Least-squares reverse-time migration via deep learning-based updating operators

Kristian Torres

Supervisor: Dr. Mauricio Sacchi

Signal Analysis and Imaging Group (SAIG) Department of Physics University of Alberta

January 25, 2022

• Least-squares migration (LSM)

 Deep learning-based LSRTM Learned iterative reconstruction Learned post-processing operator

3 Numerical Experiments

4 Conclusions

1 Least-squares migration (LSM)

 Deep learning-based LSRTM Learned iterative reconstruction Learned post-processing operator

③ Numerical Experiments

4 Conclusions

• Acoustic wave equation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)u = f$$

- c: velocity field
- u: wavefield
- f: source function

c

• Acoustic wave equation

$$\left(\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)u_0 = f$$

 c_0 : velocity field

 u_0 : incident wavefield

f: source function

• Acoustic wave equation

$$\left(\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)u_0 = f$$

- c_0 : velocity field
- u_0 : incident wavefield
- f: source function

• Acoustic wave equation

$$\left(\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)u_0 = f$$

- c_0 : velocity field
- u_0 : incident wavefield
- f: source function

• Linearized wave equation

$$\left(\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2}-\nabla^2\right)\delta u=-m\frac{\partial^2 u_0}{\partial t^2}$$

 c_0 : velocity field

- $\delta u :$ scattered wavefield
- m: reflectivity image

• Acoustic wave equation

$$\left(\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)u_0 = f$$

- c_0 : velocity field
- u_0 : incident wavefield
- f: source function

• Linearized wave equation

$$\left(\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2}-\nabla^2\right)\delta u=-m\frac{\partial^2 u_0}{\partial t^2}$$

 c_0 : velocity field

 $\delta u :$ scattered wavefield

m: reflectivity image

Assumption: No multiple scattering!

• Forward modeling

 $\mathbf{d} = \mathbf{L}\mathbf{m}$

- d: seismic data
- \mathbf{L} : forward modeling operator
- **m**: reflectivity image

• Forward modeling

 $\mathbf{d} = \mathbf{L}\mathbf{m}$

• Reverse time migration (RTM)

$$\mathbf{m}_{\mathrm{mig}} = \mathbf{L}^T \mathbf{d}_{\mathrm{obs}}$$

- $\mathbf{d}:$ seismic data
- $\mathbf{L}:$ forward modeling operator
- \mathbf{m} : reflectivity image

- \mathbf{m}_{mig} : RTM image
- $\mathbf{L}^T:$ migration operator
- $\mathbf{d}_{\mathrm{obs}}:$ observed seismic data

• Forward modeling

 $\mathbf{d} = \mathbf{L}\mathbf{m}$

• Reverse time migration (RTM)

$$\mathbf{m}_{\mathrm{mig}} = \mathbf{L}^T \mathbf{d}_{\mathrm{obs}}$$

- $\mathbf{d}:$ seismic data
- $\mathbf{L}:$ forward modeling operator
- \mathbf{m} : reflectivity image

 \mathbf{m}_{mig} : RTM image

 $\mathbf{L}^T:$ migration operator

 $\mathbf{d}_{\mathrm{obs}}:$ observed seismic data

Migration is an approximate solution of the linearized inverse problem

Least-squares migration (LSM)

 $\mathbf{m}_{\mathrm{LSM}} = (\mathbf{L}^T \mathbf{L})^{-1} \mathbf{L}^T \mathbf{d}$

Least-squares migration (LSM)

 $\mathbf{m}_{\mathrm{LSM}} = (\mathbf{L}^T \mathbf{L})^{-1} \mathbf{L}^T \mathbf{d}$

Least-squares migration (LSM)

 $\mathbf{m}_{\mathrm{LSM}} = (\mathbf{L}^T \mathbf{L})^{-1} \mathbf{L}^T \mathbf{d}$

Least-squares migration (LSM)

 $\mathbf{m}_{LSM} = \mathbf{H}^{-1} \mathbf{m}_{RTM}$

Deep-LSRTM

Solve unconstrained optimization problem iteratively

$$\min_{\mathbf{m}} \left\{ J(\mathbf{m}) + \lambda R(\mathbf{m}) = \frac{1}{2} ||\mathbf{L}\mathbf{m} - \mathbf{d}_{\text{obs}}||_{2}^{2} + \lambda R(\mathbf{m}) \right\},\$$

Solve unconstrained optimization problem iteratively

$$\min_{\mathbf{m}} \left\{ J(\mathbf{m}) + \lambda R(\mathbf{m}) = \frac{1}{2} ||\mathbf{L}\mathbf{m} - \mathbf{d}_{obs}||_{2}^{2} + \lambda R(\mathbf{m}) \right\},\$$

When $R(\mathbf{m})$ is differentiable: gradient-based method such as GD or CG

Solve unconstrained optimization problem iteratively

$$\min_{\mathbf{m}} \left\{ J(\mathbf{m}) + \lambda R(\mathbf{m}) = \frac{1}{2} ||\mathbf{L}\mathbf{m} - \mathbf{d}_{obs}||_2^2 + \lambda R(\mathbf{m}) \right\},\$$

When $R(\mathbf{m})$ is differentiable: gradient-based method such as GD or CG

GD solution
$$\rightarrow \mathbf{m}_{k+1} = \mathbf{m}_k - \alpha (\nabla J(\mathbf{m}_k) + \lambda \nabla R(\mathbf{m}_k))$$

$$\nabla J(\mathbf{m}_k) = \mathbf{L}^T (\mathbf{L}\mathbf{m}_k - \mathbf{d}))$$

Alternatively, introduce prior knowledge as projected constraints:

$$\min_{\mathbf{m}\in\mathcal{C}} \left\{ J(\mathbf{m}) = \frac{1}{2} ||\mathbf{Lm} - \mathbf{d}_{\text{obs}}||_2^2 \right\},\$$

 $\mathcal{C} {:}$ set of desired physical constraints

Alternatively, introduce prior knowledge as projected constraints:

$$\min_{\mathbf{m}\in\mathcal{C}} \left\{ J(\mathbf{m}) = \frac{1}{2} ||\mathbf{Lm} - \mathbf{d}_{\text{obs}}||_2^2 \right\},\$$

 \mathcal{C} : set of desired physical constraints

Projected GD solution
$$\rightarrow \mathbf{m}_{k+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k))$$

PGD solution
$$\rightarrow \mathbf{m}_{k+1} = \mathcal{P}_{\mathcal{C}} \Big(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k) \Big)$$

Least-squares migration via a gradient projection method - application to seismic data deblending (Cheng et al., 2016)

PGD solution
$$\rightarrow \mathbf{m}_{k+1} = \mathcal{P}_{\mathcal{C}}(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k))$$

Least-squares migration via a gradient projection method - application to seismic data deblending (Cheng et al., 2016)

Motivation

Classical LSM approaches

• Regularization/Constraints at each iteration: suppresses migration artifacts and improves inversion efficiency.

- Regularization/Constraints at each iteration: suppresses migration artifacts and improves inversion efficiency.
- Many iterations to find a good solution

- Regularization/Constraints at each iteration: suppresses migration artifacts and improves inversion efficiency.
- Many iterations to find a good solution
- Geology is too complicated $\rightarrow R(\mathbf{m})$? $\mathcal{P}_{\mathbb{C}}(\mathbf{m})$?

- Regularization/Constraints at each iteration: suppresses migration artifacts and improves inversion efficiency.
- Many iterations to find a good solution
- Geology is too complicated $\rightarrow R(\mathbf{m})$? $\mathcal{P}_{\mathbb{C}}(\mathbf{m})$?
- optimal λ ?

- Regularization/Constraints at each iteration: suppresses migration artifacts and improves inversion efficiency.
- Many iterations to find a good solution
- Geology is too complicated $\rightarrow R(\mathbf{m})$? $\mathcal{P}_{\mathbb{C}}(\mathbf{m})$?
- optimal λ ?

Deep Learning solutions for seismic imaging

Motivation

Deep Learning solutions for inverse imaging

Main approaches

- Fully learned reconstruction (end-to-end)
- Learned iterative reconstruction
- Learned post-processing operator
- Learned regularizer
- Physics-informed (PINNs)
- Physics-guided based on RNNs
- Regularization via null space networks

Motivation

Deep Learning solutions for inverse imaging

Main approaches

- Fully learned reconstruction (end-to-end)
- Learned iterative reconstruction
- Learned post-processing operator
- Learned regularizer
- Physics-informed (PINNs)
- Physics-guided based on RNNs
- Regularization via null space networks

• Least-squares migration (LSM)

Deep learning-based LSRTM Learned iterative reconstruction Learned post-processing operator

3 Numerical Experiments

4 Conclusions

Learned iterative reconstruction

Inspired by LSM via PGD

$$\mathbf{m}_{k+1} = \mathcal{P}_{\mathcal{C}}\Big(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k)\Big)$$

Inspired by LSM via PGD

$$\mathbf{m}_{k+1} = \mathcal{P}_{\mathcal{C}}\Big(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k)\Big)$$

Can we train updating operators to perform efficient projections?

Inspired by LSM via PGD

$$\mathbf{m}_{k+1} = \mathcal{P}_{\mathcal{C}}\Big(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k)\Big)$$

Can we train updating operators to perform efficient projections?

$$\mathbf{m}_{k+1} = \mathcal{P}_{\theta_k} \Big(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k) \Big)$$

Inspired by LSM via PGD

$$\mathbf{m}_{k+1} = \mathcal{P}_{\mathcal{C}}\Big(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k)\Big)$$

Can we train updating operators to perform efficient projections?

$$\mathbf{m}_{k+1} = \mathcal{P}_{\theta_k} \Big(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k) \Big)$$

$$\mathbf{m}_{k+1} = \mathcal{P}_{\theta_k} \Big(\mathbf{m}_k, \nabla J(\mathbf{m}_k) \Big)$$

Deep-LSRTM

Deep-LSRTM

Unrolled algorithm (first two iterations)

Each \mathcal{P}_{θ_k} is assembled following an encoder-decoder architecture:

Deep-LSRTM: training process

Instead of training all weights $\Theta = (\theta_0, ..., \theta_{K-1})$ together

$$\begin{split} \hat{\Theta} &= \operatorname*{arg\,min}_{\Theta} \ \frac{1}{\Im} \sum_{i=1}^{\Im} ||\mathbf{m}_{K}^{i} - \mathbf{m}_{\mathrm{true}}^{i}||_{2}^{2}, \\ &= \operatorname*{arg\,min}_{\theta_{0},\dots,\theta_{K-1}} \ \frac{1}{\Im} \sum_{i=1}^{\Im} ||(\mathcal{P}_{\theta_{K-1}} \circ \dots \circ \mathcal{P}_{\theta_{0}}(\mathbf{m}_{0}^{i}, \nabla J(\mathbf{m}_{0}^{i}))) - \mathbf{m}_{\mathrm{true}}^{i}||_{2}^{2}, \end{split}$$

Deep-LSRTM: training process

Instead of training all weights $\Theta = (\theta_0, ..., \theta_{K-1})$ together

$$\begin{split} \hat{\boldsymbol{\Theta}} &= \operatorname*{arg\,min}_{\boldsymbol{\Theta}} \; \frac{1}{\Im} \sum_{i=1}^{\Im} ||\mathbf{m}_{K}^{i} - \mathbf{m}_{\mathrm{true}}^{i}||_{2}^{2}, \\ &= \operatorname*{arg\,min}_{\theta_{0},\ldots,\theta_{K-1}} \; \frac{1}{\Im} \sum_{i=1}^{\Im} ||(\mathcal{P}_{\theta_{K-1}} \circ \ldots \circ \mathcal{P}_{\theta_{0}}(\mathbf{m}_{0}^{i}, \nabla J(\mathbf{m}_{0}^{i}))) - \mathbf{m}_{\mathrm{true}}^{i}||_{2}^{2}, \end{split}$$

Train by greedy approach:

$$\begin{split} \hat{\theta}_k &= \min_{\theta_k} \; \frac{1}{\Im} \sum_{i=1}^{\Im} ||\mathbf{m}_{k+1}^i - \mathbf{m}_{\text{true}}^i||_2^2 \\ &\min_{\theta_k} \; \frac{1}{\Im} \sum_{i=1}^{\Im} ||\mathcal{P}_{\theta_k}(\mathbf{m}_k^i, \nabla J(\mathbf{m}_k^i)) - \mathbf{m}_{\text{true}}^i||_2^2 \end{split}$$

 $\Im \equiv$ No. of training instances

Data set

- Pseudo-random synthetic models
- 400×200 velocity distributions of sedimentary structures (1.5 to 5.5 km/s)
- Reflectivity as velocity perturbations: 900 training, 100 validation, 200 testing

Each \mathcal{P}_{θ_k} is trained sequentially using

- 50000 steps of Adam optimizer with lr = 0.001
- Batch size of 2, 111 epochs
- Including gradient calculation step, each updating operator is trained in ≈ 3 hours

We set 5 iterations $(\mathcal{P}_{\theta_0}, ..., \mathcal{P}_{\theta_4})$ of Deep-LSRTM

Deep-LSRTM training

Deep-LSRTM training

• Least-squares migration (LSM)

Deep learning-based LSRTM Learned iterative reconstruction Learned post-processing operator

③ Numerical Experiments

4 Conclusions

Learned post-processing operator

Two-step reconstruction

$$\mathbf{m} = \Lambda_{\Phi}(\mathbf{L}^{\mathrm{T}}\mathbf{d})$$

= $\Lambda_{\Phi}(\mathbf{m}_{\mathrm{RTM}})$

Two-step reconstruction

$$\begin{split} \mathbf{m} &= \Lambda_{\Phi}(\mathbf{L}^{\mathrm{T}}\mathbf{d}) \\ &= \Lambda_{\Phi}(\mathbf{m}_{\mathrm{RTM}}) \end{split}$$

Single-iteration image-domain LSM

$$\begin{split} \mathbf{m} &= \mathbf{C} \mathbf{L}^{\mathrm{T}} \mathbf{d} \\ &= \mathbf{C} \mathbf{m}_{\mathrm{mig}} \\ \\ \mathrm{with} \ \mathbf{C} &\approx \left[\mathbf{L}^{\mathrm{T}} \mathbf{L} \right]^{-1} \end{split}$$

Modified U-net architecture

Single-step reconstruction with U-net

- Also trained with Adam (lr=0.001) for 111 epochs
- Modified version of the original U-net
- \approx 3 hours to train

• Least-squares migration (LSM)

 Deep learning-based LSRTM Learned iterative reconstruction Learned post-processing operator

3 Numerical Experiments

4 Conclusions

• Example 1: central part of Marmousi

• Example 1: central part of 1Marmousi

- Example 1: central part of Marmousi
 - Learned reconstructions as warm-starts for CGLS
 - Sensibility to background model errors
 - Sensibility to random noise

24 / 45

Deep-LSRTM

- Example 1: central part of Marmousi
 - Learned reconstructions as warm-starts for CGLS
 - Sensibility to background model errors
 - Sensibility to random noise

Cropped Marmousi			
Method	PSNR (db)	SSIM	
CGLS	27.46	0.47	
U-net	28.37	0.53	
Deep-LSRTM	29.87	0.65	
Warm-started CGLS			
$\mathrm{CGLS}_{\mathrm{U-net}}$	29.96	0.58	
$\mathrm{CGLS}_{\mathrm{Deep}\text{-}\mathrm{LSRTM}}$	30.37	0.69	

Cropped Marmousi			
Method	PSNR (db)	SSIM	
CGLS	27.46	0.47	
U-net	28.37	0.53	
Deep-LSRTM	29.87	0.65	
Warm-started CGLS			
$\mathrm{CGLS}_{\mathrm{U-net}}$	29.96	0.58	
CGLS _{Deep-LSRTM}	30.37	0.69	

- Example 1: central part of Marmousi
 - Learned reconstructions as warm-starts for CGLS
 - Sensibility to background model errors
 - Sensibility to random noise

• Test learning approaches against background models with higher degrees of smoothing

- Test learning approaches against background models with higher degrees of smoothing
- Deep-LSRTM+vel: background velocity field as complementary branch

- Test learning approaches against background models with higher degrees of smoothing
- Deep-LSRTM+vel: background velocity field as complementary branch

• Migration velocity model with 5% faster velocity everywhere.

(a) RTM, (b) LSRTM (20 iterations), (c) U-net reconstruction, (d) Deep-LSRTM.

Deep-LSRTM

Sponsors meeting 2021

- Example 1: central part of Marmousi
 - Learned reconstructions as warm-starts for CGLS
 - Sensibility to background model errors
 - Sensibility to random noise

Example 2: Gulf of Mexico data set

Mississippi Canyon (Gulf of Mexico) 2D data set

- Shallow salt body in a deep water environment
- The data lack both low frequencies and long offsets (maximum offset is 4.8 Km)
- Streamer geometry: 809 shots, 183 receivers, recording time = 7 s, dt = 4 ms.

Mississippi Canyon (Gulf of Mexico) data set

Mississippi Canyon (Gulf of Mexico) data set

Mississippi Canyon (Gulf of Mexico) data set

- Challenges inherent to LSM: accuracy of velocity model, salt body region, illumination issues, limited acquisition aperture, events not contained in the range of the forward (Born) operator, phase and amplitude corrections due to 3-D propagation.
- Challenges inherent to application of supervised approach: different wavelet (frequency content), different acquisition setup, different domain size, different distribution.

Example 2: Gulf of Mexico data set

(a) RTM, (b) LSRTM (20 iterations), (c) Deep-LSRTM without transfer learning. (d) Deep-LSRTM after transfer learning.

Deep-LSRTM

Sponsors meeting 2021

Transfer learning (re-training):

- Reference model: 20 iterations of preconditioned CGLS using a different group of only 60 shots.
- Retrain weights of each \mathcal{P}_{θ_k} with only 20 additional epochs and a reduced learning rate of 1e-5.

Example 2: Gulf of Mexico data set

QC: shot gather and demigration for source at x=15.6 km

(a) Observed gather, (b) RTM-demigrated, (c) LSRTM-demigrated, (d) Deep-LSRTM-demigrated (No transfer learning), (e) Deep-LSRTM-demigrated **after transfer learning**.

Deep-LSRTM

• Least-squares migration (LSM)

 Deep learning-based LSRTM Learned iterative reconstruction Learned post-processing operator

3 Numerical Experiments

4 Conclusions

• Two CNN strategies to speed-up/improve seismic migration: iterative vs post-processing

Deep-LSRTM

 $\mathbf{m}_{k+1} = \Lambda_{\theta_k}(\mathbf{m}_k, \nabla J(\mathbf{m}_k))$

• Two CNN strategies to speed-up/improve seismic migration: iterative vs post-processing

$\mathbf{Deep}\textbf{-}\mathbf{LSRTM}$

$$\mathbf{m}_{k+1} = \Lambda_{\theta_k}(\mathbf{m}_k, \nabla J(\mathbf{m}_k))$$

Two-step U-net reconstruction

$$egin{aligned} \mathbf{m} &= \Lambda_{\Phi}(\mathbf{L}^{\mathrm{T}}\mathbf{d}) \ &= \Lambda_{\Phi}(\mathbf{m}_{\mathrm{RTM}}) \end{aligned}$$

• Two CNN strategies to speed-up/improve seismic migration: iterative vs post-processing

Deep-LSRTM

$$\mathbf{m}_{k+1} = \Lambda_{\theta_k}(\mathbf{m}_k, \nabla J(\mathbf{m}_k))$$

Two-step U-net reconstruction

$$egin{aligned} \mathbf{m} &= \Lambda_{\Phi}(\mathbf{L}^{\mathrm{T}}\mathbf{d}) \ &= \Lambda_{\Phi}(\mathbf{m}_{\mathrm{RTM}}) \end{aligned}$$

Projected gradient descent LSM

$$\mathbf{m}_{k+1} = \mathcal{P}_{\mathbb{C}}\Big(\mathbf{m}_k - \alpha \nabla J(\mathbf{m}_k)\Big)$$

Single-iteration image-domain LSM

$$\mathbf{m} = \mathbf{C}\mathbf{L}^{\mathrm{T}}\mathbf{d}$$
$$= \mathbf{C}\mathbf{m}_{\mathrm{RTM}}$$

with
$$\mathbf{C} \approx \left[\mathbf{L}^{\mathrm{T}} \mathbf{L}\right]^{-1}$$

- Despite using a small training set, the iterative Deep-LSRTM approach yields superior results than conventional LSRTM baselines for same No. of iterations.
- Deep-LSRTM also outperforms a two-step residual U-net post-migration application highlighting the value of including the forward and adjoint wave operators in the inference process.
- Deep-LSRTM network is not severely influenced by model over-fitting for synthetic tests. Re-training needed for Gulf of Mexico.

Thank you!

Least-squares reverse-time migration via deep learning-based updating operators

Kristian Torres

Supervisor: Dr. Mauricio Sacchi

Signal Analysis and Imaging Group (SAIG) Department of Physics University of Alberta

January 25, 2022

Deep-LSRTM: parametrization of the CNN blocks

$$\mathbf{m}_{k+1} = \Lambda_{\theta_k} \Big(\mathbf{m}_k, \nabla J(\mathbf{m}_k) \Big)$$

where

$$\Lambda_{\theta} = (\phi_N \circ W_{w_N, b_N}) \circ \dots \circ (\phi_1 \circ W_{w_1, b_1}),$$
$$W_{w_n, b_n}^q = \left(b_n^q + \sum_{p \in P} w_n^{q, p} * g_p\right), \ q \in Q,$$
$$\theta = \left((w_N, b_N), \dots, (w_1, b_1)\right),$$

and

 $\phi \leftarrow \text{ReLU},$ Sigmoid, Tanh, ...

- Regularization effect and other parameters are learned implicitly
- No need to worry about learning data-to-model space mapping
- The data information is delivered through the gradient $\nabla J(\mathbf{m}_k, \mathbf{d})$

Deep-LSRTM

• Quantitative comparison

$$\text{PSNR} = 10 \cdot \log_{10} \left(\frac{\text{MAX}_I^2}{\text{MSE}} \right)$$

MAX_I: dynamic range MSE: mean squared error

$$SSIM(x,y) = \left[a_{\mu}(x,y)^{\alpha} \cdot c_{\sigma}(x,y)^{\beta} \cdot s_{\sigma}(x,y)^{\gamma}\right]$$

Amplitude: $a_{\mu}(x, y)$ Contrast: $c_{\sigma}(x, y)$ Structure: $s_{\sigma}(x, y)$