Least-squares reverse-time migration via deep learning-based

updating operators

Kristian Torres

Supervisor: Dr. Mauricio Sacchi

Signal Analysis and Imaging Group (SAIG)
Department of Physics
University of Alberta

January 25, 2022

Deep-LSRTM Sponsors meet



Outline

@ Least-squares migration (LSM)

® Deep learning-based LSRTM
Learned iterative reconstruction
Learned post-processing operator

® Numerical Experiments

® Conclusions




Content

@ Least-squares migration (LSM)




Introduction

® Acoustic wave equation
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® Acoustic wave equation ® Linearized wave equation
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Introduction

® Acoustic wave equation ® Linearized wave equation
1 82 1 62 (‘32u0
<cg ot ) 0o=f (cg ot ) ot
co: velocity field co: velocity field
ug: incident wavefield du: scattered wavefield
f: source function m: reflectivity image

Assumption: No multiple scattering!
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Introduction

® Forward modeling

d=Lm

d: seismic data

L: forward modeling operator

m: reflectivity image
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Introduction

* Forward modeling * Reverse time migration (RTM)
d =Lm Myjg = LTdobs
d: seismic data my,ie: RTM image
L: forward modeling operator LT migration operator
m: reflectivity image dobs: observed seismic data

Migration is an approximate solution of the
linearized inverse problem
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Least-squares migration (LSM)

mrsym = (LTL)_lLTd
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Introduction

Least-squares migration (LSM)
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Introduction

Solve unconstrained optimization problem iteratively

1
min {J(m) + AR(m) = o |[Lm — dops||3 + AR(m)},
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Introduction

Solve unconstrained optimization problem iteratively

1
min {J(m) + AR(m) = 5|[Lm — dobs|[3 + AR(m) },

’ When R(m) is differentiable: gradient-based method such as GD or CG‘

GD solution — my 1 = my — a(VJ(mk) + )\VR(mk))

VJ(my) = LT (Lmy, — d))
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Introduction

Alternatively, introduce prior knowledge as projected constraints:

. 1 2
ggé {J(m) = EHLm — dobs||2}7

C: set of desired physical constraints

Sponsors meeti



Introduction

Alternatively, introduce prior knowledge as projected constraints:

. 1 2
ggé {J(m) = EHLm — dobs||2}7

C: set of desired physical constraints

Projected GD solution — my1 = P¢ (mk — onJ(mk)>
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Introduction

PGD solution — my1 = P¢ (mk — aVJ(mk)>

Least-squares migration via a gradient projection method - application to seismic data
deblending (Cheng et al., 2016)
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Introduction

PGD solution — my1 = P¢ (mk — aVJ(mk)>

Least-squares migration via a gradient projection method - application to seismic data
deblending (Cheng et al., 2016)
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Motivation

Classical LSM approaches

¢ Regularization/Constraints at each iteration: suppresses migration artifacts and
improves inversion efficiency.
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Motivation

Classical LSM approaches

¢ Regularization/Constraints at each iteration: suppresses migration artifacts and
improves inversion efficiency.

® Many iterations to find a good solution
® Geology is too complicated — R(m)? Pc(m)?

® optimal A7

Deep Learning solutions for seismic imaging
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Motivation

‘ Deep Learning solutions for inverse imaging ‘

Main approaches
¢ Fully learned reconstruction (end-to-end)

® [earned iterative reconstruction

Learned post-processing operator

Learned regularizer

Physics-informed (PINNS)

Physics-guided based on RNNs

Regularization via null space networks
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® Deep learning-based LSRTM
Learned iterative reconstruction




Learned iterative reconstruction

Inspired by LSM via PGD

my.; = Pe (mk - aVJ(mk))
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Learned iterative reconstruction

Inspired by LSM via PGD

my1 = Pc (mk - OzVJ(mk)>

Can we train updating operators to perform efficient projections?

my1 = Py, (mk — aVJ(mk))

my1 = Py, (mk, VJ(mk))

Deep-LSRTM
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Deep-LSRTM

Unrolled algorithm (first two iterations)
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Deep-LSRTM: network design

Each Py, is assembled following an encoder-decoder architecture:

my,
VJ(mk) 17 = ||

Conv+ReLU D BN D

Concatenation @ Conv+BN+ReLU D
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Deep-LSRTM: training process

Instead of training all weights © = (6, ..., 0k 1) together

1 3
O = arg min ~ Z ||le - m%rue”%?
6 3O
-
R . . .
= argmin <3 [[(Poy_y © 0 Py (m, VI (m))) = mipe 13

00,01 i=1
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Deep-LSRTM: training process

Instead of training all weights © = (6, ..., 0k 1) together
D — aremit i i 2
© = argmin =~ g ||mY% — my,. .. ||5,
e gt

= argmin =3 [|(Pag_, 0 - 0 Py (mi), VI (m)) — mi 3,
9(),....9[(,1 ~ i=1

R o1 ; i
0, = min 3 Z Hm2+1 - m‘zcrueH%

g ;
min Z H,PGI; (mk’ v‘](mk)) - mtrue”%

= No. of training instances
16 / 45
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Data set

® Pseudo-random synthetic models

® 400x200 velocity distributions of
sedimentary structures (1.5 to 5.5 km/s)

e Reflectivity as velocity perturbations:
900 training, 100 validation, 200 testing

km km




Deep-LSRTM training

Each Py, is trained sequentially using 341,441 parameters

® 50000 steps of Adam optimizer with Ir = 0.001
® Batch size of 2, 111 epochs

® Including gradient calculation step, each updating operator is trained in ~ 3 hours

We set 5 iterations (Py,, ..., Pp,) of Deep-LSRTM
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Deep-LSRTM training

Deep-LSRTM

Normalized loss (MSE)
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Deep-LSRTM training
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® Deep learning-based LSRTM

Learned post-processing operator




Learned post-processing operator

Two-step reconstruction

m = Aq; (LTd)

= Ag(mpr™m)
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Learned post-processing operator

Two-step reconstruction

m = Aq; (LTd)

= Ag(mpr™m)

Single-iteration image-domain LSM

m = CLTd

= Cmmig

with C ~ [L"L]
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Learned post-processing operator
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Single-step reconstruction with U-net

¢ Also trained with Adam (Ir=0.001) for 111 epochs
® Modified version of the original U-net

® ~ 3 hours to train

Deep-LSRTM

Normalized loss (MSE)
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Numerical experiments

e Example 1: central part of Marmousi

® Learned reconstructions as warm-starts for CGLS
® Sensibility to background model errors

® Sensibility to random noise
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Example 1: Marmousi model

1.0
—— Preconditioned LSRTM
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Numerical experiments

e Example 1: central part of Marmousi

® Learned reconstructions as warm-starts for CGLS

® Sensibility to background model errors

® Sensibility to random noise




Example 1: Marmousi model

Cropped Marmousi
Method PSNR (db) | SSIM
CGLS 27.46 0.47
U-net 28.37 0.53
Deep-LSRTM 29.87 0.65

Warm-started CGLS
CGLSUpet 29.96 0.58
CGLSpeep-LSRTM 30.37 0.69
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Cropped Marmousi
Method PSNR (db) | SSIM
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U-net 28.37 0.53
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Example 1: Marmousi model
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Numerical experiments

e Example 1: central part of Marmousi
® Jearned reconstructions as warm-starts for CGLS
® Sensibility to background model errors

® Sensibility to random noise
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Example 1: Marmousi model

® Test learning approaches against background models with higher degrees of smoothing
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® Test learning approaches against background models with higher degrees of smoothing
® Deep-LSRTM+vel: background velocity field as complementary branch
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Example 1: Marmousi model

® Test learning approaches against background models with higher degrees of smoothing
® Deep-LSRTM+vel: background velocity field as complementary branch
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ample 1: Marmousi model

® Deep-LSRTM+vel

0.05
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ample 1: Marmousi model

e Migration velocity model with 5% faster velocity everywhere.
. - (b)o




Numerical experiments

e Example 1: central part of Marmousi

® Jearned reconstructions as warm-starts for CGLS

® Sensibility to background model errors
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Example 1: Marmousi model
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Example 1: Marmousi model

—— U-net
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Example 2: Gulf of Mexico data set

Mississippi Canyon (Gulf of Mexico) 2D data set
® Shallow salt body in a deep water environment
¢ The data lack both low frequencies and long offsets (maximum offset is 4.8 Km)

® Streamer geometry: 809 shots, 183 receivers, recording time = 7 s, dt = 4 ms.
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Mississippi Canyon (Gulf of Mexico) data set
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Mississippi Canyon (Gulf of Mexico) data set

® Challenges inherent to LSM: accuracy of velocity model, salt body region,
illumination issues, limited acquisition aperture, events not contained in the range of
the forward (Born) operator, phase and amplitude corrections due to 3-D
propagation.

® Challenges inherent to application of supervised approach: different wavelet
(frequency content), different acquisition setup, different domain size, different
distribution.
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Example 2: Gulf of Mexico data set

Transfer learning (re-training):

® Reference model: 20 iterations of preconditioned CGLS using a different group of
only 60 shots.

® Retrain weights of each Py, with only 20 additional epochs and a reduced learning
rate of le-5.
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Example 2: Gulf of Mexico data set
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Example 2: Gulf of Mexico data set

QC: shot gather and demigration for source at x=15.6 km

() ;
“ . -
15

(a) Observed gather, (b) RTM-demigrated, (¢) LSRTM-demigrated, (d) Deep-LSRTM-demigrated
(No transfer learning), (e) Deep-LSRTM- demlgrated after transfer learning.

Offset (k)
10 -05
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® Two CNN strategies to speed-up/improve seismic migration: iterative vs
post-processing

Deep-LSRTM

my 1 = Ag, (my, VJ(my))
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Take-away
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Take-away

® Two CNN strategies to speed-up/improve seismic migration: iterative vs
post-processing

Deep-LSRTM
P Two-step U-net reconstruction

my 1 = Ag, (my, V.J(my)) m = Ap(L"d)
=Agp

= Ag(mpr™m)

Projected gradient descent LSM ) . .. .
Single-iteration image-domain LSM

mgy1 = P(C (mk — aVJ(mk)) m — CLTd

= CmpgTMm

with C ~ [L"L] '
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Conclusions

® Despite using a small training set, the iterative Deep-LSRTM approach yields
superior results than conventional LSRTM baselines for same No. of iterations.

® Deep-LSRTM also outperforms a two-step residual U-net post-migration application
highlighting the value of including the forward and adjoint wave operators in the
inference process.

® Deep-LSRTM network is not severely influenced by model over-fitting for synthetic
tests. Re-training needed for Gulf of Mexico.
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Thank you!
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Deep-LSRTM: parametrization of the CNN blocks

my 1 = Ay, (mk, VJ(mk)>

where
Ag = (N 0 Wuyby) © -0 (d1 0 Wy ),
Wi o = (W4 > wit?sg, ), g€ Q.
peP
0= ((wN, bN), .oy (w1, bl)),
and

¢ <+ ReLU, Sigmoid, Tanh, ...

® Regularization effect and other parameters are learned implicitly
® No need to worry about learning data-to-model space mapping
® The data information is delivered through the gradient V.J(my,d)
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Figures of merit

® (Quantitative comparison

MAX? N 8
PSNR =10 logyo | rem SSIM(z,y) = |au(z,y)* - co(z,y)” - so(z,y)"
MAX;: dynamic range Amplitude: a,(z,y)
MSE: mean squared error Contrast: c,(z,y)

Structure: s, (z,y)
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