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Problem: Low SNR

A prestack Shot gather

Ground roll

Direct waves

Multiple reflection-

refraction waves
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CONVENTIONAL METHODS

•Filtering methods

 High-pass and f–k filtering

(Embree et al., 1963; Gelisli and Karsli, 1988; Treitel et al., 1967)

 prediction filtering and f-x decon

(Gulunay 1986; Canales, 1984)

Wavelet Transform Filtering

(Deighan and Watts, 1997; Zhang and Ulrych, 2003)

 S and x-f-k transforms (Askari and Siahkoohi, 2008)

•Sparsity representation

 Wavelet transform (Chen et al., 2017)

 Curvelet transform

(Yarham et al., 2006; Yarham and Hermann et al., 2008;

Naghizadeh and Sacchi, 2018)

 Ridgelet transform

(Chen et al., 2007)
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CONVENTIONAL METHODS

•Filtering methods

•Sparsity representation

•Low-rank representation

 SVD (Trickett, 2002; Cary and Zhang, 2009; da Silva et al., 2016)

 Multichannel Singular Spectrum Analysis (Chiu, 2013)

 Nuclear norm minimization (Kreimer et al., 2013; Li et al., 2017)

▪▪▪▪▪▪
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DEEP LEARNING-BASED METHODS

•Unsupervised learning

Prior knowledge 

Network structure
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DEEP LEARNING-BASED METHODS

•Unsupervised learning

 Sparse autoencoder (Zhang et al., 2019)

 Deep prior (Liu et al., 2020)
 Deep skip autoencoder (Yang et al., 2021;)

▪▪▪▪▪▪

Prior knowledge 

Network structure
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DEEP LEARNING-BASED METHODS

Network architecture
7



DEEP LEARNING-BASED METHODS

Comparison of denoising results of 

actual seismic data.

(a) Noisy CRP gather.

(b) Results obtained by DDTF.

(c) Results obtained by our method.

(d) Removed noise by DDTF.

(e) Removed noise by our method.

8



DEEP LEARNING-BASED METHODS

Noisy data
9



DEEP LEARNING-BASED METHODS

Denoised by the unsupervised method
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DEEP LEARNING-BASED METHODS

Removed ground roll and scattered noise.
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DEEP LEARNING-BASED METHODS

•Unsupervised learning

•Supervised learning

Prior knowledge 

Training data
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DEEP LEARNING-BASED METHODS

•Unsupervised learning

•Supervised learning

 DnCNN (Li et al., 2019;Liu et al., 2019)

 U-net (Sun et al., 2020; Wang et al., 2021)

 Generative adversarial network
(Kaur et al., 2019; Yu et al., 2019; Yuan et al., 2020)
▪▪▪▪▪▪ Prior knowledge 

Training data
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DEEP LEARNING-BASED METHODS
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DEEP LEARNING-BASED METHODS

Flow chart of selecting training samples.
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DEEP LEARNING-BASED METHODS

Seismic sections obtained by different fault confidence thresholds. 
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DEEP LEARNING-BASED METHODS

Original Inline section.
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DEEP LEARNING-BASED METHODS

Removed arc-like imaging noise by the conventional method.

16



DEEP LEARNING-BASED METHODS

Removed arc-like imaging noise by our method.

Cited by Yilmaz, Öz in his new book: Land seismic case studies for near-surface modeling and subsurface imaging, 2021.

https://library.seg.org/doi/abs/10.1190/1.9781560803812


Our concerns

Prestack data is hard to 

train using networks.
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Our concerns

•Can deep learning be applied to prestack strong scattered noise

suppression? Especially in near-offset land seismic data.
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Covariate Shift

Our concerns

•Can deep learning be applied to prestack strong scattered noise

suppression? Especially in near-offset land seismic data.

•What domain is better for prestack data using deep learning?
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Our concerns

•Can deep learning be applied to prestack strong scattered noise

suppression? Especially in near-offset land seismic data.

•What domain is better for deep learning?

•Learning noise or useful signals with the network?

Residual learning. Direct signal learning. 18
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MODEL FORMULATION

We model the seismic data, denoted by a

vector , as a superposition of

reflections and noise：

,= +y x n

m =y 

where represents useful signals

and represents scattered and random

noise.

m =x 

n
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vector , as a superposition of

reflections and noise：
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Given a large number of training sample

pairs containing noisy input and clean

labels

By network training, deep learning aim to

find the regression function

( ) *

X,Nargmin (X N),X ,
h

h L h= +

or

( ) *

X,Nargmin (X N), N .
h

h L h= +

Pixel-wise mean square error is the loss

function

( ) 2

2(X N),X (X N ,) XL h h+ = + −‖ ‖

or

( ) 2

2(X N),X (X N) N .L h h+ = + −‖ ‖

or ( ) ( ) ( )y ,x ~ Y,X X N, N , 1, ,i i i K= + = 

( ) ( ) ( )y ,x ~ Y,X X N,X , 1, ,i i i K= + = 

19



MODEL FORMULATION

Since the joint distribution function is

unknown, the expectation is estimated by

the empirical risk as follows
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or

Training a network is to minimize the

CNN paremeterized mapping

: ,f →  

or

: .f →  

Can we find a better data sorting type for

network training with fixed reflection

distribution or noise distribution?
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OFFSET VECTOR TILE

Cited from PGS



COMMON OFFSET VECTOR VOLUME

A cross spread 22



COMMON OFFSET VECTOR VOLUME

Common offset vector volumeA cross spread 22



ADVANTAGES BASED ON OVT PROCESSING

•Offsets and azimuths are relatively constant in the OVT domain,

which is conducive to regularization and immigration processing.
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ADVANTAGES BASED ON OVT PROCESSING

•Offsets and azimuths are relatively constant in the OVT domain,

which is conducive to regularization and immigration processing.

•OVT is single fold coverage of the entire survey area with similar

offsets and azimuths, thereby reducing the spatial discontinuity and

laying the data foundation for network learning.
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NETWORK ARCHITECTURE
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NETWORK ARCHITECTURE

3D-DnCNN
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NETWORK ARCHITECTURE

3D-CNN
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NETWORK ARCHITECTURE

3D-DnCNN
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NETWORK ARCHITECTURE

Our network architecture
24
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SYNTHETIC SEISMIC DATA
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SYNTHETIC SEISMIC DATA

Training labels with offset of 4991 26



SYNTHETIC SEISMIC DATA

Field seismic noise with offset of 4991 27



SYNTHETIC SEISMIC DATA

Field seismic noise with offset of 4991 Noisy seismic noise with offset of 4991

SNR: -5.70 dB
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SYNTHETIC SEISMIC DATA

Removed noise by residual learning Denoised results by residual learning

SNR: 12.4 dB
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SYNTHETIC SEISMIC DATA

Removed noise by our method Denoised results by our method

SNR: 13.2 dB
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SYNTHETIC SEISMIC DATA

Training labels with offset of 5001 30



SYNTHETIC SEISMIC DATA

Field seismic noise with offset of 5001 31



SYNTHETIC SEISMIC DATA

Field seismic noise with offset of 5001 Noisy seismic noise with offset of 5001

SNR: -18.82 dB

32



SYNTHETIC SEISMIC DATA

Removed noise by residual learning Denoised results by residual learning

SNR: -6.03 dB
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SYNTHETIC SEISMIC DATA

Removed noise by our method Denoised results by our method

SNR: 1.54 dB
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FIELD SEISMIC DATA

Our network processing procedure
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CONVENTIONAL DENOISING METHOD

To make full use of dip information, we

choose 3D-Morlet wavelet to construct

labels.
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CONVENTIONAL DENOISING METHOD

Space slice of a 3d-morlet wavelet
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To make full use of dip information, we

choose 3D-Morlet wavelet to construct

labels.

The definition of 3D-CWT is
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LOCATIONS

Locations of OVT volumes in offset-azimuth polar coordinates
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OVT RESULTS

Inline section results of a

OVT volume. (a) noisy. (b)

and (c) are results by 3D

CWT. (d) and (e) are our

results.
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OVT RESULTS

Crossline section results

of a OVT volume. (a) noisy.

(b) and (c) are results by

3D CWT. (d) and (e) are our

results.
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OVT RESULTS

Time slice results of a

OVT volume. (a) noisy.

(b) and (c) are results

by 3D CWT. (d) and (e)

are our results.
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STACKED RESULTS

Inline section results of

stacked data. (a) noisy. (b)

and (c) are results by 3D

CWT. (d) and (e) are our

results.
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STACKED RESULTS

Crossline section results

of stacked data. (a) noisy.

(b) and (c) are results by

3D CWT. (d) and (e) are our

results.
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STACKED RESULTS

Time slice results of

stacked data. (a) noisy.

(b) and (c) are results

by 3D CWT. (d) and (e)

are our results.
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CMP RESULTS

Results of common mid-

point gathers. (a) noisy. (b)

and (c) are results by 3D

CWT. (d) and (e) are our

results.
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Cost time comparison
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Middle-offset selection strategy

Can we further improve the denoising results?



Middle-offset selection strategy

Locations of OVT volumes in offset-azimuth polar coordinates
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Middle-offset selection strategy

Locations of OVT volumes in offset-azimuth polar coordinates

Near-offset data
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Locations of OVT volumes in offset-azimuth polar coordinates

Far-offset data
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Locations of OVT volumes in offset-azimuth polar coordinates

Middle-offset data
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Middle-offset selection strategy

Locations of OVT volumes in offset-azimuth polar coordinates
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OVT RESULTS

Crossline section results of a

near-offset OVT volume. (a)

noisy. (b) and (c) are results

by 3D CWT. (d) and (e) are

our results.
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OVT RESULTS

Time-slice results of a

middle-offset OVT volume. (a)

noisy. (b) and (c) are results

by 3D CWT. (d) and (e) are

our results.
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OVT RESULTS

Inline section results of a far-

offset OVT volume. (a) noisy.

(b) and (c) are results by 3D

CWT. (d) and (e) are our

results.
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STACKED RESULTS

Inline section results of

stacked data. (a) noisy. (b)

and (c) are results by 3D

CWT. (d) and (e) are our

results.
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CMP RESULTS

Results of common mid-

point gathers. (a) noisy. (b)

and (c) are results by 3D

CWT. (d) and (e) are our

results.
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Conclusion

•We propose a prestack denoising method by combining the merits of

deep learning and OVT partitioning techniques. In the OVT domain,

the wavefield continuity and data consistency provide a conducive

signal learning environment for the network. The massive amount of

OVT gathers can make full use of the high computational efficiency of

deep learning.
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Conclusion

•We propose a prestack denoising method by combining the merits of

deep learning and OVT partitioning techniques. In the OVT domain,

the wavefield continuity and data consistency provide a conducive

signal learning environment for the network. The massive amount of

OVT gathers can make full use of the high computational efficiency of

deep learning.

•The direct signal learning is better than residual learning for strong

scattered noise attenuation. The field results demonstrate that only a

minimal number of OVT volumes can make the network obtain the

ability to suppress the whole survey's noise.

•Randomly selecting the middle-offset OVT gathers as the training

volumes can get better results.
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Contact Us

Thanks for listening!

Contact me by email: dawei3@ualberta.ca

Homepage: davidliu-code.github.io 


