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Seismic data processing: apply changes to the data in order to facilitate its interpretation. It can also be seen

as a set of techniques used to increase the signal to noise ratio of a dataset.

Based on the space-time behavior of the

noise, it can be classified as:

Coherent:

• Ground-roll

• Air waves

• Near Surface layer reverberations,

etc.

Random:

• Anthropogenic.

• Bad coupling of geophones

• Wind/tree's roots, etc. Attenuation of coherent noise
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In the case of random noise, since the space-time behavior of the noise is unknown, usually the attenuation

algorithm aim to detect the signal that is laterally uncorrelated or “not-representative”. An example of this is the

FX-decon algorithm.

Considering random noise as data that in “not-

representative” of the underlying geology,

allows us to think of the random noise

attenuation process as a Rank Reduction

problem.

The MSSA (Multi-channel singular spectrum

analysis) is a well known process that uses

rank reduction to attenuate random noise.

As with other rank reduction problems, the

question arises. Is there an objective criteria to

choose the appropriate rank for denoising?
FX-Decon for RNA
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𝑆 =

𝑆 1,1 𝑆 1,2 . . . 𝑆 1, 𝑁𝑥
𝑆 2,1 𝑆 2,2 . . . 𝑆 2, 𝑁𝑥
⋮ ⋮ ⋱ ⋮

𝑆 𝑁𝑦 , 1 𝑆 𝑁𝑦 , 2 . . . 𝑆 𝑁𝑦𝑁 ሻ𝑥

Consider a 3D seismic cube, which has been Fourier transformed into the F-XY domain:

X

Y

ω

3D seismic cube

We can consider a single slice of constant frequency, which can be written as

the following matrix:

Each row of this matrix, represents the variation of energy for a given

frequency along the X dimension.

However, each individual row (which has a combination of noise and signal)

cannot be rank reduced. So, it is convenient to reshape the information

contained in the vector into a matrix that could be rank reduced.
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Consider each row of S, and build a Hankel Matrix (a Matrix whose values along the anti-diagonal are

constant):

F-XY slice for a fixed frequency ω

𝑅𝑗 =

𝑆 𝑗, 1 𝑆 𝑗, 2 . . . 𝑆 𝑗 𝐾𝑥
𝑆 𝑗, 2 𝑆 𝑗, 3 . . . 𝑆 𝑗 𝐾𝑥 + 1
⋮ ⋮ ⋱ ⋮

𝑆 𝑗 𝐿𝑥 𝑆 𝑗 𝐿𝑥 + 1 . . . 𝑆 𝑗 𝑁𝑥

𝑆 =

𝑆 1,1 𝑆 1,2 . . . 𝑆 1, 𝑁𝑥
𝑆 2,1 𝑆 2,2 . . . 𝑆 2, 𝑁𝑥
⋮ ⋮ ⋱ ⋮

𝑆 𝑁𝑦 , 1 𝑆 𝑁𝑦 , 2 . . . 𝑆 𝑁𝑦 𝑁𝑥

Hankel Matrix of a row j from matrix S

Up to now, we have considered the variations along the x

dimension. To incorporate the information from the y

direction, a Block Hankel Matrix can be built, using all the

Hankel Matrices from the rows of S, in the following way:

𝑀 =

𝑅1 𝑅2 . . . 𝑅𝑘𝑦
𝑅2 𝑅3 . . . 𝑅𝑘𝑦+1
⋮ ⋮ ⋱ ⋮
𝑅𝐿𝑦 𝑅𝐿𝑦+1 . . . 𝑅𝑁𝑦
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Adding noise to the data, increases the rank of the matrix M. For that reason, the noise attenuation can

be considered as a rank reduction problem. We need to find a rank reduced matrix Mk that approximates

the matrix M in a least squares sense. The Eckart-Young theorem (Eckart and Young, 1936) states that

the rank-k matrix that minimizes the Frobenius norm can be obtained considering the k-largest singular

values of the SVD of matrix M.

𝑀𝑘 = 𝑈𝑘𝛴𝑘𝑉𝑘
𝐻

Given the structure of the Hankel Matrix (constant values across the anti-diagonal), the signal que be

recovered by averaging along the anti-diagonals of the Hankel Block Matrix.

But we still have one issue to solve. How many k singular values to consider for the rank reduction?

To solve this, we propose the following signal-to-noise ratio estimator:
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Let’s consider the auto-correlation of an observed signal with one seismic event, which is composed of

one part of pure signal and additive noise.

𝑟 𝑓, 𝑥 = 𝑠 𝑓, 𝑥 + 𝑛 𝑓, 𝑥 → 𝑟𝑇𝑟 = 𝑠𝑇𝑠 + 𝑠𝑇𝑛 + 𝑛𝑇𝑠 + 𝑛𝑇𝑛

Assuming that signal and noise are uncorrelated (random noise), and taking the expectations at both

sides, we can simplify the expresión in the following way:

𝑅 = 𝐸 𝑠𝑇𝑠 + 𝜎𝑁
2𝐼

In which R is the covariance matrix of the signal, E is the expectation operator, I is the identity matrix and

σ 2
N is the variance of the noise.

The matrix R has the following properties:

• The rank of the expectation of the pure signal is finite and equal to the number of events (1).

• The minimum eigenvalue of R (λi) is given by the variance of the noise.

• The largest eigenvalue (λ1) of R is given by the variance of the signal plus the variance of the noise.
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Then we can estimate the covariance of the noise, as the average of the lowest eigenvalues of matrix R:

𝜆𝑖 = 𝜎𝑁
2 → 𝜎𝑁

2 =෎

𝑖=2

𝑀

ഥ𝜆𝑖
𝑀 − 1

Where M is the maximum number of eigenvalues. Now, the estimation of the variance of the signal may be

obtained from the variance of the noise and the largest eigenvalue in the folowing way:

Key and Smithson, 1990, suggest that a signal to noise

ratio can be estimated based on the ratio of signal and noise

variances, and can be expressed as:

𝜆1 = 𝜎𝑆
2 + 𝜎𝑁

2 → 𝜎𝑆
2 = 𝜆1 −෎

𝑖=2

𝑀

ഥ𝜆𝑖
𝑀 − 1

𝑆𝑁𝑅 =
𝜎𝑆
2

𝜎𝑁
2 =

𝜆1 −෎

𝑖=2

𝑀
ഥ𝜆𝑖

𝑀 − 1

෎

𝑖=2

𝑀
ഥ𝜆𝑖

𝑀 − 1
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Our proposal is to compute the expression for the SNR, but make it general for the signal represented by the

kth largest eigenvalues, transforming the SNR estimation into:

𝑆𝑁𝑅𝑘 =
𝜎𝑆
2

𝜎𝑁
2 =

෍
𝑖=1

𝑘 𝜆𝑖
𝑘
−෍

𝑖=𝑘+1

𝑀 𝜆𝑘+1
𝑀 − 𝑘 − 1

෍
𝑖=𝑘+1

𝑀 𝜆𝑘+1
𝑀 − 𝑘 − 1

Where SNRk represents the signal to noise ratio of the reconstructed signal, using only the kth largest

eigenvalues.
The estimated Rank of the matrix, would be the k number of eigenvalues which provide the highest estimated

SNR. Unfortunately, this approach requires to calculate the entire range of eigenvalues for the matrix before

estimating the appropriate rank of the matrix.

A way to overcome this problem, is to make the estimation only in a narrow frequency band (around the

dominant frequency of the input data).
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Let’s consider a synthetic seismic cube which has three linear events with different dips. The parameters of

the seismic cube are the following:

Size: 20x20 traces (distances between

traces: 25m)

Sampling rate: 4ms

Trace length: 800ms

Dominant frequency of the wavelet:

30Hz.
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Now, let’s add random noise to the seismic data and force an SNR =2 (twice more data than noise). Later we

will analyze the behavior of the workflow for different SNR levels.

Size: 20x20 traces (distances between

traces: 25m)

Sampling rate: 4ms

Trace length: 800ms

Dominant frequency of the wavelet:

30Hz.

SNR=2
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After transforming the data into the F-XY domain, we can calculate the average amplitude spectrum of the

data and estimate the dominant frequency of the seismic. In the following picture we can see how the

amplitude spectrum of the signal changes when considering random noise:

We see that the average

amplitude spectrum of the seismic

still has the overall behavior of the

noise-free data. The dominant

frequency can be found around

30Hz, which is the frequency of

the Ricker wavelet used.

We still need to keep in mind that

changing the SNR of the data may

affect the accuracy of the

dominant frequency estimation.

Dominant frequency
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The function SNRk is calculated for the entire range of eigenvalues, and information about rank can be

estimated:

In this case, the best signal to

noise ratio can be obtained

with a signal reconstructed

with the first three singular

values. This is consistent with

the number of events existent

in the seismic, as discussed by

Oropeza and Sacchi, 2011,

and other authors.

Later, we will discuss how

the SNR affects the rank

estimation.

The estimated optimal rank of the matrix is 3
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From the previous slide, we already know the kth largest eigenvalues needed to reconstruct the data with the

highest signal to noise ratio. Remembering the Eckart-Young theorem, the low rank-approximation that we

get from the SVD, has the minimum error in terms of the Frobenius norm. After applying the low rank

approximation, we can recover the filtered data:

Original data
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From the previous slide, we already know the kth largest eigenvalues needed to reconstruct the data with the

highest signal to noise ratio. Remembering the Eckart-Young theorem, the low rank-approximation that we

get from the SVD, has the minimum error in terms of the Frobenius norm. After applying the low rank

approximation, we can recover the filtered data:

Filtered data

Notice the improvement in the

SNR of the section. The energy of

the noise has reduced to almost

imperceptible levels.
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From the previous slide, we already know the kth largest eigenvalues needed to reconstruct the data with the

highest signal to noise ratio. Remembering the Eckart-Young theorem, the low rank-approximation that we

get from the SVD, has the minimum error in terms of the Frobenius norm. After applying the low rank

approximation, we can recover the filtered data:

Modeled noise

In the noise model, there is no

noticeable leakage of signal (Key

QC step in Seismic Data

Processing).
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Since the SNR is decreasing, for which SNR we cannot longer estimate accurately the rank of the matrix?

For synthetic data, the method shows a high tolerance to low SNR ratios, being able to

properly estimate ranks for SNR as low as 0.25 (4 times more noise than signal).
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Now let’s look the result of applying the entire workflow to the same seismic data set, but with different SNR.
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Now let’s look the result of applying the entire workflow to the same seismic data set, but with different SNR.

For synthetic data, we can recover good estimation of the input data, for SNR

as low as 0.25 (four times more noise than signal).
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Singular Values Plot

Let’s consider the following post- stack seismic cube:
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SNRk Function

Let’s consider the following post- stack seismic cube:
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With the rank three

reconstruction, the low-

frequency statics of the

original data is preserved

(there is structural

consistency). But the

energy of the channels is

still spread over a larger

area than in the original

image; thus we can

conclude that the result,

even with better SNR,

has a damaged lateral

resolution.

Let’s consider the following post- stack seismic cube:
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The rank ten

reconstruction exhibits

the real dips along the

CDP axis. There is no

noticeable spread of the

energy on the channel

(improved lateral

resolution compared with

previous results). The

increase of SNR

compared with the

original data is

noticeable.

Let’s consider the following post- stack seismic cube:
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We have proposed a method to estimate automatically the rank of a matrix based on an estimated signal to

noise ratio. This method can be integrated with noise attenuation algorithms based on rank reduction. In this

case, we applied the method within a Multichannel Singular Spectrum Analysis noise attenuation workflow.

We proved that for synthetic data, the rank of the matrix can be estimated accurately for SNR levels as low as

0.25 . At lower SNR values, the estimation of the dominant frequency starts to fail, and the energy contained

in the noise level eigenvalues becomes too large to allow an accurate determination of the rank.

On the other hand, for real data, there is too much energy in the “noise level” of the singular values, so the

rank estimator loses accuracy. The SNRk function has to be adjusted for the real data case.

Further suggested work may include:

• Include into the SNRk function a term depending on the slope of the “noise level”. As we saw in the

discussion, the slope of the “noise level” increases as we increase de complexity of our input.


