b)) and 38 (Figure 4.10 (c)) cases.

It is clear that the predictive model of 38 case is closer to the label model than

the model of 19 case.

Figure 4.9: Loss trend for Transfer Learning using the Marmousi
dataset.
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Figure 4.10: (a) Label (true) velocity model, (b) the predicted velocity
model from Transfer Learning CNN with 5% of target data, (c) the
predicted velocity model from Transfer Learning CNN with 10% of
target data.
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4.5 Field data example

Finally, I test our automatic velocity analysis method with a marine dataset

from the Gulf of Mexico. These datasets have been provided by Western

Geophysical, and Table 4.2 shows information about the data. The Gulf of

Mexico dataset includes a salt body that causes multiples to be problematic.

This is because the primaries below the salt body are normally weak, and the

primary-multiple ratio is low.

CMP number 200-1599

Shot interval 87.5 ft

Number of samples per trace 1751

Time sampling interval 4 ms

Table 4.2: Parameters information of the Gulf of Mexico dataset.

Figure 4.11 shows the near-offset traces of a dataset from the Gulf of Mexico

(Verschuur and Prein, 1999). The dataset is contaminated with free-surface

multiples. Given that the base model was trained with synthetic data and

that our real marine dataset is quite different from the synthetic data, I have

to adopt Transfer Learning. In other words, I extracted ten semblance panels
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(out of 1400) and velocity profiles (dashed lines in Figure 4.13 and Figure 4.14)

which were obtained via manual velocity analysis and used them for Transfer

Learning.

The manual analysis velocity field (Figure 4.13) is created using linear inter-

polation with velocity analysis of every 50 CMP gathers. Transfer Learning,

in this case, takes only 45 seconds. As mentioned earlier, the time required

for Transfer Learning is negligible compared to the time it takes to train the

base model.

Number of semblance panels Data size Time for Transfer Learning

10 (out of 1400) 450× 50× 50× 2 45 sec

Table 4.3: Information pertaining Transfer Learning for the Gulf of
Mexico dataset.
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Figure 4.11: Near-offset traces of a dataset from the Gulf of Mexico.
Data includes the salt body from position CMP 700 to CMP 1600.
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Figure 4.12: Loss trend for Transfer Learning using the Gulf of Mexico
dataset.
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Figure 4.13: The velocity field created using linear interpolation with
velocity analysis at every 50 CMP gathers. Dashed lines are indicating
the location where I have got the data for Transfer Learning (CMP:
202, 302, 402, 502, 602, 1002, 1152, 1302, 1452, 1599).
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Figure 4.14: The velocity field predicted by CNN. I use a total of ten
semblances and velocity profiles (CMP: 202, 302, 402, 502, 602, 1002,
1152, 1302, 1452, 1599) to perform Transfer Learning. Dashed lines are
indicating the data’s CMP location for Transfer Learning.
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Figure 4.15: The difference in velocity field (Figure 4.13 minus Figure
4.14).

As we can see in Figure 4.11, there is a severe lateral structural variation

between CMP 600 and CMP 1000, which can make the manual velocity

analysis more difficult. Thus, when I choose the locations of the dataset

for Transfer Learning, I exclude this area to check if the CNN model can

provide a satisfactory solution. Five velocity profiles are taken from areas

outside the tabular salt body (CMP: 202,302,402,502,602), and another five

velocity profiles are taken from CMPs above the tabular salt body (CMP:

1002,1152,1302,1452,1599). I apply Transfer Learning to the base CNN model

to predict the stacking velocity for all CMPs. After Transfer Learning, I com-

pute the semblance of each CMP (the data contained 1400 CMPs) and then

I use the estimated semblance panels as input to our network to obtain the
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stacking velocities for each CMP. Prediction takes a few seconds, and Figure

4.14 shows the predicted velocity field. From the CNN model, I have 45 output

points for each semblance panel. Then, I interpolate the 45 points via a spline

method to estimate the whole velocity profile. I also apply a two-dimensional

Gaussian filter to smooth the velocity field. White lines (dashed) indicate the

positions of the CMP locations where I adopt Transfer Learning. Figure 4.15

shows the difference between the manual analysis velocity field and the pre-

dicted velocity field (Figure 4.13 minus Figure 4.14). The prediction result is

quite similar to the velocity model estimated by manual analysis except for

the area around CMP 800. As mentioned earlier, I exclude this area when

I perform Transfer Learning. In this CMP range, the CNN model predicts

velocities that are higher than those estimated by manual analysis.

Figures 4.16 show the semblance panels at CMP 350, 750, 1250 and 1400. It is

important to mention that these CMPs were not used for Transfer Learning.

Red lines indicate the manual velocity analysis and white lines represent the

CNN predicted velocity. I point out a significant discrepancy between auto-

matic velocities and manually estimated velocities at CMP 750. The discrep-

ancy occurs in an area dominated by non-horizontal structures and diffracted

energy. When analyzing the pattern of semblances from both areas outside the

tabular salt body (Figure 4.16 (a)) and the area above the tabular salt body

(Figures 4.16 (c) and (d)), it can be said that the CNN model has identified

an acceptable solution.
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Figure 4.16: Semblance panels. CMP number: (a) 350, (b) 750 (c)
1250, (d) 1400. Manual analysis velocities (red lines) and the velocities
predicted via CNN (white lines). These semblance panels are not used
for Transfer Learning.

Finally, I compare stack sections for both the manual analysis (Figure 4.17)

and the CNN prediction (Figure 4.18). Both stack sections have similar results

in most areas. To verify the CNN prediction, especially in the area, including

strong lateral variations, I zoomed two parts in this area (between CMP 600

and 1000). One is from τ =2.4 s to τ =3.6 s (Figure 4.19), and the other is

between τ =5 s and τ =6.2 s (Figure 4.20). The CNN prediction results have

clearer reflectors than the manual analysis; these results where indicated with

red arrows.
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Figure 4.17: Stack section obtained by manual analysis velocity model.
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Figure 4.18: Stack section obtained via the velocity model predicted by
CNN.
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Figure 4.19: (a) The zoomed part from CMP 650 to 1000, τ =2.4 to
τ =3.6 s.(Right) The results from the manual analysis and (Left) the
results from the CNN prediction. Red arrows are indicating clearer
reflectors in the zoomed parts of the CNN prediction.

Figure 4.20: CMP 600 to 1000, τ =5 to τ =6.2 s. (Right) The results
from the manual analysis and (Left) the results from the CNN predic-
tion. Red arrows are indicating clearer reflectors in the zoomed parts
of the CNN prediction.
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Conclusions

5.1 Main contributions

In this thesis, I have developed a method to perform semblance analysis using

CNN automatically. In particular, I have used both the entire semblance and

extracted patches to estimate the velocity at the specific traveltime. With this

definition, I expect the trained CNN model to act like a professional human

processor who can consider the entire trend of the semblance to avoid picking

the multiples. The method is promising because the traditional way to conduct

the velocity analysis requires a manual picking process which needs tremendous

time and effort. I defined the velocity analysis task as the image classification

problem by dividing the velocity axis of the semblance into segments of a

specific size. The latter permits a direct CNN application to solve the velocity

estimation problem. The propose methodology has the potential to yield a

more accurate prediction using a deep layer CNN structure and smaller size of
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compartments. Increasing the size of the input also causes a better prediction.

Both synthetic and real examples are tested with our method. The base model

predicts well in simple synthetic cases. In our approach, the base model can be

updated continuously through new data. When the base model does not work

correctly, I adopt the transfer learning, which can update the base model with

a small portion of the target data. Even if I use only a few semblance panels

for transfer learning, the updated model works well with both the Marmousi

dataset and a real marine dataset. I want to point out that our method

estimates reasonable velocities even if the data is contaminated by free-surface

multiples as demonstrated with the Gulf of Mexico marine dataset.

5.2 Future work

The CNN model proposed in this paper does not consider surrounding sem-

blance analysis and its lateral continuity as a good processor would do. This

is the essential part we must take into account in the future. To overcome

this limitation, one needs to expand our input data from a 2D semblance to a

3D semblance cube to include geological information for training (Araya-Polo

et al., 2018). In this case, I have to use a different CNN approach. Our current

CNN model structure has limited ability to extract features from a 3D input

dataset. Semantic segmentation is one of the CNN approach that can be used

to solve this limitation (Long et al., 2015; Garcia-Garcia et al., 2017). Using

semantic segmentation, each pixel of the image can be defined as its label.

Even if this method needs more computational resources and more training
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datasets, it has shown enormous potential in various geophysical applications

such as salt classification (Shi et al., 2018), channel detection (Pham et al.,

2018), seismic facies classification (Zhao, 2018), and velocity estimation (Wang

et al., 2018).

Another interesting future work is to adopt unsupervised learning such as

generative adversarial nets (Goodfellow et al., 2014) to conduct data augmen-

tation (Antoniou et al., 2017). In this thesis, I still have to perform manual

velocity analysis to handle the real dataset. I expect that a data augmentation

process could help to us to obtain better training performance.

Lastly, one must investigate ways to construct meaningful connections between

deep learning and the physics of wave propagation. The performance of the

trained CNN model only depends on the training data and does not consider

constraints arising from physical considerations that involve solutions of the

wave equation . In this thesis, for example, the base model needs to be updated

to handle the target semblance that is slightly different from the semblance in

training data. To overcome this, CNN consider typical physical considerations

either arising from ray theory or approximated solutions to the wave equation.



Bibliography

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.

Ghemawat, G. Irving, M. Isard, et al., 2016, Tensorflow: a system for large-

scale machine learning.: OSDI, 265–283.

Abbad, B., B. Ursin, and D. Rappin, 2009, Automatic nonhyperbolic velocity

analysis: Geophysics, 74, U1–U12.

Antoniou, A., A. Storkey, and H. Edwards, 2017, Data augmentation genera-

tive adversarial networks: arXiv preprint arXiv:1711.04340.

Araya-Polo, M., J. Jennings, A. Adler, and T. Dahlke, 2018, Deep-learning

tomography: The Leading Edge, 37, 58–66.
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APPENDIX A

Reproducibility

As part of my research, and in order to provide an opportunity to reproduce my

results, I also provide the source codes produced during my research. Codes

were written by Keras, which is the high-level API for Tensorflow (Gulli and

Pal, 2017; Abadi et al., 2016). The source code can be dowload from the fol-

lowing site https://github.com/mjmr0128/SVACNN. The list below indicates

prerequisites to run the codes. Note that CUDA and Cudnn are only needed

for the GPU version of Tensorflow (Kirk et al., 2007; Sanders and Kandrot,

2010; Chetlur et al., 2014):

• Python 3.6+

• Jupyter Notebook 4.4+

• Tensorflow 1.13+ (GPU version)

• Keras 2.2.4+
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• CUDA 10.1+

• Cudnn 7.5+

This distribution consists of two main parts. First one (1_base_model_training.ipynb)

is for the Base model training with synthetic data. In terms of model architec-

ture, there are three possible options: LeNet-5, AlexNet, and VGG16 (LeCun

et al., 1998; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). After

training, it tests the trained model with another synthetic dataset, which is not

included in the training dataset. The second one (2_transfer_learning.ipynb)

performs transfer learning to the Base model with the Marmousi dataset. It

updates the base model with a small portion of the Marmousi dataset and

tests the updated model with entire Marmousi dataset.
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