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Significance of seismic reflectivity inversion

 Improving the resolution of the seismic data is conductive to obtaining the high-

resolution impedance. 
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Introduction

Field data case

The field data is usually 

nonstationary because of the 

heterogeneous, anisotropic, and 

anelastic mediums.

We focus on the anelastic attenuation 

and dispersion, i.e., the wavelet is 

time-varying with amplitude 

attenuation and phase dispersion.  
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Related work

There are two kinds of methods:

Data

Inverse 

filter

Reflectivity 

inversion

Nonstationary 

reflectivity 

inversion

Bickel and Natarajan, 1985; Hargreaves and Calvert, 1991; Wang, 

2002, 2006; Zhang and Ulrych, 2007; Braga and Moraes, 2013; 

Zhang and Gao, 2018, ……

Margrave et al., 2011;van der Baan, 2012; Wang et al., 2013; Chai et al., 

2014; Gholami, 2015; Yuan et al., 2017; Aghamiry and Gholami, 2018; 

Chen et al., 2021, ……

1.Pre-estimate the appropriate quality factor Q

2.Develop a robust algorithm

1. Pre-estimate Q or the time-varying wavelets;

2. Develop a robust regularization.

Two-step

One-step
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Mathematical framework of nonstationary reflectivity inversion 

Key challenges:   1. estimating the time-varying wavelets or Q values;

2. pre-determining the regularization terms and parameters;

3. depending on the initial values;

4. low computational efficiency.
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Model-Driven 

Optimization 

Algorithm 

Data-Driven 

Deep Learning

Complementary 

Advantages

 Relieve the dependence of the 

training data sets 

 Give some interpretation

 Reduce the training time

 Provide new ideas to build the 

deep neural network

 Learn gradients

 Learn regularization or 

proximal operators

 Learn hyper-parameters

How to apply deep learning to solve the seismic inverse problems?

Model-Driven Deep Learning
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Vishal Monga, 2020

ADMM-CSNets (Yang Yan et al., 2019) ISTA-Net (Zhang Jian et al., 2018)

PD-Net (Jonas Adler et al., 2018) MD-DAN (Yang Yan et al., 2020)

Model-Driven Deep Learning
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Theory

Nonstationary convolution model

According to Margrave et al. (2011), nonstationary seismic trace can be modeled by

Based on the Kolsky-Futterman 𝑄 model, 𝑎 𝑡, 𝜏 is defined as:

where 𝛼(𝑡, 𝑓) is the attenuation function, including amplitude attenuation and phase dispersion.

𝑠 𝑡 = 𝑤 𝑡 ∗ 𝑎 𝑡, 𝜏 ⨀𝑟 𝑡 + 𝑛(𝑡) (1)

𝑠 𝑡 : seismic trace

𝑟 𝑡 : reflectivity

𝑛(𝑡): random noise

𝑤 𝑡 : source wavelet

𝑎 𝑡, 𝜏 : impulse response of the attenuation process

𝑎 𝑡, 𝜏 = න
−∞

∞

𝛼(𝑡, 𝑓)𝑒2𝜋𝑖𝑓𝜏𝑑𝑓 = න
−∞

∞

𝑒
−
𝜋𝑓𝑡
𝑄 𝑒

𝑖
1
𝜋ln(

𝑓
𝑓𝑟
)
2𝜋𝑓𝑡
𝑄 𝑒2𝜋𝑖𝑓𝜏𝑑𝑓 (2)
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Theory

Nonstationary convolution model

Rewrite equation (1) as:

where the wavelet is time-varying during propagation. This increases the instability and uncertainty of the 

inversion solution. Here, it is simplified as:

Using a set of windows to segment the reflectivity and treating that the wavelet at each window is stationary.

In this case, attenuation function 𝛼(𝑡, 𝑓) is considered to be slowly changing relative to the windows.   

𝑠 𝑡 = 𝑤 𝑡, 𝜏 ⨀𝑟 𝑡 + 𝑛(𝑡) (3)

𝐬 ≈෍

𝑗=1

𝐵

𝐰𝑗 ∗ [𝐫Ω𝑗] + 𝐧
(4)

𝑤 𝑡, 𝜏 : time-varying wavelet

𝐬, 𝐫, 𝐧: vectors of seismic trace, reflectivity and noise

Ω𝑗: the 𝑗𝑡ℎ window

𝐰𝑗: wavelet in the 𝑗𝑡ℎ window
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Theory

𝐬 ≈෍

𝑗=1

𝐵

𝐰𝑗 ∗ [𝐫Ω𝑗] + 𝐧

Nonstationary convolution model

(4)

Hojjat 2019 



Theory

Seismic reflectivity inversion-SRI framework

To invert the reflectivity from equation (4), the following cost function is built as:

There are some limitations: 

• Requiring to set the initial values for the seismic wavelets;

• Optimization algorithms are usually computationally demanding;

• Pre-determining the regularization terms and some sensitive parameters.

𝐽 = min
𝐫,𝐰

1

2
||𝐬 −෍

𝑗=1

𝐵

𝐰𝑗 ∗ [𝐫Ω𝑗]||2
2 + 𝜆Ψ(𝐫) + 𝜇Φ(𝐰) (5)



Theory

PMDDLM: Deep learning based nonstationary SRI 

To alleviate the above limitations, we use the convolutional neural network to replace the gradient components.

To derive the deep neural network, we start from the optimization of equation (5). 

𝐽 = min
𝐫,𝐰

1

2
||𝐬 −෍

𝑗=1

𝐵

𝐰𝑗 ∗ [𝐫Ω𝑗]||2
2 + 𝜆Ψ(𝐫) + 𝜇Φ(𝐰)

splitting

(5)

(6)

(7)

𝐽1 = min
𝐰

1

2
||𝐬 −෍

𝑗=1

𝐵

𝐰𝑗 ∗ [𝐫Ω𝑗]||2
2 + 𝜇Φ(𝐰)

𝐽2 = min
𝐫

1

2
||𝐬 −෍

𝑗=1

𝐵

𝐰𝑗 ∗ [𝐫Ω𝑗]||2
2 + 𝜆Ψ(𝐫)



Theory

PMDDLM: Deep learning based nonstationary SRI 

For each sub-problems, we use half-quadratic splitting algorithm to solve them, and then obtain the following 

solutions:

𝐱𝑘 = 𝐶𝑜𝑛𝑐𝑎𝑡{𝐹𝐻
ത𝐫𝑗
𝑘−1 ∗

⋅ ҧ𝐬𝑗 + 2𝜉𝑘 ഥ𝐰𝑗
𝑘−1

ത𝐫𝑗
𝑘−1 ∗

⋅ ത𝐫𝑗
𝑘−1 + 2𝜉𝑘

}

𝐳𝑘 =෍

𝑗=1

𝐵

𝐹𝐻
ഥ𝐰𝑗
𝑘 ∗

⋅ ҧ𝐬𝑗 + 2𝛽𝑘ത𝐫𝑗
𝑘−1

ഥ𝐰𝑗
𝑘 ∗

⋅ ഥ𝐰𝑗
𝑘 + 2𝛽𝑘

𝐰𝑘 = 𝐰𝑘−1 − 𝜐𝑘 𝜇𝑘 ▽Φ(𝐰𝑘−1) + 2𝜉𝑘(𝐰𝑘−1 − 𝐱𝑘)

𝐫𝑘 = 𝐫𝑘−1 − 𝜁𝑘 𝜆𝑘 ▽Ψ(𝐫𝑘−1) + 2𝛽𝑘(𝐫𝑘−1 − 𝐳𝑘)

(8-1)

(8-2)

(8-3)

(8-4)
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PMDDLM: Deep learning based nonstationary SRI 

Using CNN to replace the gradients components:

𝐱𝑘 = 𝐶𝑜𝑛𝑐𝑎𝑡{𝐹𝐻
ത𝐫𝑗
𝑘−1 ∗

⋅ ҧ𝐬𝑗 + 2𝜉𝑘 ഥ𝐰𝑗
𝑘−1

ത𝐫𝑗
𝑘−1 ∗

⋅ ത𝐫𝑗
𝑘−1 + 2𝜉𝑘

}

𝐳𝑘 =෍

𝑗=1

𝐵

𝐹𝐻
ഥ𝐰𝑗
𝑘 ∗

⋅ ҧ𝐬𝑗 + 2𝛽𝑘ത𝐫𝑗
𝑘−1

ഥ𝐰𝑗
𝑘 ∗

⋅ ഥ𝐰𝑗
𝑘 + 2𝛽𝑘

𝐰𝑘 = 𝐰𝑘−1 − 𝜐𝑘 𝜇𝑘 ▽Φ(𝐰𝑘−1) + 2𝜉𝑘(𝐰𝑘−1 − 𝐱𝑘)

𝐫𝑘 = 𝐫𝑘−1 − 𝜁𝑘 𝜆𝑘 ▽Ψ(𝐫𝑘−1) + 2𝛽𝑘(𝐫𝑘−1 − 𝐳𝑘)

2𝐷𝐶𝑁𝑁𝑠Θ1𝑘

1𝐷𝐶𝑁𝑁𝑠Θ2𝑘

(8)
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PMDDLM: Deep learning based nonstationary SRI 

Unrolling the iterations parts in equation (8):

𝐸(𝛩)

= min
Θ

1

𝑁 ×𝑁𝑡
෍

𝑖=1

𝑁

| |ΓΘ
† 𝐬𝑖 𝐫𝑖 − 𝐫𝑖

𝑔𝑡
||1

+
1

𝑁 × 𝑁𝑡
෍

𝑖=1

𝑁

| |Γ(𝐫𝑖
𝑔𝑡
, ΓΘ

† 𝐬𝑖 𝐰𝑖
) − 𝐬𝑖||1

+
1

𝑀 × 𝑁𝑡
෍

𝑗=1

𝑀

| |𝐬𝑗
′ − 𝐬𝑗||1

+ 𝛾
1

𝑀 × 𝐵 ×𝑀𝑡
෍

𝑗=1

𝑀

| |𝐷𝐰||1

Γ

ΓΘ
†Supervised loss

Data-consistency loss

smooth loss

(9)
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Examples

Synthetic data example

Interval Q model 

(a)

(b)

(c)

Reflectivity model 

Nonstationary data



Examples

Synthetic data example

(a) (b)

DL inverted reflectivity NBD inverted reflectivity

PCC = 0.9730 PCC = 0.7844

PCC



Examples

Synthetic data example

(a) (b)

DL inverted reflectivity error NBD inverted reflectivity error



Examples

Synthetic data example

(a) (b)

DL inverted wavelets NBD inverted wavelets

PCC = 0.9931 PCC = 0.9175



Examples

Synthetic data example

(a) (b)

DL reconstructed data NBD reconstructed data



Examples

Synthetic data example

(a) (b)

DL reconstructed data error NBD reconstructed data error



Examples

Field data example Post-stack field data

 Using well-1, well-2, well-3, well-

5 to train and well-4 to validate. 



Examples Field data example

Post-stack field data

DL inverted reflectivity

(a)

(b)



Examples Field data example

Post-stack field data

NBD inverted reflectivity

(a)

(b)
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Field data example

filtered reflectivity of well-4

PCC = 0.5040

PCC = 0.6160

PCC = 0.5077

Field data

Filtered Reflectivity-DL

Filtered Reflectivity-NBD



Examples

Field data example

(a) (b) (c)

Amplitude spectra of the entire data profile, the first half part, and the second half part



Examples

Field data example

(a) (b)

DL inverted wavelets NBD inverted wavelets



Conclusions

 We build a prior-engaged neural network framework by unrolling an alternating iterative 

optimization algorithm to simultaneously estimate the reflectivity and time-varying 

wavelets;

 We introduce two data-consistency losses to learn the time-varying wavelets and transfer 

the knowledge from the unlabeled data;

 We add a regularization term in the loss function to constrain the time-varying wavelets 

to make them smooth in the spatial direction;

 Some experiments are conducted to show the effectiveness of the proposed method. 
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