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Introduction

• Forward modeling

d = Lm

d: seismic data

L: forward modeling operator

m: reflectivity image

• Reverse time migration (RTM)

mmig = LTdobs

mmig: RTM image

LT : migration operator

dobs: observed seismic data

Migration is an approximate solution of the
linearized inverse problem
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Introduction

Least-squares migration (LSM)

mLSM = (LTL)−1LTd

mRTM = LTd

Illumination map
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Introduction

Solve unconstrained optimization problem iteratively

min
m

{
J(m) + λR(m) =

1

2
||Lm− dobs||22 + λR(m)

}
,

When R(m) is differentiable:

GD solution→mk+1 = mk − α
(
∇J(mk) + λ∇R(mk)

)
∇J(mk) = LT (Lmk − d))
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Introduction

Alternatively, introduce prior knowledge as projected constraints:

min
m∈C

{
J(m) =

1

2
||Lm− dobs||22

}
,

C: set of desired physical constraints

Projected GD solution→mk+1 = PC
(
mk − α∇J(mk)

)
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Introduction

PGD solution→mk+1 = PC
(
mk − α∇J(mk)

)
Least-squares migration via a gradient projection method - application to seismic data
deblending (Cheng et al., 2016)
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Motivation

Classical LSM approaches

• Regularization/Constraints at each iteration: suppresses migration artifacts and
improves inversion efficiency.

• Many iterations to find a good solution

• Geology is too complicated → R(m)? PC(m)?

• optimal λ?

Deep Learning solutions for seismic imaging
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Motivation

Deep Learning solutions for inverse imaging

Main approaches

• Fully learned reconstruction (end-to-end)

• Learned iterative reconstruction

• Learned post-processing operator

• Learned regularizer

• Physics-informed (PINNs)

• Physics-guided based on RNNs

• Regularization via null space networks
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Learned iterative reconstruction

Inspired by LSM via PGD

mk+1 = PC
(
mk − α∇J(mk)

)

Can we train updating operators to perform efficient projections?

mk+1 = Pθk
(
mk − α∇J(mk)

)
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Deep-LSRTM

Unrolled algorithm (first two iterations)

- -
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Deep-LSRTM: network design

Each Pθk is assembled following an encoder-decoder architecture:

mk

∇J(mk)

32 32

32 32

||

64 32 16 1

+ mk+1

Conv+ReLU

||Concatenation

BN

Conv+BN+ReLU
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Deep-LSRTM: training process

Instead of training all weights Θ = (θ0, ..., θK−1) together

Θ̂ = argmin
Θ

1

ℑ
ℑ∑
i=1

||mi
K −mi

true||22,

= argmin
θ0,...,θK−1

1

ℑ
ℑ∑
i=1

||(PθK−1
◦ ... ◦ Pθ0(mi

0,∇J(mi
0)))−mi

true||22,

Train by greedy approach:

θ̂k =min
θk

1

ℑ
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true||22
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θk
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ℑ
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ℑ ≡ No. of training instances

Deep-LSRTM Sponsors meeting 2021 16 / 45



Deep-LSRTM: training process

Instead of training all weights Θ = (θ0, ..., θK−1) together

Θ̂ = argmin
Θ

1

ℑ
ℑ∑
i=1

||mi
K −mi

true||22,

= argmin
θ0,...,θK−1

1

ℑ
ℑ∑
i=1

||(PθK−1
◦ ... ◦ Pθ0(mi

0,∇J(mi
0)))−mi

true||22,

Train by greedy approach:

θ̂k =min
θk

1

ℑ
ℑ∑
i=1

||mi
k+1 −mi

true||22

min
θk

1

ℑ
ℑ∑
i=1

||Pθk(mi
k,∇J(mi

k))−mi
true||22

ℑ ≡ No. of training instances
Deep-LSRTM Sponsors meeting 2021 16 / 45



Data set

• Pseudo-random synthetic models

• 400×200 velocity distributions of
sedimentary structures (1.5 to 5.5 km/s)

• Reflectivity as velocity perturbations:
900 training, 100 validation, 200 testing
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Deep-LSRTM training

Each Pθk is trained sequentially using 341, 441 parameters

• 50000 steps of Adam optimizer with lr = 0.001

• Batch size of 2, 111 epochs

• Including gradient calculation step, each updating operator is trained in ≈ 3 hours

We set 5 iterations (Pθ0 , ...,Pθ4) of Deep-LSRTM
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Deep-LSRTM training
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Learned post-processing operator

Two-step reconstruction

m = ΛΦ(L
Td)

= ΛΦ(mRTM)

Single-iteration image-domain LSM

m = CLTd

= Cmmig

with C ≈
[
LTL

]−1
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Learned post-processing operator

mmig
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Modified U-net architecture
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Single-step reconstruction with U-net

• Also trained with Adam (lr=0.001) for 111 epochs 517, 409 parameters
• Modified version of the original U-net
• ≈ 3 hours to train
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Numerical experiments

• Example 1: central part of Marmousi
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Numerical experiments

• Example 1: central part of Marmousi

• Learned reconstructions as warm-starts for CGLS

• Sensibility to background model errors

• Sensibility to random noise
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Example 1: Marmousi model
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Numerical experiments

• Example 1: central part of Marmousi

• Learned reconstructions as warm-starts for CGLS

• Sensibility to background model errors

• Sensibility to random noise
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Example 1: Marmousi model

Cropped Marmousi

Method PSNR (db) SSIM

CGLS 27.46 0.47

U-net 28.37 0.53

Deep-LSRTM 29.87 0.65

Warm-started CGLS

CGLSU-net 29.96 0.58

CGLSDeep-LSRTM 30.37 0.69
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Example 1: Marmousi model
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Numerical experiments

• Example 1: central part of Marmousi

• Learned reconstructions as warm-starts for CGLS

• Sensibility to background model errors

• Sensibility to random noise
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Example 1: Marmousi model

• Test learning approaches against background models with higher degrees of smoothing

• Deep-LSRTM+vel: background velocity field as complementary branch
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Example 1: Marmousi model

• Deep-LSRTM+vel

50 60 70 80 90 100 110

2D Gaussian filter standard deviation (m)

26

27

28

29

30

31

32

P
S
N

R
(d

B
)

U-net

Deep-LSRTM

Deep-LSRTM+vel

0.0

0.5

1.0

1.5

2.0

k
m

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

km

0.0

0.5

1.0

1.5

2.0

k
m

(b)

-0.05

0.00

0.05

-0.05

0.00

0.05

Deep-LSRTM Sponsors meeting 2021 30 / 45



Example 1: Marmousi model

• Migration velocity model with 5% faster velocity everywhere.
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(a) RTM, (b) LSRTM (20 iterations), (c) U-net reconstruction, (d) Deep-LSRTM.
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Numerical experiments

• Example 1: central part of Marmousi

• Learned reconstructions as warm-starts for CGLS

• Sensibility to background model errors

• Sensibility to random noise
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Example 1: Marmousi model
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Example 2: Gulf of Mexico data set

Mississippi Canyon (Gulf of Mexico) 2D data set

• Shallow salt body in a deep water environment

• The data lack both low frequencies and long offsets (maximum offset is 4.8 Km)

• Streamer geometry: 809 shots, 183 receivers, recording time = 7 s, dt = 4 ms.
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Mississippi Canyon (Gulf of Mexico) data set
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Mississippi Canyon (Gulf of Mexico) data set

• Challenges inherent to LSM: accuracy of velocity model, salt body region,
illumination issues, limited acquisition aperture, events not contained in the range of
the forward (Born) operator, phase and amplitude corrections due to 3-D
propagation.

• Challenges inherent to application of supervised approach: different wavelet
(frequency content), different acquisition setup, different domain size, different
distribution.
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Example 2: Gulf of Mexico data set
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(a) RTM, (b) LSRTM (20 iterations), (c) Deep-LSRTM without transfer learning. (d)
Deep-LSRTM after transfer learning.
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Example 2: Gulf of Mexico data set

Transfer learning (re-training):

• Reference model: 20 iterations of preconditioned CGLS using a different group of
only 60 shots.

• Retrain weights of each Pθk with only 20 additional epochs and a reduced learning
rate of 1e-5.
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Example 2: Gulf of Mexico data set
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Example 2: Gulf of Mexico data set

QC: shot gather and demigration for source at x=15.6 km
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(a) Observed gather, (b) RTM-demigrated, (c) LSRTM-demigrated, (d) Deep-LSRTM-demigrated
(No transfer learning), (e) Deep-LSRTM-demigrated after transfer learning.
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Take-away

• Two CNN strategies to speed-up/improve seismic migration: iterative vs
post-processing

Deep-LSRTM

mk+1 = Λθk(mk,∇J(mk))

= ΛΦ(mRTM)

Projected gradient descent LSM

mk+1 = PC
(
mk − α∇J(mk)

)

Two-step U-net reconstruction

m = ΛΦ(L
Td)

= ΛΦ(mRTM)

Single-iteration image-domain LSM

m = CLTd

= CmRTM

with C ≈
[
LTL

]−1
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Conclusions

• Despite using a small training set, the iterative Deep-LSRTM approach yields
superior results than conventional LSRTM baselines for same No. of iterations.

• Deep-LSRTM also outperforms a two-step residual U-net post-migration application
highlighting the value of including the forward and adjoint wave operators in the
inference process.

• Deep-LSRTM network is not severely influenced by model over-fitting for synthetic
tests. Re-training needed for Gulf of Mexico.
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Thank you!

Deep-LSRTM Sponsors meeting 2021 43 / 45



Least-squares reverse-time migration via deep learning-based
updating operators

Kristian Torres

Supervisor: Dr. Mauricio Sacchi

Signal Analysis and Imaging Group (SAIG)
Department of Physics
University of Alberta

January 25, 2022

Deep-LSRTM Sponsors meeting 2021 43 / 45



Deep-LSRTM: parametrization of the CNN blocks

mk+1 = Λθk

(
mk,∇J(mk)

)
where

Λθ = (ϕN ◦WwN ,bN ) ◦ ... ◦ (ϕ1 ◦Ww1,b1),

W q
wn,bn

=
(
bqn +

∑
p∈P

wq,p
n ∗ gp

)
, q ∈ Q,

θ =
(
(wN , bN ), ..., (w1, b1)

)
,

and
ϕ← ReLU, Sigmoid, Tanh, ...

• Regularization effect and other parameters are learned implicitly
• No need to worry about learning data-to-model space mapping
• The data information is delivered through the gradient ∇J(mk,d)
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Figures of merit

• Quantitative comparison

PSNR = 10 · log10

(
MAX2

I

MSE

)
MAXI : dynamic range
MSE: mean squared error

SSIM(x, y) =
[
aµ(x, y)

α · cσ(x, y)β · sσ(x, y)γ
]

Amplitude: aµ(x, y)
Contrast: cσ(x, y)
Structure: sσ(x, y)
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